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1. Introduction

By definition [12], p. 7, a subset S of a poset P is convex whenever a €S, b €S and
a<b imply [a, b] € S. It is obvious that this is a closure property, whence (as in [12],
p. 111) the convex subsets of any P form a complete lattice, Co(P). Since any single-
ton {a} S P is convex, this lattice is moreover atomic ", its atoms corresponding one-to-
one to the elements 2 € P. The purpose of this note is to show that the lattices Co(P)
so constructed have some interesting and less obvious properties, in particular Co(P)
often determines P up to dual isomorphism.

If P is unordered, then obviously Co(P) =~ 2!¥! is just the (complete) Boolean algebra
of all subsets of P. At the opposite extreme, if P~ n is a finite chain, then Co(P) is a
planar lattice whose diagram was identified in 1908 by A.R. Schweitzer [13]. We have
drawn the diagram of Co(5) in Figure la. It obviously consists of the upper half of the
graph 52, including its horizontal diameter, everything below this diameter being replaced
by 9. The diagram for Co(2?) is shown in Figure 1b.

Evidently, a poset P and its dual P have isomorphic Co(P) (see Theorem 5). It is easy
to reconstruct the chain 5 from the lattice displayed (see Section 3); more generally, any
self-dual chain is determined up to isomorphism, while IN and other infinite chains are
determined up to duality by Co(P).

* Here, as in our previous paper [2], we have used the term ‘atomic’ as defined in [12], p. 196. This
is equivalent to Grédtzer’s ‘atomistic’ [8], p. 179.
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Fig. 1a. Co(5). Fig. 1b. Co(2?).

On the other hand, all posets of height two and the same cardinality » have the same
Boolean algebra 2" of convex subsets as Co(P). Hence, all of the posets in Figure 2 have
Co(P)~25. Similarly, the nonisomorphic posets displayed in Figures 3a and 3b have
isomorphic Co(P).
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Fig. 2.
Fig. 3a. Fig. 3b.

After proving some basic facts about Co(P) in Section 2, we will give a complete
discussion of the case that P is a chain in Section 3. Then, in Section 4, we will discuss
two reciprocal ‘wrapping’ and ‘unwrapping’ algorithms, and give the conditions under
which Co(P) and Co(Q) are isomorphic.

In Section 5 we will show that any Co(P) is ‘join-semidistributive’. Then we will
prove that a given lattice is isomorphic to Co(P) for some P with least element o if and
only if: (i) it is complete, atomic, join-semidistributive, has Carathéodory rank 2 (see
Section 2); (ii) it has an atom o which satisfies (x Vy) Ao =(x Ao) Vv (¥ A o) for every
x and y, such that whenever g, b and ¢ are atoms with 0 # 4, ¢ and (g, b, ¢) =~ Co(3),
then (o, a, ¢) ~ Co(3); and (iii) its atoms satisfy the conditionthat b <a Vv cand c<a v d
imply that ¢ <bvd. Finally, in Section 6, we prove that a lattice is isomorphic to some
Co(P) if and only if it is complete, atomic, join-semidistributive, has Carathéodory rank
2, and satisfies a condition (4) proposed by Altwegg (see Section 6).
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2. Elementary Properties
The following two basic properties of Co(P) are easily proved, for any poset P.

LEMMA. Every Co(P) is atomic.
Proof. Every convex subset of P is the join (in fact the union) of its (convex) one-
element subsets, and each of these is an atom of Co(P). O

LEMMA. The smallest convex subset A =\, a; containing any set A of elements {a;}
of P is the set-union

0= U [4.9]
AXA

of the intervals [a;, a;) consisting of all x E P with a; £ x € a; *

Proof. Evidently any convex subset of P that contains A must contain §(A4). More-
over, P(A) itself is convex since if x € b £ y, where x, y € {(4), then x £b < y where
4 €<x<aj, and ax L y L a,, whence ¢; L x £Lb Ly £La,, and b €[4y, a,] CP(4).
That is, §(B(A4)) = P(A4), completing the proof. O

The property of Co(P) stated in the lemma can be defined more abstractly.

DEFINITION. An atomic lattice L has Carathéodory rank 2 when, given an atom p <
VyginL,p<a;v a; for two suitably chosen atoms in 4.

THEOREM 1. For any poset P, the lattice Co(P) has Carathéodory rank 2.
Proof. This follows immediately from the lemma. O

N.B. Co(P) has Carathéodory rank 1 if and only if P has height 1 or less, i.e. if and
only if Co(P) is a Boolean algebra.

DEFINITION. An atomic lattice L is biatomic when, given an atom r <a V b, there are
atomsp <gand g <b withr<pvq.

THEOREM 2. Any atomic lattice of Carathéodory rank 2 is biatomic.

Proof. Take ¢ and b in L with p an atom undera v b. Let @ = Vya;, and b = V;b; with
a; and b; atoms. If p<a; Va; , then p<a, so p<pV b; for any b; <b. Similarly if
p<bj Vb, p<a;Vp for any g;. Otherwise p <a; \/ b; for some i and j and L is bi-
atomic. O

COROLLARY. Any Co(P) is biatomic.

Affine Convexity. Although the order convexity discussed in this paper should not be
confused with the ‘affine convexity’ discussed in [2—4], the two notions of convexity
share several properties.* Moreover, for any ordered division ring D, Co(D) is the same in
both interpretations. However, for # > 1, the lattices Co(D" ) defined by order between-
ness are very different from those defined by affine betweenness, as we shall now see.

* We will use < to designate the order relation in P, and < for that in Co(2).
* For example, each is algebraic and biatomic. See also Theorem 10 below.
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DEFINITION. An atomic lattice L has Carathéodory rank n when, given atoms p and
{pitier,ifp <VIP,', then p <pi1V p,-zv AV pi, for some iy, ...,i, €1.

LEMMA. If an atomic lattice L has finite Carathéodory rank, it is algebraic.

Whereas Co(D") has Carathéodory rank n + 1 under affine betweenness (see [6] and
[11], p. 103), it has Carathéodory rank 2 under order betweenness, as we have seen.

COROLLARY. Any Co(P)is algebraic.

The Anti-exchange Property in Co(P). Let ¢ be an element of Co(P) with p and g atoms
under ¢. If an atom r is under pV ¢, thenr=p, r<c, orr<pV c; for an atom¢; <c.
But this means that p L r L ¢y or ¢y L r L p in P. Hence,ifg<p Vv c,thenc; £ q < p,
orpLqgLc inP. Ifalsop<q Ve, thenc; £p€£q orp£q <£c, for some atom c,
under ¢. Thus, either ¢; € g € p € ¢, 0r c; L p £ g L1, 50 p and g are under ¢, a
contradiction. The property described above can be defined in a general atomic lattice as
follows.

DEFINITION. An atomic lattice L has the anti-exchange property when, for any atoms
p and g not containedinc €L, pVv ec=q Vv cimpliesp =q.

Edelman [7], p. 292 has noted that the lattice Co(P) of any finite P has the anti-
exchange property. The remarks above generalize his result to arbitrary posets.

THEOREM 3. Any Co(P) has the anti-exchange property.

In Section 5 we will show that in biatomic lattices with no infinite chains, the anti-
exchange property is equivalent to join-semidistributivity.

Finite Co(P). If P (or, equivalently Co(P)) is finite, then each element is between a
maximal and a minimal one. The maximal (as well as the minimal) elements generate
a sublattice of Co(P) isomorphic to the Boolean algebra 2" (n being the number of
maximal elements of P).

The removal of any maximal or minimal element from a convex subset of P gives a
convex subset again; hence the maximal and minimal elements can be ‘peeled off” in turn,
giving a Boolean interval sublattice of Co(P) (see [7], Thm. 3.3). Finally, we have

THEOREM 4. For any finite poset P, Co(P) has length | P|, and the Jordan—Dedekind
chain condition holds.

Proof. The convex sets ‘covering’ any ¢ in Co(P) are the ¢ V p where p either covers
or is covered by some atoma <c. O

In case P is a lattice, much more can be said. Besides the order betweenness with which
we are concerned, betweenness can be defined in several different ways (see [5], G1—Gys),
including lattice betweenness [12], p. 7 in which b is ‘lattice-between’ @ and ¢ whenever
b is order between a A ¢ and a V ¢, and Glivenko’s betweenness in which b is ‘Glivenko-
between’ g and ¢ when (e Ab) V(b Ac)=b=(avb)A(bVc).

THEOREM 5. For any poset P, Co(P) ~ Co (Ig).
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Proof. Since a £b £ ¢ in P is equivalent toc L b L a in 13, the intervals [q, ¢] in P
o
are equal as sets to the intervals [c, a] in P. O

There is nothing to be gained by studying convexity in the more general class of quasi-
ordered sets (so-called quosets, whose order relation is reflexive and transitive), as the
following theorem shows.

THEOREM 6. Let Q be a quoset, and let § be the equivalence relation given by letting
x0yifandonly if x £y and y € x. Then Co(Q) =~ Co(Q/0).

Proof. If A€Co(Q), let A'={[x]?:x EA}. Then if [a]°, [c]® €4’ with [a]° <
[6]°< [c]® in Q/6, it is easy to see that « €b < ¢ in Q; hence, b €A and [b] €A’
and A' € Co(Q/0). Conversely one can show that for BE Co(Q/6), B=A' where 4 =
{x:[x]? €B}.

Relations to Ideals. One key to the structure of the atomic lattice Co(P) is provided by
the structure of the lattices /(P) of all dual order-ideals of PX The connection between
the lattices Co(P), I(P), and [ (1%) is provided by the following elementary theorem.

THEOREM 7. A is a convex subset of P if and only if A is the intersection of an order-
ideal and a dual order-ideal.

Proof. It is easy to show that a convex subset A is of the form J N K where J is the
set of all x £ b for some b €A, and K is the set of all y containing some b €EA. Con-
versely, since the order-ideals form a Moore family of subsets of P, and any order-ideal or
dual order-ideal is convex, the intersection of any order-ideal with any dual order-ideal is
convex. O

The following corollary is immediate.
COROLLARY 1. For any poset P, Co(P) is a meet-epimorphic image of I(P) x I (Ig).

Product Decomposition of Co(P). Any partially ordered set has an obvious and well
known (see [9], p. 3) unique additive decomposition into its (disjoint) connected com-
ponents, P; being a connected component of P when x € P;, and x €<y or y £ x imply
that y € P;. P is thus the disjoint union (cardinal sum) of its connected components (see
[12], p. 55), and A4 is convex in P if and only if 4 is the disjoint union of the convex
subsets 4; =A N P; of the P;. Furthermore, the cardinal sum of any collection of posets
is a poset which has the given posets as disjoint unions of connected components. Thus
we have:

THEOREM 8. If P is the disjoint union of {P;};, then Co(P) = ;e Co(P;). Further-
more, the class of all Co(P) is closed under the formation of arbitrary direct products.

The connected components of P can alternately be viewed as the equivalence classes
of the transitive closure of the relation (£ U 2:), which is reflexive and symmetric for any

* This is not to be confused with the lattice of all lartice ideals of a given lattice, defined in [12], p. 25
and discussed in [12], p. 113.
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poset P. In particular, a one-member connected component is an element of P related to
no other element, i.e., it is both a maximal and a minimal element of P. Considered as a
poset, this element has a two-member convexity lattice (the empty set and the singleton)
isomorphic to 2. This gives the following corollaries to Theorem 8.

COROLLARY 1. Let q be both a maximal and a minimal element of poset P. Let P' =
P\{q}. Then Co(P)~Co(P') x 2.

COROLLARY 2. If Co(P) is (directly) indecomposable, then P has no element which is
both maximal and minimal,

We note that a connected poset P need not have a (directly) indecomposable Co(P).
The posets shown in Figures 4a and 4b have isomorphic convexity lattices, the former
being a direct product by Theorem 8, whereas the latter poset is connected. We shall
discuss this situation further in Section 4.

Fig. 4a. Fig. 4b.

3. Generalized Schweitzer Lattices

The Schweitzer lattices, alluded to in Section 1, are by definition the lattices Co(n),
where n is a finite chain. Thus, if P is either of the posets drawn in Figure 4, Co(P) is
isomorphic to Co(3) x Co(2), where Co(2) is simply 2%. In Co(P), if p, g, and r are
atoms, i.e., arbitrary (singleton) members of P, then (p, q, r) is isomorphic to Co(3) if
and only if p, g and r form a chain in P. Hence, in Figure 5a below, g <p v rin Co(3),
and eitherp L qLrorrLqL pinP.

Fig. 52. Co(3) Fig. 5b.

In [2], p. 6, CL1, we noted that any three atoms of Co(D"™) generate either Co(3) or
23 as a sublattice. On the other hand, Co(Y) (Y the poset shown in Figure 5b) does not
satisfy this condition since {p, g, r) contains a fourth atom s in Co(Y). Furthermore,
(p, s, r) and (q, s, r) are each isomorphic to Co(3) while {p, g, r, s} is not isomorphic
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to Co(4), which would be impossible in Co(D") ([2], p. 6, CL2). In fact, in Co(P),
{P1,...,Dn) is isomorphic to Co(n) exactly when the elements py,...,p, are linearly
ordered in P.

If C is an arbitrary chain, we know that J(C) and I(Co') are chains as well. Further-
more, (dual) order-ideals are (dual) lattice ideals in C. Hence, we have a second corollary
to Theorem 7 above.

COROLLARY 2 TO THEOREM 7. If Cis chain, then Co(C)isa meet—eplmorphtc image
of (CYx I (C) the product of the chain of all ideals of C and that of all ideals of C

In this case, the diagram of Co(C) is easily visualized (see Figure 6), as a right triangle
standing on its hypotenuse with @ adjoined below. The hypotenuse consists of the atoms
[c, ¢] ={¢}, c EC. The left side consists of the dual ideals [a, =], (a, =), etc. where a is
an arbitrary ‘cut’ in C (whose ideal completion C and Dedekind order completion C are
closely related; see [12], p. 117).

I

Fig. 6. Co(0).

THEOREM 9. If C is a chain, then every proper dual ideal [[c, c], I] of Co(C) is the
direct product (—o°, c] X [¢, =) of two intervals of C.

The shaded area in the diagram of Co(C) represents such a dual ideal; clearly C\Q is
the union of such proper ideals. The similarity to Co(5) (Figure 1a) is obvious.

When C=1R, the pairs (—, ¢] and (a, =) are complementary as are (—°, a) and
[a, =). Moreover any complemented element of Co(IR) is an interval of one of the four
types described above. Hence, the complemented elements are the elements of C or ¢
For any singleton {c}, the interval [{c}, I] is the product of the chain of dual ideals of
the form (—<0, b) with b > ¢, and [—oo, b] with b 3 ¢, and the chain of ideals of the form
[a, =), a £ ¢ and (a, =), a < c. As abstract chains C and Care isomorphic to 1 ®(R - 2)
and its dual (IR - 2) @1 respectively.

4. ‘Unwrapping’ a Poset

Recall [4], p. 287, that if X is a convex subset of D", its extreme points are exactly the
atoms p in the lattice of convex subsets of X which satisfy
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xvydap=(xnp)v(yAp) forallx,y. 1)

The maximal and minimal elements (if any) in a poset are, in a sense, its ‘extreme points’,
and are crucial in determining when two posets have isomorphic convexity lattices. The
‘analogy’ between maximal and minimal elements of P and the vertices of a polytope in
D" carries over to Co(P) as follows.

THEOREM 10. Let {p} be an atom of Co(P) (an element of P). Then {p} is maximal or
minimal in P-if and only if {p} satisfies (1) in Co(P).

Proof. If, for some x and y, (x vV ¥) A p =0, then (1) holds for that x and y. Otherwise,
let p be maximai and (x v ) A p =p. By biatomicity, we have p <x; vy, in Co(P);
hence p € {xy, y1} or x; £ p £ »; or dually in P. Thus, p € x or y and (1) holds. Con-
versely, if p is neither maximal nor minimal in P, there are elements g and b in P, different
from p, with a £ p € b. Hence, in Co(P),p=(avd)ap,butaAp=bAp=0and (1)
fails. 0

The notion of unwrapping a poset results from the observation that Co(P) is unaffected
by deleting all maximal chains of two elements, i.e., deleting any covering relations join-
ing a maximal x with a minimal y covered by x. The poset in Figure 3b, when unwrapped,
becomes that in Figure 3a; similarly for the posets in Figure 4. More formally, we have

THEOREM 11. Let Co(P) be indecomposable. Let Q be the poset whose elements are
those in P, let x €y in Pimply x €y in Q, and let x £y in Q imply that x €y in P or
that x is minimal in P and y is maximal in P. Then Co(P)~ Co(Q).

Proof. Leta, b <xin Co(P), and leta € ¢ <€ b in Q. If the elements are distinct, then
a<€c<bin P and ¢ <x, or ¢ is both a maximal and a minimal element in P, a contra-
diction. Hence, x € Co(Q). Conversely, if x €Co(Q) and a, b<x withaLc b inP,
thena € ¢ € b in Q, hence, ¢ < x and x € Co(P). O

In order to simplify the posets with which we must deal, we define a class of posets
essentially formed by unwrapping arbitrary posets in the manner described above.

DEFINITION. A poset P is said to be coherent when it is connected and no maximal
element of P covers any minimal element of P.

The poset drawn in Figure 3a is coherent; that in Figure 3b is not. Neither of the
posets in Figure 4 is coherent; however Figure 4a is the disjoint union of coherent com-
ponents.

COROLLARY TO THEOREM 11. Any poset P contains coherent subposets Q; such that

Co(P)~T1 Co(Qy).
Proof. The poset ZQ; (a disjoint union) is formed by defining b ¢ m in Q; whenever
b€<minPand {b, m} is a maximal chain in P. m|

When P is coherent and x € y in P, there is some z in P so that {x, y, z} form a three-
element chain and, therefore, {x, ¥, 2} is isomorphic to Co(3) in Co(P). Using this fact,
we say that atoms x and y in an atomic lattice L are collinear (and write x v y) if and
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only if there is an atom z with {x, y, z) isomorphic to Co(3). The relation 1y is symmetric,
and constructing its transitive closure we obtain an equivalence relation 7, which sub-
divides P into its y-connected components in case L is Co(P). When P is coherent, the
relation ¥ is degenerate, and there is only one equivalence class, namely all of P. In any
coherent poset, starting with an arbitrary element a, we set

Ao ={a}
A ={x:xva}

Ap={x:xvy" a}.
Since the transitive closure of v, Y, is by definition U}Z 'yi, it is easy to see

LEMMA. If P is coherent, then

We are now in a position to prove the main theorem of this section, that if P is coherent,
then Co(P) determines P up to duality.

THEOREM 12. Let P and Q be coherent with Co(P) = Co(Q). Then P~ Qor P~ é

Proof. We may assume Co(P)=Co(Q) so that the underlying sets of P and Q are the
same. We may assume there exist @ € b ¢ ¢ in P since otherwise P, having only one com-
ponent, is a singleton, as is ¢, and P~ Q.

Nowa € b £cin Pimpliesb <a v cinCo(P),sob<avcinCo(Q). Thus,ac b ¢
in Q or ¢ ¢ b a in Q. We may assume the former without loss of generality.

Let AY be the subsets of P as defined above, and let A? be the analogous subsets of
Q. As sets AI: and AIQ are equal; we will show they are isomorphic as posets. The proof
breaks down into several cases:

(I) Let<a, x,y)~Co(3)withx<avy.
Let acxcy in P. If yg x ain Q we have y¢ x.¢ a< b in Q which implies
a<bvxinCo(Q) ButagbgccinPandacxcyinPimplya<%bvxinCo(P).
Hencea< x¢ yin Q.
Similarly, y¢ x ainPimpliesy € x€ ain Q.

(II) Let{a, x, y} ~Co(3) witha<x v y.

Letxgca<yinP.

If y€ a< x in Q, then since x ¢ a< b in P, we have a <b V x in Co(P). But a < x
andac binQ,soa << bV xin Co(Q).

(II) Suppose x, y €A, with x €y in P. Then there is a z in P with (g, x, z) ~Co(3)
so ¢ and x are related in P. By (I) and (II) above, ¢ and x are related in the same way in

0.
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(A) Ifa<<x,thena€x<CyinP,soby(DDa<x<yinQ.
(B) IfagacyinP, thenby (II),xa<yinQ.
€) Ifxcy€ainP, thenby (Ilx Ly Lain(.

Therefore, if x < y in Af ,thenx € yin AIQ. The converse can similarly be demon-
strated, so AI: and A% are isomorphic as posets.

We now assume Af; and Ag are isomorphic as posets. Arguments similar to those used
above show that if (b, x, y) ~ Co(3) with b EA,I:, then

(D Ifx<bvyinCo(P)andbLx L yinP,thenb £x <L yinQ.
) Ifb<xvyinCo(P)andx<b<yinP, thenx £b<yin(.

Coherence comes into play during the next part of the argument.

(IIT) Let z and w be elements of Aﬁ +1> With z € w in P. Then there is b € 4,, such
that (b, z, ¢) ~Co(3), and b’ € A4,, with (b, w, d) ~Co(3). Hence, b is related to
z and b' is related to w.

(A) Ifb<€zinP, thenb €z LwinP,sob<€z Lwin(.
(B) Ifb' < w,thenz<w< b inP,soz€«wb inQ.
(C) Assumeb L zinPandd' < winP.

Since (b, z, ¢) ~Co(3) in Co(P), and b 2z in P, then by (I) and (II) b >z in Q.
Similarly if >’ € win P, thenb'< win Q. Thus we have z << b in Q and ' € win Q.

(i) Assumec<zinP.Thene €z €¢winP,soc €z CwinQ.
(ii) Assumew < dinP. ThenzLwLdinP,soz<wLdinQ.
(iii) Therefore we must assume c» z, b » z,d L w,and b' € w.

Ifz€winPandz { w in Q, then z must be minimal in Q. Otherwise thereisanx <€ z
in @, and we would therefore have (x, z, b) ~ Co(3) in Co(P); therefore x £z £ b in
both P and Q, so x € w in Q by (i). A similar argument shows that if z €w in P and
z { w in @, w must be maximal in Q. But by coherence, if z € w in P with z minimal and
w maximal, then there is a y in P with z € y € w. But this means ¢z, y, w} ~ Co(3) in
Co(P) and, therefore, in Co(Q}, so z €w in Q or w €z in Q. In the latter case we have
B<€w<LzinQ,s0b € w« zinP, acontradiction. Therefore z €<w in Q.
Therefore, by induction, Af mAiQ for all {, so it follows from the lemma that P ~ Q.
O

In determining when two posets have isomorphic convexity lattices, it is convenient
to have the following notation.

DEFINITION. For posets P and Q we say P and Q are isomedic (and write P ~ Q) when
there is a bijection f from P to Q such that x € y but f(x) € f(») imply that {x, y}isa
maximal chain in P; and f(x) < f(¥) but x { y imply that {f(x), f(»)} is a maximal
chain in Q.

Figures 7a and 7c illustrate posets P and Q which are isomedic respectively to the
cardinal sums P; +P, and Q, + Qoz of Figures 7b and 7d with P, ~ @y, and Py ~ (.



THE CONVEXITY LATTICE OF A POSET 233

The convexity lattices Co(P) and Co(Q) are isomorphic; in fact Co(P) =~ (Co(P,) X
Co(P;)~(Co(Q,) X Co(@,)) =~ Co(Q), and serve as an illustration of the result to be
stated in Theorem 13.

(SVAVERVA @A

Fig. 7a. Fig. 7c.
A 2 Q, a,
Fig. 7b. Fig. 7d.

THEOREM 13. For P and Q posets, Co(P)=~Co(Q) if and only if P~Z;=;P;; O~
2ier O and foreach i €1 P; ~ Q; or P; ~ Q°,~.

Proof. If Co(P)=~ Co(Q) with both lattices indecomposable, if P and Q are coherent,
then P~Q or P~ é Otherwise by the corollary to Theorem 11, P and Q can be reduced
to coherent posets P’ and Q' with Co(P) ~ Co(P')~ Co(Q') ~ Co(Q), whence P' ~ Q'
or P'~ Qo'. In the former case P~ @, and in the latter P~ Qo If Co(P) and Co(Q) are
decomposable we make the argument above for each factor, and obtain the result. Con-
versely since P; ~ Q; or P; ~ é,- implies by Theorem 11 that Co(#;)~ Co(Q;), then if P
and Q satisfy the conditions of the theorem, Co(P) >~ nCo(P;) ~nCo(Q;)=Co(Q). O

COROLLARY. If L and M are bounded lattices, then Co(L) =~ Co(M) exactly when
L~MorL ~M.

5. Semidistributivity and Bounded Posets

Jonsson [10], p. 262, has shown that every sublattice L of a free lattice is semidistributive
in the sense that:

(SD1) forallg,dinL,the set {x|aVv x =d} is meet-closed
and
(SD2) foralla, din L, the set {x|a A x=d} is join-closed.

A lattice satisfying (SD1) is called join-semidistributive; a lattice satisfying (SD2) is
called meet-semidistributive.

We shall show that every lattice Co(P) of convex subsets of a poset is join-semidistrib-
utive, or equivalently,if 4, b and ¢ are in Co(P)withav b =aVv ¢, thenavb=av (b Ac).
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THEOREM 14. For any poset P, the (biatomic) lattice Co(P) is join-semidistributive.

Proof. Assume that a, b and c are in Co(P), and that av b =a v ¢. It is enough to
show that (avb)A(ave)<av(bAc). Taking an atom x < (a Vv b) A (aV c), there are
several possibilities:

Sincex <avb and sincex<ave
(1) e, <x < b, i) ay<x<€e,
(2) biLx<€ay (i) ¢, €x<a
3) x<a (i) x <a

4) x<b (iv) x<c¢

a;<a, b;<b, ¢<ec

These possibilities lead to sixteen possible cases (some of which are quite easily settled).
We shall give the details only of cases (1, i) and (4, i), as prototypical of the most com-
plicated possibilities.

(1,i) Ifa; € x £ b, and a, € x € ¢y, since by <a v ¢, we have either:

(I) b, <a,in which case x <aq.
(I) by <c,inwhichcaseb, <bnc,sox<av(bAc).
(III) a5 < b, € ¢35, where a3 <a and c; <c. Here, since ¢3 <a Vv b, there are again
several cases:
(1) ¢3<a,in which case x <a.
(2) ¢3<b,whichimpliescz <bAc,sox<av(bAc).
(3) a3 €c3 €by(cs<cand b, <b),inwhichcasecs <bandx<av(bnc)
(4) b4 < c3 < a4, which implies x <a.
(IV) c3< by < a3, which implies ¢; € x € a; and x <a.

(4,1) Letx < banda,; £ x <€ ¢;.Since ¢; <a V b, we have

(I) ¢, <a,whencex <a.

(I) ¢; <b,sothatc; <bAncandx<av (bAc).
(IlI) a,¢ ¢y < by, which impliesc; Kb andx<av(bAc).
(V) b, c; €2z, and x<a.

Join-semidistributivity is a property not shared by any lattice Co(D" )if n < 2; in fact,
given /, m and & the lines in IR? shown in Figure 8,/vm=Ivk=IR? but!/v(mnk)=
/v 0, which is the open lower half plane with 0 adjoined.

m k

Fig. 8.
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However, we can prove the following theorem.

THEOREM 15. The lattice L of all convex polytopes in D" (D an ordered division ring)
is join-semidistributive,

Proof. Recall that a convex polytope is the convex hull of a finite set of points which,
after removing any redundant points, we can assume to be its extreme points. These
polytopes form a sublattice of the biatomic lattice Co(D™). Furthermore, if X and Y are
polytopes, every extreme point of X v Y is an extreme point of X or an extreme point of
Y; since, by biatomicity all points of X v Y not in X or Y are interior points of segments
xVy,x €X,y €Y. Neither these, nor the interior points of X or Y can be extreme.

If XvY=XvZ, thenbothare X v Y v Z. Buttheextremepointsof X v Y=XvZ=
XvYVvZ must bein X orinY, and in X or in Z. Hence, they must bein X orin YN Z
by the distributive law. Since X v Y vV Z is the join of its extreme points, the result
follows. O

Join-semidistributivity is connected with the anti-exchange property discussed in
Section 2, as shown by the following results.

THEOREM 16. Any join-semidistributive lattice has the anti-exchange property.
Proof. If g<pva, qna=0, and avp=avgq, then avg=av(pnrg)=a, so
q < a,a contradiction. 0

We can obtain a partial converse to Theorem 16, by using this lemma.

LEMMA. If L has the anti-exchange property, for p and q distinct atoms, a\v p=aV q
impliesavp=av(pAq)(=a).

Proof. Foravp=avgq, p<avq, hence g € (a Vv p) unless p <a. Similarly, g <a
andevp=a=av(pngq). -

THEOREM 17. If L is biatomic, satisfies the anti-exchange property, and has no infinite
chains, then L is join-semidistributive.

Proof. Let avb=avVvc and let by be an atom under b. Then by <@ V ¢, for some
atom ¢y <c; likewise ¢y <a V b, and we have

bofavey<avb; <ave, <--SavVeg <.

Since L has no infinite chains there is ann withav e, =av b, .. If ¢, =b, 44, then
cpSbAacandby<av(bAc).

Otherwise by the lemma, aVve,=aVvb,,1=aV(cy, ANby+i)=a and by <a. Thus,
b<av(bAnc)hence,avb=av(bnc). m|

Join-semidistributivity, together with two technical conditions, enable us to character-
ize the lattices Co(P), where P is a poset with smallest element 0.

THEOREM 18. A complete atomic lattice L is isomorphic to Co(P) for some poset P
with smallest element o if and only if

(i) L is join-semidistributive,

(ii) L has Carathéodory rank 2,
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(iii) There is an atom o.satisfying (1) [See Section 4] such that, whenever a, b, ¢ are
atoms of L with o #a, cand{a, b, ¢} ~Co(3),then{o, a, c) ~Co(3).
Gv) Ifa b,canddareatomsof Lwithb<avcandc<avd,thenc<bvd.

Proof. We have already seen that Co(P) always satisfies (i) and (ii). If P has a smallest
element o, and if {q, b, ¢} is isomorphic to Co(3), then we can assume without loss of
generality that ¢ € ¢, s0 0 La € ¢, and (0, @, ¢) >~ Co(3), and (jii) holds. If b <a v ¢
in Co(P)andc<avd,thenifa<€ b <c,we must havea < ¢ <d,whenceb € c <d,so
c<bvd.Ife<bhca,thend €c€a,sodLcCbande<bvd.

Conversely, if we assume (i), ..., (iv) hold in a lattice L, we let P be the set of atoms in
L and define € on Pby x Ly if and only if x <o v yinL. Thenx < x sincex <oV x
forevery x, so € isreflexive. If x € y and y € x,thenx <ovy,andy <ovx,soovy=
oVvx, and by join-semidistributivity, this equals o v (x A y), so x =y, and < is anti-
symmetric. f x € yandy €z, thenx <oVvy <oV z,sox £z,and Pisaposet under<.

Since 0 <o V x for every x, o is the smallest element of P,

If B is a subset of P satisfying the condition

pP< V {b}impliesp €B (*)
bEB

we will show that B € Co(P). For this, we take b;, b, € B and x such that b, < x € b,.
We have b; <o vx, and x <oV b,, so by (iv), x<b, Vv b,. Hence, x €EB, and BE
Co(P). Finally, we show that if B is in Co(P), then B satisfies (*). Here we assume that p
is an atom under vbiEB b;. This implies by (ii) that p <b, v b, for some b;, whence
{by, p, by ~Co(3), so by (iii) (o, by, b,) ~ Co(3). By (1) we cannot have 0 < b, V b,,
therefore by <oV b,, or b, <oV b;. Assuming the former, since p <b; Vb,,0Vp <
oVb Vbhy,=ovb, sop b, Since b, <bh, Vo, (iv) implies that b; <o v p. Hence,
b€ pLb,,s0p EBR,and (+)holds. O

6. The Altwegg Condition: Characterization of Co(F)

In order to characterize the lattices Co(P), we need to be able to define an order relation
on the set of atoms of lattices satisfying appropriate conditions. We start with the notion
of related atoms.

In general, three atoms x, y and z of a lattice L are called independent [12], p. 86
(14), when

xA(pv=yAalxvz)=zA(xvy)=0,

i.e., when none of them is contained in the join of the other two. We now define two
(distinct) atoms x and y of L to be related when some triple {x, y, z} of atoms of L is
not independent, i.e., when there is an atom z #x, y with z<xVvy, y<xVz,orx<
yvz. )

We note that no x is related to itself, and that if L = Co(P), with {x, ¥} a maximal
chain in P, then x and y are not related in the sense above. (Cf. Theorem 11 and its
corollary.)
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EXAMPLE. The atomic lattice shown in Figure 9 is Co(Pg) where
Pi=(1+1)e(1+1)o(1+1)~3-(1+1)

as shown in Figure 10.

e f
c d
a b
Fig. 10. P,.

To draw Co(Pg) we can assign to the elements @, b, ¢, d, e, f the vectors of height 1
and x-components -3, —1.5, —0.5, 0.5, 1.5, 3; and to any ‘convex’ set § C P4 of cardinal-
ity m (except {bede} and {acdf}) the vector (Zg x;, m) =(Zg x;, |S|). The sets { bede}
and {acdf} are assigned (—0.5, 4) and (0.5, 4) respectively. In the drawing of Co(Ps) we
have labelled each element by listing the atoms under it. There are six atoms and eleven
elements of rank 2; hence there are four joins of pairs of atoms which contain a third
atom. These are ave, aVf, bve, and b v f. Since ¢ and d are beneath each of these
joins, the following pairs of atoms of L are related: (g, ¢), (g, d), (a, €), (¢, e), (¢, ),
(d,€),(d, 1), (a,1),(b, c),(b,d),(b, e),and (, f).

DEFINITION. A fence in an atomic lattice is a sequence of atoms pyp; - p, such that

p; is related to p; 4, fori=0,...,n — 1. A fence is a zig-zag when p; A (p; _{V 0;+1)=0
fori=1,...,n— 1.

CONTINUATION OF THE EXAMPLE. In the lattice shown in Figure 9, acebdfbd is a
fence (each adjacent pair is related) but it is not a zig-zag since c<aveandd<b V]
However, dropping ¢ and 4 gives us a zig-zag, aebfbd.

EXAMPLE. If P is the poset drawn in Figure 11, then in the atomic lattice Co(P),
abcdefghij and efgifjfi are fences while acegij and acdceghgijf are zig-zags.

Fig. 11.

In view of the definition of related atoms, adjacent terms in any fence must be distinct.
Intuitively, the order relation in P reverses between each successive pair of any zig-zag
in Co(P); for example the zig-zag acdceghgijif depicted above related to the ordering
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agcrdgcreLgIhLg3iLj> [ in the poset P. This suggests the final condi-
tion we will use to characterize the Co(P), which we will call condition (A4), suggested by
Altwegg’s axiom Z, ([1], p. 150).

DEFINITION. An atomic lattice satisfies the condition (A), if it has no zig-zag of the
form pepy *** PanPoP1 -

Condition (A4) says that there can be no zig-zag with total number of terms odd, whose
first and last pair are identical. In the poset of Figure 11, eghgijfeg has first and last pair
(eg) identical, and the total number of terms is nine, but f<j Vv g in Co(P), hence, the
sequence is not a zig-zag. However eghgijfgeg is a zig-zag with first and last pair identical,
this time having 10 terms.

The fence abcdefghij in the example of Figure 10 was reduced (by dropping b, d, f,
and & as we dropped ¢ and d in the first example) to make the zig-zag acegij, still starting
with @ and ending with j. It is easy to see that this can always be done, as the following
lemma shows.

LEMMA. Any fence pq ... py can be reduced to a zig-zag popy' ... Py’ = Pn Where 1' <
< <k'=n

Proof. If p; <pyV p,, we eliminate p;. Then pq is still comparable with p,, so
Pol» ... D is a fence. If p, <py V p;, remove p,. Otherwise if p; <p, v p4, remove
ps. Upon continuing the process, we finally arrive at a zig-zag of the form popy... ppr =
Pn. O

Fences can also be used to decompose some atom lattices into direct products.

NOTATION. Let L be an atomic lattice, with 4 and b fixed related atoms of L. Then we
denote by Py, {x|x an atom of L and there is a fence abp, ...p,x}. Denote by P, the
set of atoms not in Py .

THEOREM 19. Let L be an atomic lattice with Carathéodory rank 2. Let a and b be
fixed related atoms of L. Then

(i) ForqanatomofL,ifq<Vygp, x =c, thenq EPyp.
(ii) ForqanatomoflL,ifg< Vxep‘;b x=d, then g € Pyy.
(iii) L ~[0,c] x [0,d].
Proof. (i) For g <V, €Pp X, 4 SX1V X, for some x; €Py,. Assuming q #x;, we
have abp; ... p,x, afence, and therefore abp; ... p,x;q a fence for some p;,s0 g EPy.
The proof of (ii) is similar to that of (i).
(iii) The mapping (e, f)~>eV f from [0, c] X [0,d] to L is onto since any element
Yy in L may be written as (y A ¢) Vv (¥ A d), because any atom y; under y is either under
yNnc or ynd. Hence, y<(y Ac)Vv (y Ad), but the reverse inequality holds in any
lattice,and y =(y Ac) v (y A d). O

The mapping is one-to-one. For if e, g <c, with e # g, let p<e and p & g for some
atom p. Then for any f<d, p<evf, and p£ gV [f; otherwise p<g, v f; where g,
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and f; are atoms under g and f respectively, and since p, ¢, and f; must be distinct, g
and f; are related. But since g; € Py, this means f; € P, which contradicts (ii). Thus,
eF*g<c implies ev f#gv f for all f<d, and the argument can be extended to show
thatif (e, f)# (g, h)thenev f#gv h.

The mapping clearly preserves joins, and if e, g<c withf<d,(e Ag)VvVf<(eV ) A
(gVvf). An atom p<(eVf)A(gV[f) must be under some e; V f1, and hence must
equal e; or f; as in the paragraph above, and must also be under g, V f,, again equaling
either g; or f,. But p cannot be equal both to e, and f, or to both g, and f;, hence,
psengorp<f,sop<(eng)Vf,and the mapping preserves meets.

COROLLARY. If L is an indecomposable atomic lattice of Carathéodory rank 2, then
given a and b related atoms, any atom p is in Py, .

We now consider general indecomposable atomic lattices of Carathéodory rank 2
which satisfy (4). On the atoms of such a lattice, we (1) define an order relation «; and
(2) show that the atoms form a partially ordered set P under , we finally show that the
original lattice is isomorphic to Co(P).

THEOREM 20. Let L be an indecomposable atomic lattice of Carathéodory rank 2
which satisfies (A). For any two atoms p and g, define p < q to mean that either (i) p =q,
or (ii) there is a zig-zag abp,, ...,p,,pq, where a and b are fixed related atoms. Then
(P,€)is a poset.

Proof. We first show that  is well-defined by assuming there are zig-zags abp, ...
P2npq and abq, ... qax +1)Pq. Then abpy ... P2nPAPq (2% +1y -.-91bab is a zig-zag whose
first and last pair are identical, and which contains 2n + 2k + 1 + 8 terms, an odd number.
This contradicts (A), so we have shown that if there is a zig-zag abp, ... Py, pq, every
zig-zag beginning with ab and ending with pg has an even number of terms.

The relation € was defined to be reflexive. If p # ¢, and p < ¢, then there is a zig-zag
abp, ... panpq,hence,abp, ... P2, Pqp is a zig-zag with an odd number of terms, so there
is no zig-zag starting with ab and ending with gp having an even number of terms. Hence,
q < p fails and « is antisymmetric.

If p € g and q < r, we have zig-zags abp, ... pappq and abq, ...q,,qr. Thenabp; ...
PanParqqax ... q1bab is a fence with 2n + 2k + 9 terms, an odd number. By (A4) this
fence is not a zig-zag, but abp, ... p,pq and rqq,y ...q bab is a zig-zag, hence, pgrq is
not a zig-zag. But ¥ A (g v ¢) =0, hence, g <p v r. Thus, abp, ...p,,pr is a zig-zag and
p<r. 0

COROLLARY 1. a < b.
Proof. ababab is a zig-zag. O

COROLLARY 2. Ifp € qand q < rwithp, q, r distinct, thenq <p Vr.
Proof, This was proved in the last paragraph of the proof of Theorem 20, where we

showed that  is transitive. O

To complete the characterization of Co(P) we must assume join-semidistributivity.
This will be used in proving a converse to Corollary 2 above.
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LEMMA. Let L be an atomic join-semidistributive lattice satisfying (A). Then for a, b,
p and q distinct atoms of L,

(i) e<bvqimpliesbn(avq)=0,
(ii) p<avganda<bvgqimplya<pvb.

Proof. (i) fa<bvgqgandb<avgqg,thenavq=>bV q,whence, by join-semidistrib-
utivity,a v ¢ = (e A b) V q = q, a contradiction.

(ii) Since a<bvgq, bn (avq)=0,and gA(bva)=0by (i). Sincep<gVva,an
(q V p)=0. Thus, abgapab is a zig-zag with seven terms, a contradiction of (4), unless
aspvb. O

THEOREM 21. Let L be an indecomposable atomic join-semidistributive lattice of
Carathéodory rank 2 satisfying (A). Let p, q and r be distinct atoms of L with g <p Vv r.
Then eitherp £ q LrinPorr £q LpinP.

Proof. By the corollary to Theorem 19, p € P, , hence, there is a fence of the form
abp, ... pppq. We now reduce the fence as much as possible by eliminating some or all of
the p;. If all the p; can be eliminated, then we have a fence abpq. If b <a v p, abapq is a
fence, and it is a zig-zag unless p <a Vv q. In this case abagp is a fence which is a zig-zag
unless 2 <b Vv g. But then we have p<av g and ¢ <b V g, so by (ii) of the lemma
above, a <p v b, a contradiction. Hence, we can assume that there is a zig-zag of the
form abp, ... pypq. If n is even we have p . Suppose abq ... g(ax +1) Dt is a Zig-zag.
Then abq, ...qax+1)Prpq is a fence, and since rA (pVp)=pA(rvq)=0,abq; ...
q(2k +1) Prpq is a zig-zag with 2k + 7 terms, a contradiction. Thus,p € 7.

If absy ... 5(2r+1)qr is a zig-zag, since r A (pV q) =0, absy ... 52 +1)qrD is a zig-zag
with 2¢ + 6 terms, which contradicts p €r. Thusg € r.

Thus we have shown that g <p v r implies p < q or g < p. In the former case we have
shown that p < q  r. The latter case can similarly be shown to imply thatr € g < p.

Our final results characterize the lattices Co(P).

THEOREM 22. A complete atomic indecomposable lattice L is isomorphic to Co(P) for
some poset P if and only if L is join-semidistributive, has Carathéodory rank 2 ,and satis-
fies (A).

Proof. We have already shown that any Co(P) is join-semidistributive, of Carathéodory
rank 2 and satisfies (4).

If L satisfies the conditions above, we have seen that the atoms of L form a poset
under €. Let A € Co(P). We will show that A is exactly the set of atoms under the lattice
element V, < 4 x. If p is an atom under V, < 4 x, then there are x; and x, in A with p <
X1V Xx,. Then by Theorem 21, x; £ p € x, in P, or dually. In either case p € 4. Con-
versely if ¢ is an element of L, and B is the set of atoms under ¢, we will show that B €
Co(P). To do this we take p and » in B with p <€ g < r. Then by Corollary 2 to Theorem
20 we have g <p v r <c. Hence,q € Band B € Co(P). a

Since the properties listed in Theorem 22 are preserved under the formation of direct
products and conversely; and since the class of all lattices Co(P) is closed under the for-
mation of direct products (by Theorem 8), we have:
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THEOREM 23. A lattice L is isomorphic to Co(P) for some Pifand only if L is complete,
atomic join-semidistributive, satisfies (A), and has Carathéodory rank 2.

ILLUSTRATION. We return to the example shown in Figure 9, and show that it is
Co(Pg).

Since a and c¢ are related, we can assume a < c¢. Since achdbd is a zig-zag, we have
b < d. The following other zig-zags give the relationships in parentheses: achece (¢ < e),
achfdf (d<€f), acbdbc (b €c), acbdad (a <d), acbfef (¢ < [), acbede (d <e). By
transitivity, both @ and b are under e and f; hence, P is isomorphic to P4 as shown in
Figure 10.

Note that removal of the maximal and minimal elements of P leaves only the convex
set {¢, d}. Hence [{c, d}, Ps]co(p,) is isomorphic to 2* (see Figure 9). There are also
several copies of Co(2?) to be found in Co(Pg); for example the sub-poset of P con-
taining b, ¢, d and e is isomorphic to 22, and the interval [@, {?, ¢, d, e}] in Co(Pg) can
be seen to be isomorphic to the lattice in Figure 1b.

References

1. M. Altwegg, (1950) Zur Axiomatik der teilweise geordneten Mengen, Comment Math. Hely. 24,
149-155,
M. K. Bennett, and G. Birkhoff (1985) Convexity lattices, Alg. Univ. 20 1-26.
M. K. Bennett (1974) On generating affine geometries, Alg. Univ. 4, 207-219.
M. K. Bennett (1977) Lattices of convex sets, Trans. AMS 345, 279-288.
R. Bumcrot (1964) Betweenness geometry in lattices, Rend, Palermo 13 11-28,
C. Carathéodory (1907) Uber Den Variabilititsbereich der Koeffizienten von Potenzreihen, die
gegebene Werte nicht annehmen, Math. Ann. 64, 95-115.
7. P. Edelman (1980) Meet-distributive lattices and the anti-exchange closure, Alg. Univ. 10, 290—
299.
8. G. Gritzer (1978) General Lattice Theory, Academic Press, New York,
9. B. Jdnsson (1982) Arithmetic or ordered sets, in Ordered Sets (L. Rival, ed.) D, Reidel, Dordrecht,
pp. 3—41.
10. B. J4nsson (1961) Sublattices of a free lattice, Canad. J. Math. 13, 256 —-264.
11. V. Klee (ed.) (1963) Convexity, Proceedings of Symposia in Pure Mathematics, VII, Amer.
Math. Soc.
12. G, Birkhoff (1967) Lattice Theory, 3rd edn., Amer. Math. Soc., Providence.
13. A.R. Schweitzer (1909) A theory of geometrical relations, Am. J. Math. 31, 365-410.

A



