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1. Introduction 

By definition [12], p. 7, a subset S of a poset P is convex whenever a ES, b ES and 
a <b imply [a, b] C_ S. It is obvious that this is a closure property, whence (as in [12], 
p. 111) the convex subsets of any P form a complez lattice, Co(P). Since any single- 
ton {a} C_ P is convex, this lattice is moreover atomic , its atoms corresponding one-to- 
one to the elements CI EP. The purpose of this note is to show that the lattices Co(P) 
so constructed have some interesting and less obvious properties, in particular Co(P) 
often determines P up to dual isomorphism. 

If P is unordered, then obviously Co(P) - 2”’ . IS just the (complete) Boolean algebra 
of all subsets of P. At the opposite extreme, if P % n is a finite chain, then Co(P) is a 
planar lattice whose diagram was identified in 1908 by A. R. Schweitzer [13]. We have 
drawn the diagram of Co(S) in Figure la. It obviously consists of the upper half of the 
graph 5’, including its horizontal diameter, everything below this diameter being replaced 
by 0. The diagram for CO(~~) is shown in Figure lb. 

Evidently, a poset P and its dual P have isomorphic Co(P) (see Theorem 5). It is easy 
to reconstruct the chain 5 from the lattice displayed (see Section 3); more generally, any 
self-dual chain is determined up to isomorphism, while IN and other infinite chains are 
determined up to duality by Co(P). 

* Here, as in our previous paper [ 21, we have used the term ‘atomic’ as defined in [ 121, p. 196. This 
is equivalent to Gratzer’s ‘atomistic’ [8], p. 179. 
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Fig. la. Co(S). Fig. lb. Co(2 ‘). 

On the other hand, all posets of height two and the same cardinality n have the same 
Boolean algebra 2” of convex subsets as Co(P). Hence, all of the posets in Figure 2 have 
Co(P) N 25. Similarly, the nonisomorphic posets displayed in Figures 3a and 3b have 
isomorphic Co(P). 

Fig. 2. 

Fig. 3a. Fig. 3b. 

After proving some basic facts about Co(P) in Section 2, we will give a complete 
discussion of the case that P is a chain in Section 3. Then, in Section 4, we will discuss 
two reciprocal ‘wrapping’ and ‘unwrapping’ algorithms, and give the conditions under 
which Co(P) and Co(Q) are isomorphic. 

In Section 5 we will show that any Co(P) is ‘join-semidistributive’. Then we will 
prove that a given lattice is isomorphic to Co(P) for some P with least element o if and 
only if: (i) it is complete, atomic, join-semidistributive, has Caratheodory rank 2 (see 
Section 2); (ii) it has an atom o which satisfies (x VU) A o = (x A o) v (y A o) for every 
x and y, such that whenever a, b and c are atoms with o #a, c and (a, b, c> = CO(~), 
then (0, a, c) - CO(~); and (iii) its atoms satisfy the condition that b =G a V c and c <a V d 

imply that c < b vd. Finally, in Section 6, we prove that a lattice is isomorphic to some 
Co(P) if and only if it is complete, atomic, join-semidistributive, has Caratheodory rank 
2, and satisfies a condition (A) proposed by Altwegg (see Section 6). 
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2. Elementary Properties 

The following two basic properties of Co(P) are easily proved, for any poset P. 
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LEMMA. Every Co(P) is atomic. 
Proofi Every convex subset of P is the join (in fact the union) of its (convex) one- 

element subsets, and each of these is an atom of Co(P). q 

LEMMA. The smallest convex subset 2 = VA ai containing any set A of elements {ai) 
of P is the set-union 

of the intervals [ ai, ai] consisting of all x E P with af ( x ,C ai .* 
Proo$ Evidently any convex subset of P that contains A must contain Q(A). More- 

over, g(A) itself is convex since if x ,S b C y, where x, y E @(A), then x 4 b 4 y where 
ai&x&+, and akdy&an, whence ai&x&b&y&a,, and bE[ai, a,]C-O(A). 
That is, P)@(A)) = Q)(A), completing the proof. q 

The property of Co(P) stated in the lemma can be defined more abstractly. 

DEFINITION. An atomic lattice L has Carath6odory rank 2 when, given an atom p < 
VA ai in L. p < ai v ai for two suitably chosen atoms in A. 

THEOREM 1. For any poset P, the lattice Co(P) has Carath6odory rank 2. 
Proof. This follows immediately from the lemma. q 

N.B. Co(P) has Caratheodory rank 1 if and only if P has height 1 or less, i.e. if and 
only if Co(P) is a Boolean algebra. 

DEFINITION. An atomic lattice L is biatomic when, given an atom r <a v b, there are 
atomsp<aandq<bwithr<pvq. 

THEOREM 2. Any atomic lattice of Caratht?odory rank 2 is biatomic. 
Pr00.f Take a and b in L with p an atom under a v b. Let a = VIai, and b = vJbi with 

ai and bi atoms. If p < ai, v ai2, then pba, so p-<pvbj for any bi<b. Similarly if 
p < bi, V biz, p dai V p for any ai. Otherwise p <ai V bi for some i and j and L is bi- 
atomic. q 

COROLLARY. Any Co(P) is biatomic. 

Affine Convexity. Although the order convexity discussed in this paper should not be 
confused with the ‘affine convexity’ discussed in [2-41, the two notions of convexity 
share several properties.* Moreover, for any ordered division ring D, Co(D) is the same in 
both interpretations. However, for n > 1, the lattices Co(D”) defined by order between- 
ness are very different from those defined by affine betweenness, as we shall now see. 

* We will use 4 to designate the order relation inP, and < for that in Co(P). 
* For example, each is algebraic and biatomic. See also Theorem 10 below. 
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DEFINITION. An atomic lattice L has Carathkodory rank n when, given atoms p and 

fPiliEI3 ifp~VVlpi,thenp~<pi,vpi,v ‘**Vpi,, forsomeil,...,i,EI. 

LEMMA. If an atomic lattice L has finite Carathiodory rank, it is algebraic, 

Whereas Co(D”) has Caratheodory rank n t 1 under affine betweenness (see [6] and 
[ll] , p. 103), it has Caratheodory rank 2 under order betweenness, as we have seen. 

COROLLARY. Any Co(P) is algebraic. 

The Anti-exchange Property in Co(P). Let c be an element of Co(P) with p and q atoms 
underc.Ifanatomrisunderpvc,thenr=p,r<c,orr<pVcr foranatomci<c. 
But this means that p ,C r ,C cl or cl ,C r & p in P. Hence, if q <p v c, then cl d q 4 p, 
orp&q&cl inP.Ifalsop<qVc,thencz&ppqorp~q&czforsomeatomcz 
under c. Thus, either cl & q ( p 5 c2, or c2 & p 4 q & cl, so p and q are under c, a 
contradiction. The property described above can be defined in a general atomic lattice as 
follows. 

DEFINITION. An atomic lattice L has the anti-exchange property when, for any atoms 
pandqnotcontainedincEL,pVc=qVcimpliesp=q. 

Edeiman [7], p. 292 has noted that the lattice Co(P) of any finite P has the anti- 
exchange property. The remarks above generalize his result to arbitrary posets. 

THEOREM 3. Any Co(P) has the anti-exchange property. 

In Section 5 we will show that in biatomic lattices with no infinite chains, the anti- 
exchange property is equivalent to join-semidistributivity. 

Finite Co(P). If P (or, equivalently Co(P)) is finite, then each element is between a 
maximal and a minimal one. The maximal (as well as the minimal) elements generate 
a sublattice of Co(P) isomorphic to the Boolean algebra 2” (n being the number of 
maximal elements of P). 

The removal of any maximal or minimal element from a convex subset of P gives a 
convex subset again; hence the maximal and minimal elements can be ‘peeled off’ in turn, 
giving a Boolean interval sublattice of Co(P) (see [7], Thm. 3.3). Finally, we have 

THEOREM 4. For any finite poset P, Co(P) has length I PI, and the Jordan-Dedekind 
chain condition holds. 

Proof: The convex sets ‘covering’ any c in Co(P) are the c v p where p either covers 
or is covered by some atom a < c. cl 

In case P is a lattice, much more can be said. Besides the order betweenness with which 
we are concerned, betweenness can be defined in several different ways (see [S] , Gi -Gr s ), 
including lattice betweenness [12], p. 7 in which b is ‘lattice-between’ a and c whenever 
b is order between a A c and a v c, and Glivenko’s betweenness in which b is ‘Glivenko- 
between’ a and c when (a A b) V (b A c) = b = (a v b) A (b V c). 

THEOREM 5. For any poset P, Co(P) N Co(F). 
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Proof Since a &b & c in P is equivalent to c 4 b 4 a in 8, the intervals [a, c] in P 
are equal as sets to the intervals [c, a] in 8. cl 

There is nothing to be gained by studying convexity in the more general class of quasi- 
ordered sets (so-called quosets, whose order relation is reflexive and transitive), as the 
following theorem shows. 

THEOREM 6. Let Q be a quoset, and let 0 be the equivalence relation given by letting 
x 0 y ifand only ifx 4 y and y C x. Then Co(Q) = Co(Q/O). 

Proof: If A E Co(Q), let A’ = { [xle : x EA}. Then if [ale, [cle EA’ with [ale d 
[ble4 [cle in Q/0, it is easy to see that II Qb &c in Q; hence, bEA and [b] EA’ 
and A’ E Co(Q/e). Conversely one can show that for B E Co(Q/O), B =A’ where A = 
{x: [x]‘EB}. 

Relations to Ideals. One key to the structure of the atomic lattice Co(P) is provided by 
the structure of the lattices I(P) of all dual order-ideals of P.* The connection between 
the lattices Co(P), I(P), and I(8) is provided by the following elementary theorem. 

THEOREM 7. A is a convex subset of P if and only if A is the intersection of an order- 
ideal and a dual order-ideal. 

Proofi It is easy to show that a convex subset A is of the form J n K where J is the 
set of all x 4 b for some b E A, and K is the set of all y containing some b EA. Con- 
versely, since the order-ideals form a Moore family of subsets of P, and any order-ideal or 
dual order-ideal is convex, the intersection of any order-ideal with any dual order-ideal is 
convex. 0 

The following corollary is immediate. 

COROLLARY 1. For any poser P, Co(P) is a meet-epimorphic image of I(P) x I(F). 

Product Decomposition of Co(P). Any partially ordered set has an obvious and well 
known (see [9], p. 3) unique additive decomposition into its (disjoint) connected com- 
ponents, Pi being a connected component of P when x E Pi, and x ( y or y &x imply 
that y E Pt. P is thus the disjoint union (cardinal sum) of its connected components (see 
[12], p. 55) and A is convex in P if and only if A is the disjoint union of the convex 
subsets Ai = A n Pt of the Pi. Furthermore, the cardinal sum of any collection of posets 
is a poset which has the given posets as disjoint unions of connected components. Thus 
we have: 

THEOREM 8. Zf P is the disjoint union of {Pi}tEr, then Co(P) = nick Co(Pi). Further- 
more, the class of all Co(P) is closed under the formation of arbitrary direct products. 

The connected components of P can alternately be viewed as the equivalence classes 
of the transitive closure of the relation (< U &), which is reflexive and symmetric for any 

l This is not to be confused with the lattice of all lattice ideals of a given lattice, defined in [ 121, p. 25 
and discussed in [12], p. 113. 
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poset P. In particular, a one-member connected component is an element of P related to 
no other element, i.e., it is both a maximal and a minimal element ofP. Considered as a 
poset, this element has a two-member convexity lattice (the empty set and the singleton) 
isomorphic to 2. This gives the following corollaries to Theorem 8. 

COROLLARY 1. Let q be both a maximal and a minimal element of poset P. Let P’ = 
P\{q}. Then Co(P) - Co(P’) x 2. 

COROLLARY 2. If Co(P) is (direcfly) indecomposable, then P has no element which is 
both maximal and minimal. 

We note that a connected poset P need not have a (directly) indecomposable Co(P). 
The posets shown in Figures 4a and 4b have isomorphic convexity lattices, the former 
being a direct product by Theorem 8, whereas the latter poset is connected. We shall 
discuss this situation further in Section 4. 

Fig. 4a. Fig. 4b. 

3. Generalized Schweitzer Lattices 

The Schweitzer lattices, alluded to in Section 1, are by definition the lattices Co(n), 
where n is a fmite chain. Thus, if P is either of the posets drawn in Figure 4, Co(P) is 
isomorphic to CO(~) x CO(~), where CO(~) is simply 22. In Co(P), if p, q, and r are 
atoms, i.e., arbitrary (singleton) members of P, then (p, q, r) is isomorphic to CO(~) if 
and only if p, q and r form a chain in P. Hence, in Figure 5a below, q <p v r in CO(~), 
andeitherp&q&rorr&q&pinP. 

Fig. 5a. CO(~) Fig. 5b. 

In [2], p. 6, CLl, we noted that any three atoms of Co(Dfl) generate either CO(~) or 
23 as a sublattice. On the other hand, Co(Y) (Y the poset shown in Figure 5b) does not 
satisfy this condition since (p, q, r) contains a fourth atom s in Co(Y). Furthermore, 
(p, s, r) and (q, s, r) are each isomorphic to CO(~) while (p, q, r, s) is not isomorphic 
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to CO(~), which would be impossible in Co(Drr) ([2], p. 6, CL2). in fact, in Co(P), 

(P i, . . . , pn ) is isomorphic to Co(n) exactly when the elements pl, . . . , p,, are linearly 
ordered in P. 

If C is an arbitrary chain, we know that 1(C) and I(?) are chains as well. Further- 
more, (dual) order-ideals are (dual) lattice ideals in C. Hence, we have a second corollary 
to Theorem 7 above. 

COROLLARoY 2 TO THEOREM 7. If C is chain, then Co(C) is a meet-epimorphi; image 
of I(C) x I(C), the product of the chain of all ideals of Cand that of all ideals of C. 

In this case, the diagram of Co(C) is easily visualized (see Figure 6), as a right triangle 
standing on its hypotenuse with @ adjoined below. The hypotenuse consists of the atoms 
[c, c] = {c}, c E C. The left side consists of the @al ideals [a, ~1, (a, =), etc. where a is 
an arbitrary ‘cut’ in C (whose ideal completion C and Dedekind order completion C are 
closely related; see [12], p. 117). 

Fig. 6. Co(C). 

THEOREM 9. If C is a chain, then every proper dual tieal [[c, c] , I] of Co(C) is the 
direct product (-=J, c] x [c, =) of two intervals of C. 

The shaded area in the diagram of Co(C) represents such a dual ideal; clearly C\@ is 
the union of such proper ideals. The similarity to Co(S) (Figure la) is obvious. 

When C = IR, the pairs (-c=, a] and (a, m) are complementav as are (-=J, a) and 
[a, CQ). Moreover any complemented element of Co(IR) is an interval of one of the four 
types described above. Hence, the complemented elements are the elements of C or 8. 
For any singleton {c}, the interval [{c}, 11 is the product of the chain of dual ideals of 
the form (-m, b) with b >, c, and [- c=, b] with b 2 c, and the chain of ideals of the form 
[a, m), a &c and (a, w), a < c. As abstract chains C and e are isomorphic to 1 @ (IR - 2) 
and its dual (IR * 2) @ 1 respectively. 

4. ‘Unwrapping’ a Poset 

Recall [4], p. 287, that if X is a convex subset of D”, its extreme points are exactly the 
atoms p in the lattice of convex subsets of X which satisfy 
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(xVy)Ap=(xAp)V(yAp) forallx,y. 01 

The maximal and minimal elements (if any) in a poset are, in a sense, its ‘extreme points’, 
and are crucial in determining when two posets have isomorphic convexity lattices. The 
‘analogy’ between maximal and minimal elements of P and the vertices of a polytope in 
Dfl carries over to Co(P) as follows. 

THEOREM 10. Let {p} be an atom ofCo(P) ( an element of P). Then {p } is maximal or 
minimal in Pjf and only if {p } satisfies (1) in Co(P). 

Proo.fI If, for some x and y, (x v y) A p = 0, then (1) holds for that x and y. Otherwise, 
let p be maximal and (x v y) A p = p. By biatomicity, we have p <xl v yl in Co(P); 
hence p E {xi, yl } or xl 4 p & yl or dually in P. Thus, p & x or y and (1) holds. Con- 
versely, if p is neither maximal nor minimal in P, there are elements a and b in P, different 
fromp,witha~p~b.Hence,inCo(P),p=(avb)~p,butaAp=b~p=Oand(l) 
fails. cl 

The notion of unwrapping a poset results from the observation that Co(P) is unaffected 
by deleting all maximal chains of mo elements, i.e., deleting any covering relations join- 
ing a maximal x with a minimal y covered by x. The poset in Figure 3b, when unwrapped, 
becomes that in Figure 3a; similarly for the posets in Figure 4. More formally, we have 

THEOREM 11. Let Co(P) be indecomposable. Let Q be the poset whose elements are 
thoseinP,letx~yinPimplyx~yinQ,andletx~yinQimplythatx~yinPor 
that x is minimal in P and y is maximal in P. Then Co(P) z Co(Q). 

Proofi Let a, b G x in Co(P), and let a 6 c 4 b in Q. If the elements are distinct, then 
a & c 4 b in P, and c <x, or c is both a maximal and a minimal element in P, a contra- 
diction. Hence, x E Co(Q). Conversely, if x E Co(Q) and a, b <x with a 4 c 6 b in P, 
thena&c<binQ,hence,c<xandxcCo(P). ci 

In order to simplify the posets with which we must deal, we define a class of posets 
essentially formed by unwrapping arbitrary posets in the manner described above. 

DEFINITION. A poset P is said to be coherent when it is connected and no maximal 
element of P covers any minimal element of P. 

The poset drawn in Figure 3a is coherent; that in Figure 3b is not. Neither of the 
posets in Figure 4 is coherent; however Figure 4a is the disjoint union of coherent com- 
ponents. 

COROLLARY TO THEOREM I 1. Any poset P contains coherent subposets Qf such that 
Co(P) - II Co(Qi). 

hoof The poset ZQi (a disjoint union) is formed by defining b 4 m in Qi whenever 
b<minPand{b,m}isamaximalchaininP. q 

When P is coherent and x & y in P, there is some z in P so that {x, y, z} form a three- 
element chain and, therefore, (x, y, z ) is isomorphic to CO(~) in Co(P). Using this fact, 
we say that atoms x and y in an atomic lattice L are colZinear (and write x 7 y) if and 
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only if there is an atom z with (x, y, z) isomorphic to Co (3). The relation ‘y is symmetric, 
and constructing its transitive closure we obtain an equivalence relation 7, which sub- 
divides P into its y-connected components in case L is Co(P). When P is coherent, the 
relation 7 is degenerate, and there is only one equivalence class, namely all of P. In any 
coherent poset, starting with an arbitrary element u, we set 

Ao = {Q} 
Al ={x:x7u} 

Since the transitive closure of ~,v, is by definition UF= i #, it is easy to see 

LEMMA. If P is coherent, then 

P= 6 Ai. 
i= 1 

We are now in a position to prove the main theorem of this section, that if P is coherent, 
then Co(P) determines P up to duality. 

THEOREM 12. Let P and Q be coherent with Co(P) = Co(Q). Then P 2 Q or P = 6. 
&oofi We may assume Co(P) = Co(Q) so that the underlying sets of P and Q are the 

same. We may assume there exist a 4 b g c in P since otherwise P, having only one com- 
ponent, is a singleton, as is Q, and P = Q. 

Now~~b~cinP~pliesb~~vc~Co(P),sob~avc~Co(Q).Thus,u~b~c 
in Q or ca b& a in Q. We may assume the former without loss of generality. 

Let A: be the subsets of P as defined above, and let A? be the analogous subsets of 
Q. As sets A: and A? are equal; we will show they are isomorphic as posets. The proof 
breaks down into several cases: 

(I) Letkz,x,yJ=Co(3)withx<avy. 
Let a~ x& y in P. If y& x4 u in Q we have y& x4 a& b in Q which implies 

u~bvx~Co(Q).Butu~b~c~Pand~~x~y~P~plya~bvxinCo(P). 
Hencea& x&yinQ. 
Similarly,y4 x&uinPimpliesy&x& ainQ. 

(II) Let(a,x,y)=Co(3)withaGxvy. 
Letxg u&y inP. 
Ify~a~x~Q,thensincex~~~b~P,wehave~~bvx~Co(P).Buta~x 

anda< binQ,sou$bvxinCo(Q). 

(III) Suppose x, y E Al with x &y in P. Then there is a z in P with (u, x, ,z) = CO(~) 
SO Q and x are related in P. By (I) and (II) above, G and x are related in the sanze wry in 
Q. 
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(A) Ifa=Gx,thena<x6yinP,soby(I)a<x<yinQ. 
(B) If a $ a <Y in P, then by (II), x < Q 4 y in Q. 
(C) Ifx<~&tiinP,thenby(I)x&~&ainQ. 

Therefore, if x &y in &, then x < JJ in JIM. The converse can similarly be demon- 
strated, so A: and A? are isomorphic as posets. 

We now assume A: and A$? are isomorphic as posets. Arguments similar to those used 
above show that if (b, x, y) * CO(~) with b E Ai, then 

(I) Ifx<bv~inCo(P)andb&x&~inP,thenb4x4~inQ. 
(II) Ifb<xvyinCo(P)andx4b<yinP,thenx&b$yinQ. 

Coherence comes into play during the next part of the argument. 

(III) Let z and w be elements of Ai+ l, with z & w in P. Then there is b E A,, such 
that (b, z, c) = CO(~), and b’ E An with (b’, w, d) = CO(~). Hence, b is related to 
z and b’ is related to w. 

(A) Ifb&zinP,thenb4zSwinP,sob4z&winQ. 
(B) Ifb’4 w,thenz&w&b’inP,soz&w&b’inQ. 
(C) AssumebdzinPandb’dwinP. 

Since (b, z, c) = CO(~) in Co(P), and b 2 z in P, then by (I) and (II) b 2 z in Q. 
Similarly if b’ 6 w in P, then b’6 w in Q. Thus we have z G b in Q and b’ 6 w in Q. 

(i) Assumec6zinP.Thenc6z &winP,soc<zGwinQ. 
(ii) Assumew&~inP.Thenz&w&~inP,soz&w&~inQ. 
(iii) Therefore we must assume c 2 z, b 2 z, d 4 w, and b’ 4 w. 

If z 4 w in P and z $ w in Q, then z must be minimal in Q. Otherwise there is an x 6 z 
in Q, and we would therefore have (x, z, b) = CO(~) in Co(P); therefore x G z 6 b in 
both P and Q, so x & w in Q by (i). A similar argument shows that if z g w in P and 
z # w in Q, w must be maximal in Q. But by coherence, if z < w in P with z minimal and 
w maximal, then there is ay in P with z &y 4 W. But this means (z, y, W) = CO(~) in 
Co(P) and, therefore, in Co(Q), so z $ w in Q or w <z in Q. In the latter case we have 
b’ & w & z in Q, so b’ & w 4 z in P. a contradiction. Therefore z S w in Q. 

Therefore, by induction, A: = Af for all i, so it follows from the lemma that P = Q. 
q 

In determining when two posets have isomorphic convexity lattices, it is convenient 
to have the following notation. 

DEFINITION. For posets P and Q we say P and Q are isomedic (and write P - Q) when 
there is a bijection f from P to Q such that x 4 y butj(x) #j-(j) imply that {x, y} is a 
maximal chain in P; and j(x)<j’(j~) but x 4~ imply that {j(x), f(v)} is a maximal 
chain in Q. 

Figures 7a and 7c illustrate posets P and Q which are isomedic respectively to the 
cardinal sums PI + P2 and Q, -t & of Figures 7b and 7d with PI - Qi, and P2 - Qz. 
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The convexity lattices Co(P) and Co(Q) are isomorphic; in fact Co(P) % (Co(P1) x 

Co(P*)~(Co(Q~)xCo(Q*))~Co(Q), d an serve as an illustration of the result to be 

stated in Theorem 13. 

P c? 
Fig. 7a. Fig. 7c. 

Fig. 7b. Fig. 7d, 

THEOREM 13. For P and Q posers, Co(P)=Co(Q) if and onb ifP-ZieIPi; Q- 
~i~~Qi;andforeachi~I,Pi~QiorPi~~i. 

ProoR If Co(P) 5 Co(Q) with both lattices indecomposable, if P and Q are coherent, 
then P = Q or P * 4. Otherwise by the corollary to Theorem 11, P and Q can be reduced 
to coherent posets P’ and Q’ with Co(P) = Co(P’) = Co(Q’) = Co(Q), whence P’ = Q’ 
or P’ = d’. In the former case P - Q, and in the latter P - d. If Co(P) and Co(Q) are 
decomposable we make the argument above for each factor, and obtain the result. Con- 
versely since Pi - Qi or Pi - & implies by Theorem 11 that Co(Pi) % Co(Qi), then if P 
and Q satisfy the conditions of the theorem, Co(P) 2 nCo(Pi) = ~CO(Qi) = Co(Q). 0 

COROLLARY. If L and M are bounded Zattices, then Co(L) *Co(M) exactly when 
L %MorL =A?. 

5. Semidistributivity and Bounded Posets 

Jbnsson [lo], p. 262, has shown that every sublattice L of a free lattice is semidistributive 
in the sense that: 

(SDl) for all a, d in L, the set {x 1 a v x = d} is meet-closed 

and 

(SD2) for all a, d in L, the set {x 1 a A x = d} is join-closed. 

A lattice satisfying (SDl) is called join-semidisrributive; a lattice satisfying (SD2) is 
called meet-semidistributive. 

We shall show that every lattice Co(P) of convex subsets of a poset is join-semidistrib- 
utive, or equivalently, if a, b and c are in Co(P) with a v b = a v c, then a v b = a v (b A c). 
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THEOREM 14. For any poset P, the (biatomic) lattice Co(P) is join-semidistributive. 
Proo.fI Assume that a, b and c are in Co(P), and that a v b =a v c. It is enough to 

show that (a v b) A (a v c) G a v (b A c). Taking an atom x < (a v b) A (a v c), there are 
several possibilities: 

SincexGav b and sincex<aVc 
(1) al 4 x 6 bl (9 aa 4 x 6 cz 
(2) bI 4 x &a1 ca < x & a2 
(3) xSa p) x<a 
(4) x<b (iv) x G c 

ai <a, bi < b, Ci SC. 

These possibilities lead to sixteen possible cases (some of which are quite easily settled). 
We shall give the details only of cases (I, i) and (4, i), as prototypical of the most com- 
plicated possibilities. 

(1,i) Ifal&x~blandaa<xGcz,sincebl<avc,wehaveeither: 

(I) b i < a, in which case x < a. 
(II) bI < c, in which case bI < b A c, so x <a v (b A c). 

(III) a3 & bI < ~3, where a3 G a and ca <c. Here, since c3 <a v b, there are again 
several cases: 
(I) c3 <a, in which casex <a. 
(2) c3 < b, which implies c3 < b A c, so x <a V (b A c). 
(3) a~~c3~b~(c3~c~db~~b),inwhichcasec~~bandx~av(bAc). 
(4) b4 G c3 6 a4, which implies x <a. 

(IV) c3& bI & aa, which impliesai &x 4 a3 andx <a. 

(4,i) Letx<bandai&x&ci.Sinceci<avb,wehave 

(I) ci <a, whence x <a. 
(II) ci<b,sothatciGb~candxGav(bAc). 

(III) a2 < ci 4 bI, which implies cl < b and x <a v (b A c). 
(IV) bI 4 cl 4 a2, and x <a. 

Join-semidistributivity is a property not shared by any lattice Co(D’ ) if n < 2; in fact, 
given I, m and k the lines in IR’ shown in Figure 8, Iv m = 1 v k = IR2, but l v (m A k) = 
1 v 0, which is the open lower half plane with 0 adjoined. 

Fig. 8. 
\ 
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However, we can prove the following theorem. 

235 

THEOREM 15. The lattice L of all convex polytopes in Dr’ (D an ordered division ring) 
is join-semidistributive. 

Proof Recall that a convex polytope is the convex hull of a finite set of points which, 
after removing any redundant points, we can assume to be its extreme points. These 
polytopes form a sublattice of the biatomic lattice Co(Dn). Furthermore, if X and Y are 
polytopes, every extreme point of X V Y is an extreme point of X or an extreme point of 
Y; since, by biatomicity all points of X v Y not in X or Y are interior points of segments 
x v y, x E X, y E Y. Neither these, nor the interior points of X or Y can be extreme. 

IfXv Y=XvZ,thenbothareXv YvZ.ButtheextremepointsofXv Y=XvZ= 
XV Y v Z must be in X or in Y, and in X or in Z. Hence, they must be in X or in Y fl Z 
by the distributive law. Since Xv Y v Z is the join of its extreme points, the result 
follows. 0 

Join-semidistributivity is connected with the anti-exchange property discussed in 
Section 2, as shown by the following results. 

THEOREM 16. Any join-semidistributive lattice has the anti-exchange property. 
Proof If q<pva, qfia=O, and avp=avq, then avq=av(pAq)=a, so 

q <a, a contradiction. 0 

We can obtain a partial converse to Theorem 16, by using this lemma. 

LEMMA. If L has the anti-exchange property, for p and q distinct atoms, a v p = a v q 
impliesavp=av(pAq)(=a). 

Proof For avp=avq, p<avq, hence q$(avp) unlessp<a. Similarly,q<a 
andavp=a=av(pAq). L! 

THEOREM 17. If L is baztomic, satisfies the anti-exchange property, and has no infinite 
chains, then L is join-semidistributive. 

Proof Let a v b = a v c and let b,, be an atom under b. Then b,, <a v co for some 
atom co < c; likewise co <a v b i , and we have 

Since L has no infinite chains there is an n with a V cn = a v bn + l. If c,, = b,, + , , then 
c~<b~candb~<av(b~c). 

Otherwise by the lemma, @ v c,, =a v bn+l = av(cn Abn+l)=a and boGa. Thus, 
b<av(bAc),hence,avb=av(bAc). El 

Join-semidistributivity, together with two technical conditions, enable us to character- 
ize the lattices Co(P), where P is a poset with smallest element o. 

THEOREM 18. A complete atomic lattice L is isomorphic to Co(P) for some poset P 
with smallest element o if and only if 

(i) L is join-semidistributive, 
(ii) L has Caratheodory rank 2, 
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(iii) There is an atom o.satisfying (1) [See Section 41 such that, whenever a, b, c are 
atoms ofL with o #a, c and (a, b, c) = CO(~), then (0, a, c) 2 CO(~). 

(iv) Ifa,b,canddareatomsofLwithb~avcandc~avd,thenc~bvd. 

Boot We have already seen that Co(P) always satisfies (i) and (ii). If P has a smallest 
element o, and if (a, b, c) is isomorphic to CO(~), then we can assume without loss of 
generality that a < c, so o 6 a < c, and (0, a, c) = CO(~), and (iii) holds. If b <a v c 

in Co(P) and c G a v d, then if a s b s c, we must have a < c 4 d, whence b 6 c <d, so 
c<bvd.Ifc&b&a,thend&c<a,soddc&b,andcGbvd. 

Conversely, if we assume (i), . . . , (iv) hold in a lattice L, we let P be the set of atoms in 
Landdefine &onPbyx&yifandonlyifx<ovyinL.Thenx&xsincex<ovx 
foreveryx,so~isreflexive.Ifx~~and~~x,thenx~ovy,andy~ovx,soov~= 
o v x, and by join-semidistributivity, this equals o v (x A y), so x = y, and & is anti- 
symmetric.Ifx~yandy~z,thenx~o~y~o~z,sox~z,andPisaposetunder~. 

Since o Go v x for every x, o is the smallest element of P. 
If B is a subset of P satisfying the condition 

p< V {b}impliespEB 
bEB 

we will show that BE Co(P). For this, we take bl, b2 E B and x such that bl c x < b2. 
We have b,<ovx, and x<ovb*, so by (iv), x=Gblvb2. Hence,xEB, and BE 
Co(P). Finally, we show that if B is in Co(P), then B satisfies (*). Here we assume that p 
is an atom under V biEB bi. This implies by (ii) that p < bl V b2 for some bi, whence 
(bl, p, b2> = CO(~), so by (iii) (0, bl, b2) = CO(~). By (1) we cannot have o < bl V b2, 
therefore bl<ovb2, orbZ<ovbl.Assumingtheformer,sincep<blvbZ,ovp< 
ovblvb2=ovb2,sop b2. Since bi<bs~o,(iv)impliesthatbi~ovp.Hence, 
bi$p$bs,sopEB,and(*)holds. 0 

6. The Altwegg Condition: Characterization of Co(P) 

In order to characterize the lattices Co(P), we need to be able to define an order relation 
on the set of atoms of lattices satisfying appropriate conditions. We start with the notion 
of related atoms. 

In general, three atoms x, y and z of a lattice L are called indeperzdent [12], p. 86 
(14) when 

i.e., when none of them is contained in the join of the other two. We now define two 
(distinct) atoms x and y of L to be related when some triple {x, y, z} of atoms of L is 
notindependent,i.e.,whenthereisanatomz#x,ywithz~xvy,y~xvz,orx~ 
y vz. 

We note that no x is related to itself, and that if L = Co(P), with {x, y} a maximal 
chain in P, then x and y are not related in the sense above. (Cf. Theorem 11 and its 
corollary .) 



G
 

Fig
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EXAMPLE. The atomic lattice shown in Figure 9 is Co(P6) where 

~6=(l+l)@(ltl)~(ltl)~3~(ltl) 

as shown in Figure 10. 

Kg. lo. P6. 

To draw Co(Pe) we can assign to the elements a, b, c, d, e, f the vectors of height 1 
and x-components -3, -1.5, -0.5,0.5, 1.5,3; and to any ‘convex’ set s C P6 of cardinal- 
ity m (except {bcde} and {mdf}) the vector (Es Xi, m) = (2s Xi, IS I). The sets {bcde) 
and {a&f} are assigned (-0.5,4) and (0.5,4) respectively. In the drawing of Co(P6) we 
have labelled each element by listing the atoms under it. There are six atoms and eleven 
elements of rank 2; hence there are four joins of pairs of atoms which contain a third 
atom. These are a V e, a v f, b V e, and b v f. Since c and d are beneath each of these 
joins, the following pairs of atoms of L are related: (a, c), (a, d), (a, e), (c, e), (c, f), 
(4 el, (4 f 1, (a, f 1, Cb, CL (by Q, @, el ad Cb, f I. 
DEFINITION. A fence in an atomic lattice is a sequence of atomspop .**&, such that 
J+ is related to pi+r for i=O, . . . ,~-l.AfenceisaZ~g-zagwhen~i~(~i-~V~i+~)=O 
fori= l,...,n- 1. 

CONTINUATION OF THE EXAMPLE. In the lattice shown in Figure 9, acebdfbd is a 
fence (each adjacent pair is related) but it is not a zig-zag since c <a V e and d <b v f. 
However, dropping c and d gives us a zig-zag,aeb@d, 

EXAMPLE. If P is the poset drawn in Figure 11, then in the atomic lattice Co(P), 
abcdefghij and efgififi are fences while acegv and acdceghgif are zig-zags. 

a]i 
Fig. II. 

In view of the definition of related atoms, adjacent terms in any fence must be distinct. 
Intuitively, the order relation in P reverses between each successive pair of any zig-zag 
in Co(P); for example the zig-zag acdceghgzyf depicted above related to the ordering 
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a~c~d~c~e~g~h~g~i~j~f in theposetP.Thissuggeststhefinalcondi- 
tion we will use to characterize the Co(P), which we will call condition (A), suggested by 
Altwegg’s axiomZe ([1], p. 150). 

DEFINITION. An atomic lattice satisfies the condition (A), if it has no zig-zag of the 

h-m POPI -.. P2d0P1. 

Condition (A) says that there can be no zig-zag with total number of terms odd, whose 
first and last pair are identical. In the poset of Figure 11, eghgzjfeg has first and last pair 
(eg) identical, and the total number of terms is nine, but f G j v g in Co(P), hence, the 
sequence is not a zig-zag. However eghgijfgeg is a zig-zag with first and last pair identical, 
this time having 10 terms. 

The fence abcdefghij in the example of Figure 10 was reduced (by dropping b, d, f, 
and h as we dropped c and d in the first example) to make the zig-zag acegzy, still starting 
with a and ending with j. It is easy to see that this can always be done, as the following 
lemma shows. 

LEMMA. ,4~~y fence p. . . . p,, ca?z be reduced to a zig-zag popls . . . pk’ = p,, where 1’ < 
2’<...<k’=n. 

B0of If pl <p. Vp2, we eliminate pl. Then p. is still comparable with p2, so 

POP2 ... p,, is a fence. If p2 <p. v p3, remove p2. Otherwise if p3 <pz v p4, remove 
p3. upon continuing the process, we finally arrive at a zig-zag of the formpopl’ . . . pk’ = 

Pn. q 

Fences can also be used to decompose some atom lattices into direct products. 

NOTATION. Let L be an atomic lattice, with a and b fixed related atoms of L. Then we 
denote by Pab {x 1 x an atom of L and there is a fence abpl . ..pnx}. Denote by Pi* the 
set of atoms not in Pab. 

THEOREM 19. Let L be an atomic lattice with Carathkodory rank 2. Let a and b be 
fixed related atoms of L. Then 

(i) For q an atom of L, if q < Vx Epab at = c, then q E PGb. 

(ii) For q an atom of L, if q < VX Ep;b x = d, then q E Pib. 

(iii) L 2 [O,c] x [O,d]. 
BOON (i) For q < Vx Epab X, q <XI V ~2 for some Xi E Pab. Assuming q #xi, we 

have abp l . . . p,,xl a fence, and therefore abpl . . . pnxlq a fence for some Pi, so q E Pab. 
The proof of (ii) is similar to that of(i). 
(iii) The mapping (e, f) + e !J f from [O, c] x [O, d] to L is onto since any element 

y in L may be written as (y A c) v (JJ A d), because any atom yl under y is either under 
y A c or y A d. Hence, y < (j A c) v (y Ed), but the reverse inequality holds in any 
lattice, and y = (y A c) v (y A d). 0 

The mapping is one-to-one. For if e, g < c, with e #g, let p < e and p $ g for some 
atom p. Then for any f Gd, p <e v f, and p $ g v f; otherwise p <gl v fl where gl 
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and f1 are atoms under g and f respectively, and since p, q1 and f1 must be distinct, g1 
and f1 are related. But since gl e Pab, this means f1 E Pab, which contradicts (ii). Thus, 
e #g < c imp!ies e v f # g v f for all f < cl, and the argument can be extended to show 
thatif(e,f)#(g,!z)thenevf#gv/z. 

The mapping clearly preserves joins, and if e, g < c with f< d, (e A g) v f< (e v f) A 
(g V f). An atom p < (e V f) A (g Vf) must be under some el Vfl, and hence must 
equal e1 or f1 as in the paragraph above, and must also be under gz vf2, again equaling 
either gZ or f2. But p cannot be equal both to el and f2 or to both gZ and fl, hence, 
p < e A g or p <f, sop G (e A g) v f, and the mapping preserves meets. 

COROLLARY. If L is an indecomposable atomic lattice of Carathiodory rank 2, then 
given a and b related atoms, any atom p is in POb. 

We now consider general indecomposable atomic lattices of Carathdodory rank 2 
which satisfy (,4). On the atoms of such a lattice, we (I) define an order relation g; and 
(2) show that the atoms form a partially ordered set P under & , we finally show that the 
original lattice is isomorphic to Co(P). 

THEOREM 20. Let L be an indecomposable atomic lattice of Carath&odory rank 2 
which satisfies (A). For any two atoms p and q, de@e p 4 q to mean that either (i) p = q, 
or (ii) there is a zig-zag abpl , . . . , pZnpq, where a and b are fixed related atoms. l%en 
(P, <) is a poset. 

boot We first show that & is well-defined by assuming there are zig-zags abpl . . . 

&m and ah 1 . . . q(2k+Qpq. Then abpl . . . pZnpqpq(2k+Q . . . qlbab is a zig-zag whose 
first and last pair are identical, and which contains 2n t 2k t 1 + 8 terms, an odd number. 
This contradicts (A), so we have shown that if there is a zig-zag abpl . . . ~~~pq, every 
zig-zag beginning with ab and ending with pq has an even number of terms. 

The relation & was defined to be reflexive. If p # q, and p 4 q, then there is a zig-zag 

abl . . . p2,,pq, hence,abpl . . . p2,,pqp is a zig-zag with an odd number of terms, so there 
is no zig-zag starting with ab and ending with qp having an even number of terms. Hence, 
q 6 p fails and 4 is antisymmetric. 

If p $ q and q & r, we have zig-zags abpl . . . p2,,pq andabql . . . q2kqr. Thenabpl . . . 

P2nww2k . ..qlbab is a fence with 2n + 2k+ 9 terms, an odd number. By (A) this 
fence is not a zig-zag, but abpl . . . p2,,pq and rqq2k . . . qlbab is a zig-zag, hence, pqrq is 
not a zig-zag. But r A (q v q) = 0, hence, q G p v r. Thus, abpl . . . p2,,pr is a zig-zag and 
13s r. 0 

COROLLARY 1. a 6 b. 
Proof ababab is a zig-zag. q 

COROLLARY 2. If p < q and q =G r with p, q, r distinct, then q < p v r, 
Pro05 This was proved in the last paragraph of the proof of Theorem 20, where we 

showed that < is transitive. 0 

To complete the characterization of Co(P) we must assume join-semidistributivity. 
This will be used in proving a converse to Corollary 2 above. 
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LEMMA. Let L be an atomic join-semidistributive kzttice satisfying (A). Then for a, b, 
p and q distinct atoms of L, 

(i) a<bvqimpliesbA(avq)=O, 
(ii) p<avqanda<bvqimplya<pvb. 

Proof (i) If a <b v q and b <a v q, then a v q = b v q, whence, by join-semidistrib- 
utivity, a v q = (a A b) v q = q, a contradiction. 

(ii) Since a < b v q, b A (a v q) = 0, and q A (b v cz) = 0 by (i). Since p <q v a, a A 
(q V p) = 0. Thus, abqapab is a zig-zag with seven terms, a contradiction of (A), unless 
a<pvb. lx 

THEOREM 21. Let L be an indecomposable atomic join-semidistributive lattice of 
Caratheodory rank 2 satisfying (A). Let p, q and r be distinct atoms of L with q <p v r. 

Then either p 6 q 4 r in P or r 6 q 4 p in P. 
Proof By the corollary to Theorem 19, p E Pat,, hence, there is a fence of the form 

ah . . . pn pq. We now reduce the fence as much as possible by eliminating some or ail of 
the pj. If all the pt can be eliminated, then we have a fence abpq. If b <a v p, abapq is a 
fence, and it is a zig-zag unless p <a v q. In this case abaqp is a fence which is a zig-zag 
unless a<bvq. But then we have p<avq and a<bvq, so by (ii) of the lemma 
above, a <p v b, a contradiction. Hence, we can assume that there is a zig-zag of the 
form abpI . . . pn pq. If n is even we have p q. Suppose abq I . . . q( 2k + Ij pr is a zig-zag. 
Then abqI . ..q(ak+r)prpq is a fence, and since rA(pVp)=pA(rVq)=O,abqI . . . 
q(2k+ Ijprpq is a zig-zag with 2k + 7 terms, a contradiction. Thus,p < r. 

If abs I . . . s(2t+ljqr is a zig-zag, since r A (p v q)= 0, absI ...s(2t+l)qrp is a zig-zag 
with 2t t 6 terms, which contradicts p < r. Thus q G r. 

Thus we have shown that q G p v r implies p 4 q or q 4 p. In the former case we have 
shown that p < q & r. The latter case can similarly be shown to imply that r 6 q G p. 

Our final results characterize the lattices Co(P). 

THEOREM 22. A complete atomic indecomposable lattice L is isomorphic to Co(P) for 
some poset P if and only if L is join-semidistributive, has Caratheodory rank 2, and satis- 
fies (A). 

l’r00.f We have already shownthat anyCo(P) is join-semidistributive, of Caratheodory 
rank 2 and satisfies (A). 

If L satisfies the conditions above, we have seen that the atoms of L form a poset 
under &. Let A E Co(P). We will show that A is exactly the set of atoms under the lattice 
element Vx EA x. If p is an atom under Vx EA x, then there are xl and xa in A with p < 
xl v xa. Then by Theorem 21, xl 6p &xa in P, or dually. In either case p EA. Con- 
versely if c is an element of L, and B is the set of atoms under c, we wiIl show that B E 
Co(P). To do this we take p and r in B with p 4 q < r. Then by Corollary 2 to Theorem 
2Owehaveq<pvr<c.Hence,qEBandBECo(P). 0 

Since the properties listed in Theorem 22 are preserved under the formation of direct 
products and conversely; and since the class of aII lattices Co(P) is closed under the for- 
mation of direct products (by Theorem 8), we have: 
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THEOREM 23. A lattice L is isomorphic to Co(P) for somePifandonly ifL iscomplete, 
atomic join-semidistributive, satisfies (A), and has Carath&odory rank 2. 

ILLUSTRATION. We return to the example shown in Figure 9, and show that it is 

WP6). 
Since a and c are related, we can assume a <c. Since acbdbd is a zig-zag, we have 

b < d. The following other zig-zags give the relationships in parentheses: acbece (c g e), 
acbfdf (d&f), acbdbc (b gc), acbdad (a gd), acbfcf (c&f), acbede (d ce). By 
transitivity, both a and b are under e and f; hence, P is isomorphic to P6 as shown in 
Figure 10. 

Note that removal of the maximal and minimal elements of P leaves only the convex 

set ic, dl. Hence L{c, dl, P&,(P~) is isomorphic to 24 (see Figure 9). There are also 
several copies of Co(2’) to be found in Co(P6); for example the sub-poset of P6 con- 
taining b, c, d and e is isomorphic to 2*, and the interval [@, { b, c, d, e}] in Co(P6) can 
be seen to be isomorphic to the lattice in Figure 1 b. 
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