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Summary. Unsynchronized cells of an essentially diploid strain 
of female Chinese hamster cells derived from lung tissue (CHL) 
were laser-UV-microirradiated (2 = 257 nm) in the nucleus either 
at its central part or at its periphery. After 7-9 h postincubation 
with 0.5 mM caffeine, chromosome preparations were made in 
situ. Twenty-one and 29 metaphase spreads, respectively, with 
partial chromosome shattering (PCS) obtained after micro- 
irradiation at these two nuclear sites, were Q-banded and 
analyzed in detail. A positive correlation was observed between 
the frequency of damage of chromosomes and both their DNA 
content and length at metaphase. No significant difference was 
observed between the frequencies of damage obtained for 
individual chromosomes at either site of microirradiation. The 
frequency of joint damage of homologous chromosomes was low 
as compared to nonhomologous ones. Considerable variation 
was noted in different cells in the combinations of jointly 
shattered chromosomes. Evidence which justifies an interpre- 
tation of these data in terms of an interphase arrangement of 
chromosome territories is discussed. Our data strongly argue 
against somatic pairing as a regular event, and suggest a 
considerable variability of chromosome positions in different 
nuclei. However, present data do not exclude the possibility of 
certain non-random chromosomal arrangements in CHL-nuclei. 
The interphase chromosome distribution revealed by these 
experiments is compared with centromere-centromere, centro- 
mere-center and angle analyses of metaphase spreads and the 
relationship between interphase and metaphase arrangements of 
chromosomes is discussed. 

Introduction 

Laser-microirradiation of the cell nucleus has been established as 
a new approach to investigation of the chromosome arrange- 
ment in interphase. Several procedures have been described to 
detect the microirradiated chromosome segments at the first 
postirradiation mitosis, and thus visualize the arrangement 
present at the site and time of microirradiation (Zorn et al. 1976, 
1979; Cremer et al. 1980; Cremer et al. 1982). Data obtained by 
these methods have produced evidence for the idea that 
chromosomes occupy certain territories in the interphase 
nucleus of Chinese hamster cells, whereas the question of 
random or non-random arrangements of these territories awaits 
further clarification. 
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Here, we report on the evaluation of chromosomal damage 
observed after partial irradiation of the nucleus and caffeine 
post-treatment of essentially euploid Chinese hamster cells 
grown in vitro. By this treatment we have obtained fragmen- 
tation or pulverization of a few chromosomes in some cells, while 
in other cells shattering of the whole chromosome complement 
was obtained (Zorn et al. 1976). We refer to these two types of 
damage localization as partial (PCS) and generalized (GCS) 
chromosome shattering, respectively. Experimental conditions 
for the induction of PCS and GCS have been carefully studied 
(Cremer et al. 1981). Recently, we have demonstrated by indirect 
immunofluorescence microscopy that antibodies to UV-irradi- 
ated DNA react exclusively with the area of shattered chromatin 
in metaphases with PCS. In cells with GCS, significant 
fluorescence is also restricted to a small fraction of microirradi- 
ated chromatin, while the rest of the shattered chromosome 
complement remains unstained (Cremer et al. 1983). We have 
concluded that PCS and GCS indicate two levels of chromosome 
damage which can be produced by the synergistic action of 
ultraviolet light and caffeine. Level 1 as indicated by PCS 
appears to be restricted to the microirradiated part of the 
chromosome complement, while level 2 involves both micro- 
irradiated and non-irradiated chromosomes and results in GCS 
(Cremer et al. 1981a, b, 1983). 

On the basis of the evidence summarized above, we have used 
metaphases with PCS in the present investigation to elucidate the 
internal order of the interphase nucleus. Jointly damaged 
chromosomes in these metaphases are expected to reflect  
chromosomes situated closely together in the interphase nucleus 
at the site and time of microirradiation. The present investi- 
gation was particularly aimed at the question of whether (i) 
homologous association occurs in the interphase nucleus of 
Chinese hamster cells and (ii) chromosome territories of 
individual chromosomes occupy particular sites of the inter- 
phase nucleus. Somatic pairing has been shown to exist in cells of 
many plant species (Avivi and Feldmann 1980), but present 
evidence in mammalian species is conflicting (Comings 1980; 
Wollenberg et al. 1982). Our microbeam study was comple- 
mented by an analysis of the chromosome arrangement in 
metaphase spreads. Comparison of data obtained by both types 
of analysis gives an opportunity to compare the interphase and 
metaphase arrangement of chromosomes. Such a comparison is 
of considerable importance, since conclusions concerning the 
internal order of chromosomes in the interphase nucleus have 
been tentatively drawn in a large number of studies from the 
analysis of chromosome arrangements at metaphase (Hens et al. 
1982; for review see Comings 1980). 
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Material and Methods 

Cell Strain and Culture Conditions. A fibroblastoid Chinese 
hamster cell (CHL) strain was established from lung tissue of  a 
3-week-old female and grown under standard conditions (Zorn 
et al. 1976). A number of  early passage cultures were stored in 
liquid nitrogen and cells f rom passage numbers 10-15 were used 
for the experiments. At this passage level the majority of  cells had 
still maintained their diploid status as shown by Q-banding 
analysis. The doubling time of  exponentially growing cultures 
was approximately 30h. If  not stated otherwise, experiments 
were performed with this cell strain. 

Laser Microbeam and Conditions of  Microirradiation. The UV- 
laser-microbeam ( 2 = 2 5 7 n m )  has been described in detail 
(Cremer et al. 1974, 1976). For  microirradiation, 15-45 x 103 
cells were seeded in plastic petri dishes (Nunc, ~ • 5 cm). In the 
middle of  these dishes experimental fields of  approximately 
0.25 mm 2 each were marked by scalpel cuts. Some 24 h later the 
dishes were placed in special irradiation chambers as previously 
described (Cremer et al. 1976, 1981) and cells in experimental 
fields were microirradiated in the nucleus, while cells outside 
these fields served as controls. The diameter of  the microbeam 
was 1-2 lain at its focal site. In each nucleus the nuclear area 
was microirradiated either at its central part or at its edge. 
The UV-power  of  the microbeam at the cell surface was 
approximately 7.5 × 10 -9 W, the irradiation time was 1/is s. Some 
180-300 cells were microirradiated per petri dish at room 
temperature within a period of up to 1 h. Some 10% of cells 
within experimental fields were excluded from microirradiation,  
mainly because the outline of the cell nucleus could not be clearly 
distinguished in phase contrast. 

Post-Treatment of Microirradiated Cells. After microirradiat ion 
the cells received fresh medium with 0 .5mM caffeine. In 
addition, 3H-thymidine (0 .05gCi/ml ,  specific activity 5 C i /  
mmole,  Amersham Buchler) was added in some experiments. 
Cells were postincubated at 37°C in a humidified atmosphere 
with 5% CO2 for 7-9 h. During the last 3 h 1 ~tg/ml colchicine was 
added to block cells in mitosis. Chromosome preparat ion of  cells 
in situ was performed as previously described (Zorn et al. 1979). 
Air  dried preparations were stained with quinacrine mustard 
(Caspersson et al. 1970). Banded metaphase spreads were 
photographed using a Zeiss photomicroscope equipped with 
epifluorescence illumination. For  further evaluation cells were 
poststained with aceto-orcein. Autoradiography was performed 
as previously described (Zorn et al. 1979). As in previous 
publications of  our group (Zorn et al. 1976, 1979; Cremer et al. 
1982) the numbering system used for karyotyping of the Chinese 
hamster chromosomes is the one used by Kato and Yosida 
(1972), where the X chromosome is placed in sequence with the 
autosomes in descending size (compare Ray and Mohandas  
1976). 

Metaphase Chromosome Distribution Analysis. "Generalized 
distances" between the centromere of each chromosome and the 
center of  the metaphase spread were calculated to determine the 
positions of  metaphase chromosomes using the method of  
Barton and David (1962). The distribution of homologous 
chromosomes was evaluated in two ways. Generalized distances 
between the centromeres of  homologous chromosomes were 
compared with the distances between non-homologous ones. In 
addition, an angle analysis was carried out by comparing angles 
established between the centromere of  each chromosome,  the 
center of  the metaphase spread and the centromere of its 

Fig. 1 a-d. Metaphase spreads with PCS were obtained after microirra- 
diation of the nuclear edge and postincubation with caffeine (0.5 mM) 
and ~H-thymidine (0.05 gCi/ml) for 7 h. Colchicine (i gg/ml) was added 
after 4 h. Note that 3H-thymidine was only added 1 h after the beginning 
of the experiment, when microirradiation of all cells in the experimental 
field of the petri dish had been finished, a, c Q-banded metaphase 
spreads stained with quinacrine-mustard. Small arrows indicate shat- 
tered chromosomes; large arrows point to the X-chromosomes. b, d The 
same metaphase spreads after autoradiography (exposure time 1 week) 
and poststaining with aceto-orcein. In b both shattered and intact 
chromosomes are labelled. In contrast, in d label is observed over the 
late replicating segments of the apparently intact X-chromosomes, but 
not over the shattered chromosome material 

homologous counterpart  or with any other non-homologous 
chromosome. Details of these methods, which include a circular 
transformation of centromere positions into an ideal circular 
image of  the metaphase spread with unit radius, have been 
described extensively elsewhere (Hens 1976; Hens et al. 1982). 

Results 

Evaluation of Chromosome Damage in the First Postirradiation 
Mitosis after UV-Microirradiation of the Interphase Nucleus. 
Approximately 13,000 CHL-cells were microirradiated in non- 
synchronized cultures either in the central area of  the nucleus or 
at its edge. We refer to these two modes of  microirradiation as 
"central" and "peripheral" microirradiation, respectively. The 
shape of the interphase nucleus of  CHL-cells in vitro resembles a 
flat ellipsoid. In cases of  peripheral microirradiation, chro- 
matin constituting the nuclear edge where the curvature of  
the nuclear envelope is maximum was damaged, while in cases of  
central microirradiation chromatin constituting the central part 
of  the nucleus was involved. It is important to note that in both 
cases some part of the nuclear envelope plus adjacent chromatin 
was hit by the microbeam. Accordingly, our experiments do not 
contribute to the question of which chromosomes or parts 
thereof are associated with the nuclear envelope and which are 
not. However,  frequencies of shattering obtained for each 
chromosome of the complement after central or peripheral 
microirradiation should provide information about whether 
certain chromosomes are preferentially localized in the central 
area or at the nuclear edge. 



203 

Table 1. Frequency of chromosome damage (classes A-E2) following 
central and peripheral microirradiation. Metaphase spreads obtained 
in experimental fields after central and peripheral microirradiation, 
respectively, and metaphase spreads from non-irradiated regions of the 
same petri dishes (control) were classified as previously described 
(Cremer et al. 1981 a). In class A, chromosomes appeared intact; in class 
B, one or two chromosome aberrations were noted; in class C, more than 
two aberrations were observed, but the majority of chromosomes 
appeared intact--this class comprises the cells with PCS (Figs. 1, 3); in 
class D, shattering was observed in most chromosomes, but one or 
several chromosomes still appeared intact; in class E, all chromosomes 
were shattered, appearing fragmented and/or pulverized (GCS); in 
subclass E 1, fragments resembling parts of mitotic chromosomes could 
still be recognized at least in part of the spread; in subclass E2, the whole 
chromosome complement appeared pulverized 

Site of microirradiation 

Central Peripheral Control 
(n a = 260) (n = 31 O) (n = 504) 
(%) (%) (%) 

A 62.7 44.2 89.7 
B 1.9 3.2 6.5 
C 8.1 15.5 1.0 

D 6.5 13.6 1.0 
E1 12.3 12.3 1.0 
E2 8.5 11.2 0.8 

a n - Number of metaphase plates evaluated 

Mitotic cells, 260 and 310, respectively, were obtained 7 to 9 h 
after central and peripheral microirradiation and caffeine post- 
treatment (0.5 mM). Mitotic cells were classified into classes A - E  
as previously described (Cremer et al. 1981), (Table 1). For  short 
definitions see legend of Table 1. Note that similar percentages of 
cells with GCS (class E) were found after central and peripheral 
microirradiation (20.8% vs 23.5%). The percentages of classes C 
(PCS) and D were somewhat higher after peripheral as compared 
to central microirradiation. While the reason of this difference is 
not clear, it is important  to note that both PCS and GCS can be 
induced by microirradiation of  any site of the nucleus. In 
general, the probability of hitting targets important  for the 
induction of chromosome shattering appears to be similar at 
different sites of the nucleoplasm. 

In some of the experiments 3H-thymidine (0.05 pCi /ml)  was 
added to the cells during the caffeine postincubation period. In 
these experiments 461 mitotic cells were obtained after central 
and peripheral microirradiation, respectively. A similar number 
of non-irradiated mitotic cells in the same dishes were evaluated 
as controls. The percentage of  labelled non-irradiated cells 
(91.8%) did not significantly differ from the one obtained for 
labelled microirradiated cells (93.9%). Cells with GCS and gen- 
erally also with PCS (Fig. 1 a, b) showed label distributed over the 
whole chromatin. This indicates that these cells had traversed a 
considerable part of S-phase after microirradiation. In some 
cases of PCS, however, label was mainly or even completely 
restricted to the X-chromosomes,  while the area of  shattered 
chromatin appeared free from label (Fig. lc ,  d). In Chinese 
hamster cells it has been shown that both the active and inactive 
X-chromosome contain large amounts of late replicating 
chromatin (Daeven and Petersen 1973). Notably, 3H-thymidine 
was only added after microirradiation of all cells in the 
experimental field of  a petri dish was finished. This means a 
maximum time delay of  I h between microirradiation of a 
particular cell and addition of  the label. Since replication of the 

UV-irradiated chromatin appears necessary in order to induce 
shattering by the synergistic effect of caffeine (Nilsson and 
Lehmann 1975; Cremer et al. 1981), lack of label over the area of  
shattered chromosomes is considered to indicate that D N A  
replication critical for the induction of shattering was finished in 
the microirradiated chromatin during this time delay. 

After Q-banding, karyotypes could be established from 21 
mitotic cells with PCS after central microirradiation and from 29 
mitotic cells after peripheral microirradiation. In some cases the 
structure and banding pattern of  damaged chromosomes was 
still sufficiently maintained to allow direct identification. In 
other cases, damaged chromosomes could only be assessed in an 
indirect way after the identifiable intact or less damaged 
chromosomes had been arranged in the karyotypes. The results 
are shown in Tables 2 and 3. The number of damaged 
chromosomes per spread (2 n = 22) varied from 1-11. On average 
5.9 chromosomes were damaged after central microirradiation 
and 5.0 after peripheral microirradiation. Tables 2 and 3 show 
that each chromosome of the complement could be damaged by 
both central and peripheral microirradiation. When the bino- 
mial assumption was made, differences obtained for the relative 
frequencies of damage at either site of microirradiation (Fig. 2) 
were not significant at the 95% confidence level. 

A significant increase (P<  0.05) of the frequency of  damage 
was noted with increasing D N A  content of chromosomes (Gray 
et al. 1975) by linear regression analysis with a regression 
coefficient a = +0.26 (Fig. 2, see slope of regression line) and a 
correlation coefficient r = 0.65. The same correlation (a = +0.25; 
r = 0.64) was observed, when the relative length of  metaphase 
chromosomes from 80 metaphase spreads was determined. For  
this purpose the length of chromosome No. 1 was arbitrarily set 
at 1.0 (data not shown). 

The type of  damage which we should expect to result from 
microirradiation of  somatically paired homologous chromo- 
somes is exemplified in Fig. 3. Here, microirradiation was by 
chance performed in a cell with endoreduplication. In the 
resulting metaphase spread diplochromosomes appear either 
both intact or damaged at corresponding sites. As shown below, 
such a close and regular association, however, does not hold true 
for homologous chromosomes.  For  each pair of chromosome we 
have determined from Tables 2 and 3 the total number of 
metaphase spreads with PCS showing damage of either one or 
both chromosomes of the pair in question, the fraction of 
spreads showing damage to both homologous simultaneously 
and the fraction of  spreads showing damage to only one 
chromosome (Table 4). With one exception simultaneous 
damage of homologous chromosomes was obtained in a minor 
fraction of the spreads. Only after central microirradiation did 
both X-chromosomes show simultaneous damage in the 
majority of cases (seven spreads showing damage of  both 
X-chromosomes versus five spreads showing damage of one X 
only). 

Distribution of Homologous Chromosomes in Metaphase Spreads 
from Microirradiated and Non-Irradiated Cells. Centromere- 
centromere distances between homologous chromosomes were 
measured in 210 non-irradiated cells and in 50 cells with PCS. 
A2-distribution histograms of generalized centromere-centro- 
mere distances for each pair of  homologous chromosomes were 

2 compared by Z -tests with their respective reference distribution. 
This reference distribution was established from the generalized 
distances obtained for all possible combinations of  homologous 
and non-homologous chromosome pairs except for the pair 
under study. For  comparison a modified reference distribution 
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Table 2. Partial chromosome shattering in microirradiated cells. I. Central microirradiation. Q-banded metaphase spreads with PCS (Roman 
numerals,  vertical row) were obtained after central microirradiation karyotyped according to Kato and Yosida (1972) with the X-chromosome 
(No. 3) placed in sequence with the autosomes in descending size (arabic numerals ,  horizontal row). The smallest chromosomes,  No. 9-11, were 
grouped together. For  each chromosome of a spread, damage is indicated by "*". Joint damage of homologous chromosomes is indicated by "**" 
for chromosomes 1-8. The number  of  damaged chromosomes (n) in each spread is given on the right. At the bot tom of each vertical row the total 
number  (N) is given, with which an individual chromosome has participated in PCS. N(%) shows the relative frequency of damage as percent of  
the theoretical limit of N, which would be reached, when a pair of  homologous  chromosomes would participate in PCS in all evaluated metaphase 
spreads. N(%) = (number  of  damaged chromosomes of a given t y p e / n u m b e r  of all chromosomes of this type in the evaluated metaphase spreads) × 100 

Chromosome number  

1 2 3 ( X )  4 5 6 7 8 9 - 1 1  

Number  of 
damaged 
chromosomes 
(n) 

I * * * * * * * * 8 

II * * * * * 5 

III * * * * 4 

IV ** * ** * * 7 

V * 1 

VI * ** * * ** * 8 

VII * * ** * * * * * 9 

VIII * * * * * 5 

IX * ** * * * *** 9 

X * * * ** 5 

XI * 1 

XII * 1 

XIII * * * 3 

XIV * * * ** * *** 9 

XV * * * 3 

XVI * ** ** ** * * 9 

XVII ** * ** ** * *** 11 

XVIII ** * * 4 

XIX * * ** * 5 

XX * * * ** ** ** * 10 

XXI * * * * * *** 8 

N 16 10 19 12 16 11 10 8 23/3 n =  5.9 

N(%) 38% 24% 45% 29% 38% 26% 24% 19% 18% 

was  a lso  u sed ,  n a m e l y  t he  h i s t o g r a m  e s t a b l i s h e d  f r o m  gene ra l -  

ized d i s t ance s  b e t w e e n  t he  c e n t r o m e r e s  o f  the  c h r o m o s o m e  pa i r  

u n d e r  s t u d y  a n d  the  c e n t r o m e r e s  o f  all o t h e r  n o n - h o m o l o g o u s  

c h r o m o s o m e s .  In  a d d i t i o n  to the  c e n t r o m e r e - c e n t r o m e r e  dis-  

t ance ,  the  ang le  b e t w e e n  t he  c e n t r o m e r e  o f  a c h r o m o s o m e  u n d e r  

s tudy ,  the  cen t re  o f  t he  m e t a p h a s e  s p r e a d  a n d  the  c e n t r o m e r e  o f  

t he  h o m o l o g o u s  c h r o m o s o m e  was  m e a s u r e d  in t he  n o n -  

i r r ad i a t ed  cell p o p u l a t i o n .  T h e  r e su l t i ng  h i s t o g r a m  was  c o m -  

p a r e d  by  X2-test w i th  the  h i s t o g r a m  e s t a b l i s h e d  f r o m  the  ang le s  

for  all o t h e r  poss ib l e  pa i r s  o f  c h r o m o s o m e s  as r e fe rence  

d i s t r i bu t i on .  In  b o t h  the  m i c r o i r r a d i a t e d  a n d  the  n o n - i r r a d i a t e d  

cell p o p u l a t i o n ,  e v a l u a t i o n  o f  gene ra l i zed  d i s t a n c e s  b e t w e e n  

c h r o m o s o m e s  as  well as ang le  ana lys i s  c o n s i s t e n t l y  s h o w e d  t h a t  

h o m o l o g o u s  m e t a p h a s e  c h r o m o s o m e s  were n o t  s i t u a t e d  c loser  
to e ach  o t h e r  t h a n  expec t ed  by  the  re fe rence  d i s t r i b u t i o n  ( d a t a  

n o t  s h o w n ) .  

Centromere-center Distances in Metaphase Spreads from Micro- 
irradiated and Non-Irradiated Cells. T h e  s a m e  p o p u l a t i o n s  o f  

m e t a p h a s e s  wi th  P C S  a n d  con t ro l  m e t a p h a s e s  were a lso  

e v a l u a t e d  for  c e n t r o m e r e - c e n t e r  d i s t ances .  F o r  e ach  pa i r  o f  

h o m o l o g o u s  c h r o m o s o m e s  the  d C d i s t r i b u t i o n  h i s t o g r a m  o f  

gene ra l i zed  c e n t r o m e r e - c e n t e r  d i s t a n c e s  was  c o m p a r e d  by  
x2-tes ts  wi th  the  respec t ive  re fe rence  d i s t r i bu t i on ,  i.e., t he  

h i s t o g r a m  e s t a b l i s h e d  by  the  d2-values  o f  all c h r o m o s o m e  pa i r s  

excep t  the  one  u n d e r  c o n s i d e r a t i o n .  F o r  m o s t  c h r o m o s o m e  pa i r s  
x2- tes ts  d id  n o t  revea l  a s ign i f i can t  d e v i a t i o n  f r o m  the  re fe rence  

d i s t r i b u t i o n  ( d a t a  n o t  shown) .  In  the  n o n - i r r a d i a t e d  cell 

p o p u l a t i o n  the  c e n t r o m e r e s  o f  c h r o m o s o m e s  No.  1 a p p e a r e d  

m o r e  cen t ra l  (P  < 0.05), whi le  the  c e n t r o m e r e s  o f  c h r o m o s o m e s  

No .  6 a n d  11 were p re fe ren t i a l ly  l oca t ed  a t  the  p e r i p h e r y  o f  the  
s p r e a d s  ( P < 0 . 0 5  a n d  P < 0 . 0 2 5  respect ively) .  In  the  s a m p l e  o f  

m e t a p h a s e s  wi th  PCS  the  c e n t r o m e r e s  o f  c h r o m o s o m e  No .  7 

a p p e a r e d  m o r e  p e r i p h e r a l l y  l oca t ed  (P < 0.05). T h e  s u p p o s e d l y  
cen t ra l  or  p e r i p h e r a l  loca l i za t ion  o f  t hese  few c h r o m o s o m e s  m a y  

r e p r e s e n t  s ta t i s t ica l  a r t i fac t s  a n d  f u r t h e r  d i s c u s s i o n  w o u l d  o n ly  
be w o r t h w h i l e  if  t he  s a m e  loca l i za t ion  c o u l d  be  c o n s i s t e n t l y  
f o u n d  in severa l  i n d e p e n d e n t  ser ies  o f  e x p e r i m e n t s .  N o  s ignif i -  
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Table 3. Partial chromosome shattering in microirradiated cells. II. Peripheral microirradiation. Q-banded metaphase spreads (Roman numerals, 
vertical row) were obtained after peripheral microirradiation and karyotyped according to Kato and Yosida (1972). For further details see legend 

of Table 2 

Chromosome number 

1 2 3 ( X )  4 5 6 7 8 9 - 1 1  

Number of 

damaged 
chromosomes 
(n) 

I • * * * 4 

II * * * 3 

III  * * * * * ** * 8 

IV * * * * * **** 9 

V ** * * * * 6 

VI * ** 3 

VII * * 2 

VIII * ** ** * * * 8 

IX * * 2 

X * * 2 

XI * * * * * 5 

XII * * * * * * ** 8 

XIII  * * * * * * 6 

XIV * * * * * * * ** * 10 

XV ** 2 

XVI * * 2 

XVII * * * 3 

XVIII * * * * * * * ** 9 

XIX * ** * * * * * 8 

XX * * * 3 

XXI * * 2 

XXII * * ** * * 6 

XXIII  * * * 3 

XXIV * * 2 

XXV ** ** * * * * 8 

XXVI * * ** * * * *** 10 

XXVII ** * * * * ** 8 

XXVIII * * 2 

XXIX ** 2 

N 25 19 24 12 10 l l  I0 10 25/3 n=  5.0 

N(%) 43% 33% 41% 21% 17% 19% 17% 17% 14% 

can t  d i f fe rences  were  o b s e r v e d  w h e n  the  c e n t r o m e r e - c e n t r e  

d i s t ances  of  c h r o m o s o m e s  in  m i c r o i r r a d i a t e d  cells,  as m e a s u r e d  

for  i n t ac t  a n d  d a m a g e d  b u t  s t i l l  i den t i f i ab l e  c h r o m o s o m e s ,  were  

c o m p a r e d  by  X2-tests w i th  the  c o r r e s p o n d i n g  d i s t a n c e s  of  

c h r o m o s o m e s  in n o n - i r r a d i a t e d  cells ( d a t a  no t  shown) .  

Distribution of Damaged Chromosomes in Metaphase Spreads 
with PCS. M e t a p h a s e  s p r e a d s  wi th  PCS s h o w e d  an a r e a  of  

f r a g m e n t e d  or  p u l v e r i z e d  c h r o m o s o m e  m a t e r i a l .  As  n o t e d  

above ,  d a m a g e  in  th i s  a rea  was  n o r m a l l y  t oo  h e a v y  to  a l l o w  

d i rec t  i d e n t i f i c a t i o n  of  c h r o m o s o m e s .  W h i l e  the  m a j o r i t y  of  

c h r o m o s o m e s  s u r r o u n d i n g  the  d a m a g e d  a r e a  a p p e a r e d  in tac t ,  

s o m e  of  t h e m  a l so  s h o w e d  d a m a g e  (b reaks ,  m i s c o n d e n s a t i o n ) ,  

bu t  as a ru le  c o u l d  sti l l  be  iden t i f i ed .  T a b l e  5 s h o w s  t h a t  these  less 

d a m a g e d  c h r o m o s o m e s  were  s i t u a t e d  s i gn i f i c an t l y  c lose r  to  the  

d a m a g e d  a rea  t h a n  i n t ac t  ones.  F o r  th is  e v a l u a t i o n  g e n e r a l i z e d  

d i s t ances  (;N 2) of  the  c e n t r o m e r e s  of  a n y  d a m a g e d  c h r o m o s o m e  

to the  a r b i t r a r i l y  de f ined  cen te r  o f  the  d a m a g e d  a rea  ( D A )  were  

c o m p a r e d  wi th  ?(2-distances o f  any  i n t ac t  c h r o m o s o m e  to th is  

center .  

D i s c u s s i o n  

This  s t u d y  dea l s  w i th  the  e v a l u a t i o n  of  m e t a p h a s e  sp r eads  

d i s p l a y i n g  s h a t t e r e d  c h r o m o s o m e s  a f te r  m i c r o i r r a d i a t i o n  of  the  

i n t e r p h a s e  nuc leus  of  C H L - c e l l s  e i the r  a t  its cen t r a l  a r ea  or  a t  its 

edge.  I t  c o n t r i b u t e s  to  the  ana lys i s  o f  b o t h  the  m e c h a n i s m  of  

c h r o m o s o m e  s h a t t e r i n g  by  the  syne rg i s t i c  effect  o f  u l t r a v i o l e t  

l igh t  a n d  caf fe ine  (for  r ev iew see K i h l m a n  1977) a n d  the  
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RELATIVE DNA-CONTENT OF CHROMOSOMES 

Fig. 2. Abscissa. The relative DNA-content of Chinese hamster chromo- 
somes was derived from the literature (Gray et al. 1975). The DNA 
content of the largest chromosome (No. 1) was arbitrarily set at 1.0. 
Ordinate. The relative frequency [N(%); see legend to Table 2] with 
which a particular chromosome participated in PCS either after 
peripheral (v) or after central (A) microirradiation, was calculated from 
data shown in Tables 2 and 3. The dotted line represents the linear 
regression line calculated from all points of the plot. Note that the 
regression coefficient as indicated by the slope of this line is positive 
(+0.26). This increase in the frequency of damage with the DNA content 
of single chromosomes is significant (P< 0.05) 

Table 4. Frequency of damage to chromosomes 1-8 as determined from 
Tables 2, 3 

Site of Chromo- Number One Both 
micro- some a of meta- chromo- chromosomes 
irradiation no. phases some damaged c 

damaged b 

Central 1 14 0.86 0.14 

2 10 1.00 0.00 

3 12 0.42 0.58 

4 I0 0.80 0.20 

5 13 0.77 0.23 

6 9 0.78 0.22 

7 9 0.89 0.11 

8 7 0.86 0.14 

Peripheral 1 21 0.81 0.19 

2 16 0.82 0.18 

3 20 0.80 0.20 

4 12 1.00 0.00 

5 9 0.89 0.11 

6 11 1.00 0.00 

7 10 1.00 0.00 

8 8 0.75 0.25 

a Chromosomes No.9-11 were grouped together (see Tables 2, 3); 
therefore these cases were omitted from Table 4. 

b (Number of cases with damage to one chromosome of a given type)/ 
(total number of metaphases with damage to chromosomes of a given 
type) 

c (Number of cases with damage to both homologous chromosomes of 
a given type)/(total number of metaphases with damage to chromo- 
somes of a given type) 

Fig. 3. This Chinese hamster cell (V79-subline; Cremer et al. 1976, 1981 a, 
b) was microirradiated at one site of the nucleoplasm and post-treated 
with 1 mM caffeine for 8 h before chromosome preparation in situ was 
performed. Colchicine (1 gg/ml) was added 5 h after microirradiation. 
By chance endoreduplication had occurred in this cell. Small arrows 
indicate a damage area consisting of shattered diplochromosomes. 
Large arrows indicate diplochromosomes which are jointly affected at 
corresponding sites. The distribution of chromosomal damage in this 
metaphase spread is consistent with the assumption that each diplo- 
chromosome forms its own territory in the interphase nucleus 

interphase arrangement  Of chromosomes.  The results are 
compared  with data obtained by the analysis of  chromosome 
distr ibution in metaphase  spreads. 

The phenomena  of  partial (PCS) and generalized (GCS) 
chromosome shattering in microirradiated nuclei have been 
described extensively (Cremer et al. 1981a, b; Cremer et al. 
1983). Fo r  a relevant discussion of  presently conceivable 

Table 5. Spatial distribution of chromosomes in cells with PCS. 2~ 2 dis- 
tances of  any damaged chromosome to the damaged area (DA) com- 
pared with 2[ 2 distances of any undamaged chromosome to the damaged 
area (DA) 

A2-value Z 2 Comparison 
(DA-chro- 
mosome) Damaged versus 

undamaged chromosomes 

ZZ-value df P 

Damaged 
chromosomes 

Undamaged 
chromosomes 

3.02 

4.28 

53.22 7 P<0.005 

df = degrees of freedom 

mechanisms of GCS see Cremer et al. (1981 a, b). The following 
discussion is restricted to the PCS-phenomenon  and its relevance 
to the analysis of the interphase arrangement  of chromosomes.  

Since it is well established that D N A  replication is delayed by 
the presence of pyrimidine dimers (Sauerbier 1976), it has been 
suggested that the cell might enter mitosis before replication is 
completed in the microirradiated nuclear segment (Zorn et al. 
1976). PCS then might be due to premature condensat ion of still 
replicating microirradiated chromosome segments. In this case, 
one should expect incorporat ion of a late pulse of 3H-thymidine 
into the shattered chromatin but not into intact chromosomes.  
Present data are contrary to such a view. Cases have been 
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observed in which the late replicating X-chromosomes appear 
intact and have incorporated 3H-thymidine at a time when the 
shattered chromosomal segments had already finished DNA- 
replication. 

Several lines of evidence support the hypothesis that 
chromosomal damage in cells with PCS is restricted, at least to a 
large extent, to the microirradiated chromosomes. Our data 
show that any chromosome of the complement could participate 
in PCS and that damaged chromosomes in general were clus- 
tered around a damage center. 

The strongest piece of evidence stems from indirect immuno- 
fluorescence studies with antibodies against UV-irradiated DNA 
(Cremer et al. 1983, see Introduction). Interestingly, even 
in the case of PCS shattering often included somewhat more 
chromosome material than could be specifically stained. The 
occurrence of shattered but non-labelled chromatin clustered 
around the labelled region can possibly be attributed to stray 
light, which might produce a small amount of DNA-photo- 
lesions in the nuclear area close to the focal site of the 
microbeam. The number of these lesions might still be sufficient 
to induce shattering but not sufficient to be detected by indirect 
immunofluorescence microscopy. This interpretation would 
also explain why the amount of chromatin involved in PCS is 
often larger than one would expect from the focal beam diameter 
(1-2 ]am) even if one takes into account the aperture angle of the 
microbeam. While the following interpretation of PCS-data in 
terms of an interphase chromosome arrangement appears clearly 
justified by the above arguments, some restrictions should be 
taken into consideration. Classes D and E (GCS) show that 
chromosomes remote from the microirradiated nuclear segment 
can participate in chromosome shattering under certain con- 
ditions. To a limited extent such an indirect effect of micro- 
irradiation may also account for chromosomal damage in case of 
PCS. For example, the remarkable frequency of shattered 
X-chromosomes in this series of experiments may reflect such a 
phenomenon and not only be due to the frequency with which 
these chromosomes were hit by the microbeam, Previously, we 
have shown that the frequency of PCS increases when micro- 
irradiation is performed at later S-phase as compared to 
G1/early S-phase (Cremer et al. 1981a). Since DNA replication 
following microirradiation is a necessary event for the induction 
of chromosome shattering, one may expect an increased 
sensitivity of late replicating as compared to early replicating 
chromatin. This line of argument suggests that the frequency 
with which a particular chromosome participated in PCS may 
not only depend on the frequency with which it was situated in 
the microirradiated nuclear area but also on the other factors 
such as differences between the individual replication patterns of 
chromosomes. The present investigation has shown that each 
chromosome can participate in PCS with a frequency roughly 
corresponding to its DNA content. This finding would easily be 
explained by the assumption that the likelihood of each 
chromosome being hit by the microbeam depends mainly on the 
size of its interphase territory and that this size is related to its 
DNA content, although other parameters, for example genetic 
activity/inactivity of chromatin, are likely to influence the size of 
chromosome territories as well. 

The time protocol of the present experiments suggests that 
the majority of the cells with PCS were in S-phase at the time of 
microirradiation. For a number of cells this was confirmed by 
labelling studies with 3H-thymidine. PCS resulting from micro- 
irradiation of S-phase nuclei gives further support to the idea 
that the territorial organization of the interphase nucleus as 

described for cells in G 1 (Zorn et al. 1979; Cremer et al. 
1982) is maintained in S-phase. Our view that chromosomes 
increase their volume when they pass from mitosis to inter- 
phase but still form distinct domains has already been proposed 
by Rabl (1885) and Boveri (1909). Such a view predicts 
certain limitations to the way in which chromatin fibres of 
individual chromosomes can be ordered in the interphase 
nucleus. While a territorial organization of interphase chromo- 
somes appears to be most convenient for the interphase- 
metaphase transition of chromosome structure, such an organi- 
zation by no means follows directly from the now firmly 
established paradigm of chromosome individuality. It is inter- 
esting to note that Boveri (1909) was well aware that this 
paradigm would be compatible with very different types of 
chromatin distribution. Since then direct evidence for a 
territorial organization of interphase chromosomes has re- 
mained meagre (for review see Comings 1980) and not long ago 
arrangements of chromatin fibres were discussed which are 
contrary to such a view (Comings 1968; Vogel and Schroeder 
1974). Thus the concept of chromosome territories so far has 
been accepted by many scientists rather for its convenience than 
because of the necessity for experimental proof. Our microbeam 
approach provides the first method, by which the interphase 
distribution of euchromatic or heterochromatic parts of any 
individual chromosome can be directly visualized. 

Frequencies of damage obtained for individual chromo- 
somes did not significantly differ after central and peripheral 
microirradiation, respectively. Damage of a chromosome at 
either site of microirradiation can be explained in two ways. 

(i) Chromosome territories extend from the periphery to the 
central part of the nucleus or even to the opposite site of the 
nuclear edge. Previously, we have presented evidence for a 
polarization of chromosomes in CHL-interphase nuclei as a 
passive relic of their anaphase-telophase orientation (Cremer et 
al. 1982). If chromosome territories were arranged like pieces 
of a pie with the centromeres co-orientated to each other in the 
central nuclear part we would expect the number of damaged 
chromosomes to be higher after central microirradiation. How- 
ever, the average number of chromosomes damaged by central or 
peripheral microirradiation was rather similar (5.9 versus 5.0). 

(ii) The central or peripheral position of whole territories 
varies in different interphase nuclei. Our data argue against the 
idea that certain chromosome territories as a whole maintain 
fixed positions in the central part of the CHL-nucleus, while 
others exclusively contribute to its periphery. Variation in the 
position of chromosomes in different interphase nuclei is also 
indicated by varying combinations of shattered chromosomes 
both after central and peripheral microirradiation. Evaluation of 
a sufficient number of metaphase spreads with PCS should make 
it possible to detect non-random arrangements, if any of them 
are present in the nucleus of CHL-cells. The question of non- 
random associations between territories of non-homologous 
chromosomes must be shelved until more data become available. 
Some discussion of the question of whether a non-random 
association of homologous chromosomes exists in CHL-inter- 
phase nuclei, however, seems worthwhile at the present stage. 

Joint damage of homologous chromosomes was observed in 
a minority of cases, although on average 5-6 chromosomes were 
damaged. The fractions of spreads showing simultaneous 
damage of homologous chromosomes have to be compared with 
the fractions obtained for the simultaneous damage of the 
chromosome under consideration with other non-homologous 
chromosomes. In case of random association of the territories of 
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homologous and non-homologous chromosomes we should 
expect that simultaneous damage of the chromosome under 
consideration and of a non-homologous chromosome of similar 
size occurs approximately twice as often as with its homologous 
counterpart. The reason for this is simply that there are two non- 
homologous chromosomes but only one homologous counter- 
part. The frequencies of jo in t  damage between the possible 
combinations of non-homologous chromosomes are not shown, 
but can easily be obtained from Tables 1 and 2. When examining 
these data in the light of the above considerations we do not note 
an obvious excess of simultaneous damage of homologous 
chromosomes over random expectation. 

As noted above the frequency with which X-chromosomes 
were jointly damaged might be influenced by other factors than 
their neighbourship in the interphase nucleus. In contrast, joint 
damage of diplochromosomes was observed when an endo- 
reduplicating nucleus was microirradiated by chance. While our 
data clearly argue against somatic pairing of homologous 
chromosomes as a regular event, occasional somatic pairing or 
pairing restricted to certain segments of homologous chromo- 
somes is still possible. Indeed, evidence for mitotic crossing over 
taking place in human cells has been presented by Therman and 
Meyer-Kuhn (1981). The final answer to the distribution of 
homologous chromosomes in the interphase nucleus of mam- 
malian cells has to be based on more data and more statistical 
refinement. 

The last part of this discussion is devoted to the relationship 
between the position of chromosome territories in the interphase 
nucleus and the position of chromosomes in the metaphase 
spread. The validity of the many analyses of metaphase 
chromosome arrangements for obtaining information on the 
chromosome arrangement in interphase has been severely 
doubted for a number of reasons. A priori, such an approach 
seems only worthwhile in case of a territorial organization of 
interphase chromosomes which retain their relative positions 
throughout interphase. Many authors have simply presumed 
these conditions without presenting particular evidence for 
them. While our microirradiation experiments strongly support 
these assumptions for the cell type studied by us (Cremer et al. 
1982), other important objections have now to be considered. 
Firstly, the two-dimensional distribution of chromosomes in the 
metaphase spread is derived from a three-dimensional one in the 
interphase nucleus. This problem may be more severe in a 
spherical nucleus (e.g. in lymphocytes) than in a rather flat one 
(e.g. in CHL-cells). Secondly, many analyses are based on the 
metaphase distribution of centromeric regions, i.e. centromere- 
centromere and centromere-center analyses. Additional infor- 
mation concerning the distribution of interphasic centromeres 
and the extent of their possible redistribution between late G 2 
and metaphase is paramount when one tries to interprete such 
data in terms of an interphase chromosome arrangement. For 
example, it makes an important difference whether centromeres 
are clustered in a limited portion of the nucleus either at the 
nuclear edge (Rabl 1885) or elsewhere (Del Fosse and Church 
1981) or distributed largely at random (Brenner et al. 1981). 
Recent studies of the distribution of interphasic centromeres 
indicate considerable variation in cell types from different plant 
and mammalian species (Church and Moens 1976; Del Fosse and 
Church 1981; Moroi et al. 1981; Brenner et al. 1981). Thirdly, 
and probably most important, the technical procedures rou- 
tinely used for obtaining well spread metaphases (often including 
colchicine treatment and hypotonic shock) alter the chromo- 
some arrangement of the intact metaphase plate to an extent 

which has not been documented by most investigators, although 
it can be shown that the relationship between chromosome 
arrangements at interphase and metaphase is critically influ- 
enced by the experimental regimen followed (Schmid et al. 1981). 

Experimentally, such a relationship can be tested in two 
ways. Firstly, the results of statistical analysis of chromosome 
arrangements at metaphase are compared with the results of 
chromosome arrangements at interphase obtained with the 
microbeam or other independent methods (Schmid et al. 1981; 
Dutrillaux et al. 1981; Hager et al. 1982; Hens et al. 1982). The 
variability of interphase chromosome arrangements as indicated 
by the present microbeam study is in agreement with the 
variability of chromosome positions and the lack of association 
between homologous chromosomes in the metaphase spread. 
Unfortunately, our present results do not bear on the question of 
the validity of the latter type of analysis. In this respect, 
correspondence of data is only meaningful if non-random 
arrangements can be shown to either persist or become lost when 
the cell proceeds from interphase to metaphase. 

Secondly microirradiation itself provides a means to mark a 
few chromosome territories at interphase and to follow their 
relative positions up to metaphase. As we have already 
mentioned, it can be shown that the population of damaged 
chromosomes is not randomly distributed in metaphase spreads 
with PCS but clustered around a damage center. It should be 
noted, however, that damaged chromosomes might show 
enhanced "stickiness" towards each other and thus might not be 
representative for the interphase-metaphase relationship of 
intact chromosomes. Further studies are now under way to fully 
exploit this approach. In one study sister chromatid exchanges 
are induced in microirradiated chromosome territories and the 
distribution of chromosomes with high levels of SCEs is tested in 
the subsequent metaphase (Raith et al. in preparation). In 
another study microirradiated chromatin is followed by indirect 
immunofluorescence through the subsequent interphase and 
mitosis (Hens et al. in preparation). 
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