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Abstract. The stochastic neuronal model with reversal 
potentials is approximated. For the model with con- 
stant postsynaptic potential amplitudes a deterministic 
approximation is the only one which can be applied. 
The diffusion approximations are performed under the 
conditions of random postsynaptic potential ampli- 
tudes. New diffusion models of nerve membrane 
potential are devised in this way. These new models are 
more convenient for an analytical treatment than the 
original model with discontinuous trajectories. 

1 Introduction 

In the last two decades diffusion models for nerve 
membrane potential have been proposed and studied 
by a number of authors. These models have been 
usually derived applying a diffusion approximation on 
the model presented by Stein (1965). Not only the 
approximation itself but also mathematical properties 
of the substituted diffusion processes can be found in 
the following papers (Gluss 196"]; Johannesma 1968; 
Roy and Smith 1969; Capocelli and Ricciardi 1971; 
Ricciardi 1976; Ricciardi and Sacerdote 1979; Tuck- 
well and Cope 1980; Sato 1982; Ricciardi et al. 1983). 
The precise relationship between Stein's model and the 
related diffusion processes together with the necessary 
and sufficient conditions on the approximation have 
been derived by Kallianpur (1983) and by Lfinsk) 
(1984a). 

It is well known fact that the changes in the 
depolarization of a nerve cell are state-dependent. (For 
examples see Schmidt 1978.) On the other side in the 
original Stein's model and also in its approximations 
the synaptic transmission is state-independent. There- 
fore a modification of the Stein's model which incorpo- 
rates a more complete characterization of the process 

of synaptic transmission by inclusion of reversal 
potentials has been proposed by Tuckwell (1979). This 
model together with the original one has discontin- 
uous trajectories. For that reason any mathematical 
treatment of them is complicated and it holds mainly 
for the Tuckwell's model for which the analytical 
results are exceptionally rare (Wilbur and Rinzel 1983; 
Smith and Smith 1984). Thus the diffusion approxi- 
mation scheme has been used once again by Hanson 
and Tuckwell (1983). It should be noted here that 
some diffusion analogy of the model with reversal 
potentials had been also declared before Hanson's 
and Tuckwell's paper (Johannesma 1968; Wan and 
Tuckwell 1979) but without any formal 
argumentation. 

The aim of this paper is an exact formulation of the 
diffusion approximation of the stochastic neuronal 
model with spontaneous decay and synaptic reversal 
potentials. In this way the paper represents a continu- 
ation of the previous work on this topic (Lfinsk) 
1984a). Moreover, new models of neuronal activity 
following from the diffusion approximation are de- 
vised. Their basic feature should be a link between 
biologically interpretable characteristics on one side 
and relatively simply tractable diffusion processes on 
the other side. 

Approximation of the model is the only purpose of 
this article and we do not intend to present here a 
mathematical analysis of the proposed models. Name- 
ly, the formal descripti6n of neuronal firing in the terms 
of the first passage time problem and the parametrical 
inference of the models remain untouched. We hope to 
investigate both of them in our later work. 

2 The Model and its Basic Modifications 

Under the assumptions of the model with synaptic 
reversal potentials (Tuckwell 1979), the membrane 



20 

potential is specified by one-dimensional stochastic 
process X =  {X(t); t>0} given by the stochastic dif- 
ferential equation 

d X  = - 1_ X d t  + a(VE - X )  d N  + (t) + i ( X  - Vx) d U  - (t) , 

x(0) =Xo, (2.1) 

where'r>0, - 1  < i < 0 < a < l ,  VI<0< VE, V1<x0 < VE 
are constants and N+( t ) ,  N - ( t )  are two independent 
homogeneous Poisson processes, N + (0) = N -  (0) = 0. 
This model postulates that each event of the excitatory 
process N + ( t )  depolarizes the membrane potential by 
a ( V E - X ( t ) )  and analogously the inhibition process 
N-( t )  produces a hyperpolarization of size i ( X ( t )  - V~). 
The values a ( V E - X ( t ) )  and i ( X ( t )  - VI) are the values 
of excitatory, resp. inhibitory, postsynaptic potentials 
(EPSP, IPSP) under the condition that the membrane 
potential is equal to X ( t )  at the instant of their 
generation. It is apparent that EPSP amplitudes 
decrease with the membrane potential X getting closer 
to excitatory reversal potential VE and vice versa. The 
same statement holds symetrically for IPSP and 
inhibitory reversal potential V~. 

Between events of input processes N + ( t )  and 
N - ( t ) ,  X decays exponentially to zero with time 
constant z. This formulation of the model implies that 
instead of the membrane potential, its distance from 
the restingpotential is described. This detail has to be 
kept in mind whenever any statistical inference for the 
models with spontaneous decay are studied (L/msk~ 
1983a, 1984b). So aVE, resp. -iV/, is EPSP, resp. IPSP, 
amplitude in the moment when the membrane poten- 
tial equals to the resting potential. In the same way 
fixing the initial voltage X o = 0 stands for the reset of 
the membrane potential to the resting level, For the 
simplicity of notation let all the stochastic processes 
considered in this paper have initial value equal to 
z e r o .  

For X defined by Eq. (2.1), the first and second 
infinitesimal moments are 

M t ( x )  = lim E ( A X ( t )  I X ( t ) = x ) / ( A t )  
A t ~ O  

= - - x / ' c + 2 a  ( V E - - x ) + c o i ( x - - V i ) ,  (2.2) 

M2(x) = lim E ( A X ( t )  2 IX(t) = x) / (A  t) = 2a z 
A t ~ O  

• (VE--x) 2 +aJiZ(x - VI) 2 , (2.3) 

where 2 and co are intensities of the processes N + (t) 
and N -  (t). 

The result of diffusion approximation leads us to a 
diffusion process as a model of the membrane poten- 
tial. Let IV-- { W(t); t > 0} be a standard Wiener process 
and let us suppose that Ix(.) and a ( . ) > 0  are two 
continuous functions. Then the membrane potential 

Y = { Y ( t ) ; t > = O }  is defined as the solution of the 
stochastic differential equation 

d Y =  # ( r ) d t  + a ( Y ) d W ( t )  . (2.4) 

One method how to obtain the diffusion approxi- 
mation Y to some discontinuous model X is to let Y 
have the same first two infinitesimal moments as X. 
Walsh (1981) calls this arrangement the usual 
approximation and he proposes it for the 
discontinuous models with relatively small jumps and 
states being far from the boundaries. Hanson and 
Tuckwell (1983) applied this method defining #(y) and 
a(y) in Eq. (2.4) by M 1 and M2 given by (2.2) and (2.3), 
so it means 

Ix(y) = - y /z  + 2a(VE--  y) + ~oi(y -- Vz) , (2.5) 

o'2(y) = 2a 2 (VE -- y)2 + col 2 ( y ,  V~) 2. (2.6) 

While the reversal potentials VE and V~ are inaccessible 
boundaries between which the process (2.1) is confined, 
for the diffusion process with the drift (2.5) and 
infinitesimal variance (2.6) these boundaries are regu- 
lar. Hanson and Tuckwell (1983) defeat this fact, which 
is one of the main objections against the diffusion 
analog of Stein's model, imposing some additional 
boundary conditions at 111 and VE. 

We should also bring to readers attention the 
diffusion model of Wan and Tuckwell (1979) with 
coefficients 

Ix(y) = ( -  1 / ,  + a ) y  + b, a2(y) = c2y 2 (2.7) 

which they declare to be the diffusion approximation 
of (2.1). The properties of the model are not discussed 
in their paper. It is obvious that for (2.4) specified by 
(2.7) there is a boundary point at zero. The parameters 
a, b, and c appearing in (2.7) are not explained in the 
cited paper, however, we can be sure that the model is 
in a form after some state space transformation. 

A different approach to the diffusion approxima- 
tion is based on the simultaneous decreasing ofjum~ 
sizes, increasing of input processes intensities and 
considering the limits of infinitesimal moments of 
discontinuous process. This method has been applied 
in neuronal modelling mainly by Ricciardi and his 
coworkers, several times (Capocelli and Ricciardi 
1971; Ricciardi 1976; Ricciardi and Sacerdote 1979) 
and it is a base for the weak convergence which is 
studied in neuronal context by Kallianpur (1983) and 
L/msk~, (1984a). Let us recall the procedure for Stein's 
model which is described by equation 

d X  = -- 1_ X d t  + a d N  + (t) + i d N -  (t) (2.8) 

with analogous interpretation as Eq. (2.1). The dif- 
ference between (2.1) and (2.8) is obvious as for (2.8) 



PSP are not state-dependent and the state space is 
( - 0 %  oe). Now, for a sequence of models X,  
specified by (2.8) we assume 

a,--+0 + ,  i , - - .0 -  , (2.9) 

2 , ~  + 0% c0,~ + oo. (2.10) 

in such a way that the sequences of infinitesimal 
moments {M,(X)}n converge the following way 

{Ms(x)},--* - x/z + #, {Ma(x)},--*~r 2 . (2.11) 

The limits (2.11) as well as all the others studied 
throughout this"paper are the limits for n ~ .  The 
limiting diffusion process is the Ornstein-Uhlenbeck 
process with the parameters 

#(y) = - y/z + #, aZ(y) = a 2 . (2.12) 

The state space of the process (2.4), (2.12) is ( - e e ,  co). 
Equation (2.1) can be generalized to handle nonde- 

terministic EPSP and IPSP amplitudes. Such a model 
has been also introduced by Tuckwell (1979). Let 
{t+}~~ 2, resp. {tf  }i~= 2, denote the moments of events 
of the process N+(t), resp. N-(t). Then the general- 
ization of (2.1) takes the form 

- -  __ t N + ( t )  

X( t )=  1 IX(s)ds+ Z Aj(VE-X(t~)) 
" C o  j = l  

N -  ( t )  

+ Z I j ( X ( t ; ) -  V~), (2.13) 
j = l  

where Aj and B j, j = l , . . . ,  are two sequences of 
independent identically distributed random variables. 
For  the reason of correspondence to the model (2.1) we 
impose some additional conditions on EPSP and 
IPSP, ~specially, for j = 1 .... 

P(Aj ~ (0, 1)) = P(Ij e ( -  1, 0)) = 1 (2.14) 

which ensures that the state space of X(t) is (Vx, VE) and 

E ( A j )  = a, E(I j) = 1. (2.15) 

Another modification of the model (2.1) can be 
based on the assumption of neglected inhibition. It is 
quite common approach in the original Stein's model 
as it decreases the complexity of arising mathematical 
problems (Tuckwell 1975, 1976; Tsurui and Osaki 
1976; Tuckwell and Richter 1978; Vasudevan et al. 
1981; Wilbur and Rinzel 1982). Moreover, the 
modification is not only a formal one because the 
character of inhibition is different relatively to 
excitation. This fact is also utilized in our paper in 
such way that for some variants non-symmetrical 
excitation and inhibition is considered. Some attempt 
to study a state dependent inhibition had been done 
by Matsuyama (1976), with numerical results only. 

The above summarized models attempt to charac- 
terize a stochastic variability of interspike intervals. It 
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is achieved proposing that the neuron fires at the 
moment when the membrane potential exceeds a fixed 
threshold S > 0 for the first time. From this point of 
view the  most important quantity is the random 
variable Ts(X) defined as the first passage time of X 
across the threshold S, Ts=inf{ t>0 ;  X(t)>S}. It is 
worth to note that the relation S <  VE can be fairly 
assumed and thus the behavior o f X  resp. Y above S is 
of no interest to us. 

3 Approximation of the Model 

For approximation of the model (2.1) by a diffusion 
process Y we need a sequence of processes X,  defined 
by (2.1) weakly converging to Y. The approach used in 
the approximation of Stein's model (2.8) by the 
Ornstein-Uhlenbeck process (2.4) with the coefficients 
(2.12) cannot be employed now. It follows immediately 
from the next arguments. Let a sequence of X,  is 
defined by (2.1) in such way that the intensities of input 
processes tend to infinity, (2.10) and simultaneously 
corresponding EPSP and I P S P  amplitudes tend to 
zero, (2.9). Then the conditions on the infinitesimal 
means {m1(x)},~#(x), It(x)] < oo and #(x) ~ 0 imply 
{M2(x)},~a2(x)-O. Therefore the only approxi- 
mation of (2.1) is the deterministic model y(t) given by 
the equation 

dy( t )=I- ly ( t )+a(VE-y( t ) )+f l (y ( t ) -V~) ld t , (3 .1)  

where we used the notation 

2 , a , ~  > 0 ,  (3.2) 

c o , i , ~ f l<0 .  (3.3) 

The Eq. (3.1) can be formally identified as the 
deterministic leaky integrator commonly used in 
modelling of an inhibitory feedback or a phase-locking 
phenomenon (Knight 1972; Poppele and Chert 1972; 
Fohlmeister 1973; Ascoli et al. 1977; Scharstein 1979; 
Angelini et al. 1984). We can rewrite (3.1) in the form 

dy(t) = [ -  ?y(t) + s] dt, (3.4) 

where 

7= l / z+a - - f l>O,  (3.5) 

s = oWE - fl V~ , (3.6) 

which is the standard form of the deterministic leaky 
integrator with constant input s. Generally accepted 
procedure applied on Eq. (3.4) starts declearing s to be 
a time-variable input. It can be easily included in our 
version (3.1) approximating (2.1) under the condition 
of non-homogeneous Poisson processes N+(t)  and 
N -  (t) on the neuron input (Lfinsk~, 1984 a). In that way 
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we derive the deterministic leaky integrator 

dy(t) = [(-- 1/'c -- a(t) + fl(t)) y(t) + a(t) V~ -- fl(t) VII dt 
(3.7) 

which could have some advantages over the standard 
version. Namely, there is excitation and inhibition 
separated and their influence appears also in the 
"leakage" term (3.5). 

The impossibility to approximate the model (2.1) by 
a diffusion process can be overcome taking into 
account the model with random EPSP and IPSP 
described by Eq. (2.13). Let us define the sequence of 
models X, analogously to (2.13) in the form 

_ _1 ~ N + (t) 
Xn(t)= JX.(s)ds+ Z a.j(VE--X.(t~)) 

"Co j = l  

Nff (0 
+ Z / . j ( x . ( t ~ ) -  v,) ,  (3.8) 

j = l  

where for each n = 1 . . . . .  {A,j}s= 1 and (I,~}s= 1 are two 
sequences of independent identically distributed ran- 

t -  o0 dora variables {t.i}j= 1 +  ~ and { ,j}i= 1 are time moments 
of events in processes N + (t) and N~-(t). We presume 
the existence of moments up to the fourth order for 
A co { ,j}~=l and {I,~}j~ 1 and under above assumptions 

the subscript j can be dropped out whenever only the 
probability distributions are in question. For increas- 
ing input intensities (2.10) we assume that 

2,E(A,)--*a > 0,  (3.9) 

co.E(1.)- , /~<0, (3.1o) 

what are conditions parallel to (3.2) and (3.3) for PSP 
with random amplitudes and 

2 ._~ 2 ~.E(A.) O-E, (3.11) 
2 ~ 2 co,E(I,) 0-,. (3.12) 

Under the conditions (3.9)-(3.12) imposed on X, 
the limits of first two infinitesimal moments can be 
computed 

{Ml(x)},~ - - x / z + c ~ ( V E - x ) + f i ( x -  V~), (3.13) 

{ M z ( x ) }  n ~ 0-~ (Ve  --  x)  2 + o-I 2 (x  - -  [7/) 2 , (3.14) 

At this point it should be noted that almost nothing 
is assumed about {A,} and {1,} distributions and we 
may ask what are the consequences of conditions 
(3.9}-(3.12). They could be illustrated on the example 
where we propose for 

~n = , ~ n ,  c o n = c 0 n ,  

E(A,,) = an-  1, E(I,,) = in-  1, 

e(A.~)- 0-~n -1 Eq.~) = 0-/2n -1 - -  E , 

(3.15) 
(3.16) 
(3.17) 

We can see that the condition (3.16) is an analog of 
(2.15), however, the requirement (2.14) cannot be 

accomplished simultaneously with (3.16) and (3.17). So 
we have to omit (2.14) and consequently X, can reach 
or exceed the boundaries VE, 11i, so the discontinuous 
models have state space ( -  co, + c~). On the other side 
we can made the probability of such excursion not only 
negligible small but adding the natural assumptions 

E(A,') = O (E2(A,~)), E(I,') = 0 (E 2(1.2)) (3.18) 

we can prove that the probability of X,  being confined 
in the interval [V~, lie] tends to one with n~oo.  Let 
A > 0, then for the probability of the excursion above 
VE we obtain using Chebychev inequality 

P ( X , ( t  + A) >= VEJX,(t) = x ~ (VI, V~)) 

= P(A,(V~ - x) >= V E - x) 2,A + P(I , (x  - V~) 

> (v~- x))co.A + o(A) 

<= E(A~.) 2.~ + ( ( x -  V,)/(V~- x)) ~ 
• Eq*.)co.A-~O. 

The existence of the limit is ensured by (3.11), (3.12), 
and (3.18) under the condition that the intensities tend 
to infinity, (2.10). The procedure for the boundary Vx is 
identical. For these reasons substituting the conditions 
(3.11), (3.12), and (3.18) instead of (2.14) makes no 
substantial difference between the models (3.8) and the 
model (2.1). Along these lines we may restrict ourselves 
to the diffusion approximation of(3.8) on IVy, V~] only. 

Theorem 1. The sequence of processes X ,  defined by 
(3.8) under the conditions (2.10), (3.9)-(3.12), and (3.18) 
converges weakly on IV1, V~] to the diffusion process 
(2.4) specified by 

~(y) = - y / ~  + ~(v~-  y) + /~ (y -  v,), (3.19) 

~ ( y )  = ~ ( v ~  - y)2 + ~/2 ( y _  v,)~, (3.20) 

y e  IVy, liE], n--,oo. 

Proof(Appendix).  The diffusion process established in 
the Theorem 1 practically coincides with that pro- 
posed by Hanson and Tuckwell (1983) specified by (2.5) 
and (2.6). The role of this process in neuronal model- 
ling seems to be limited as no analytical results except 
the stationary distribution is known. Therefore, the 
only application lies in simulation and numerical 
procedures. The main deflect of this process as a 
neuronal model is that both boundaries V~ and V~ are 
regular boundaries for the diffusion Y 

4 Diffusion Neuronal Models 
with Restricted State Space 

For the reasons given in the end of the previous section 
we try to achieve some different limiting processes. 
Obviously the basic model has to be also at least 
slightly changed. Let us rewrite the model (2.13) into 



the form where deterministic and stochastic parts of 
EPSP and IPSP are separated, 

x( t )  = - 1 i X(s)ds + a i X(s))dN 
T O  0 

t 

+ i I (X(s)  -- VI )dN-  (s) + 
0 

N - (t) 
+ ~, I S ( X ( t ; ) - -  V~), 

j = l  

N+(O 
E AS(VE- -X( t f ) )  

j = l  

(4.1) 

where A) = A j -  a, I) = I 1 -  i, and thus E(A)) = E(IS) = 0 
which is ensured by the condition (2.15). We see once 
again from the formulation (4.1) that probabilities of 
AS, resp. I s, being not equal to zero can be made 
negligible small and so these two terms need not play 
any substantial role in the model behaviour. Keeping it 
in mind we may modify (4.1) to get a model with more 
convenient diffusion approximation than that derived 
in the previous section. 

Let us assume the dependency of the random parts 
of EPSP and IPSP simultaneously on both reversal 
potentials in the following way 

t t 

X( t )  = __1 1 X ( s ) d s + a 5  ( V E - X ( s ) ) d N + ( s )  
T O  0 

t g + (t) 

+iS (X(s)- Vx)dU-(s)+ Z 1/2 
0 j = l  

x (x(t D -  v,) */2 
N -  (t) 

+ ~, I S ( V E - X ( t f ) ) ' / 2 ( X ( t ; ) -  V~) 1/2 . (4.2) 
j = l  

The only difference between (2.1) and (4.2) is that in 
(4.2) EPSP and IPSP have additionally a random part 
which decreases near both boundaries while their 
deterministic part is the same as in (2.1). For the model 
(4.2) a sequence o f X  n can be defined analogously as it is 
done by (3.8) with respect to (2.11), 

1 t t 

Xn(t) = -- - i Xn(s)ds + an ~ (V~-- Xn(s))dN~ + (s) 
T O  0 

t 

+ i n ~ (Xn(s) - V~)dN; (s) 
0 

N + (t) 
+ E A'~j(VE-Xn(t+)) ' /Z(xn(  t + ) -  11I) 1/2 

j = l  

Nff (t) 

+ E I ' . j ( V E - X . ( t ~ ) ) ' / 2 ( X n ( t ~ ) -  VI) '/2 , (4.3) 
j = l  

where A',j = Anj - an, I'.j = In j -  i., E(A'.I ) = E(I',3 ) = O. 
This model, together with the others defined in this 

section, is also asymptotically confined in [V~, V~]. It 
can be proved using Chebychev inequality in the same 
way as for (3.8). Under the same conditions as in 
Theorem 1 the infinitesimal means of Xn fulfill (3.13). 
The limit of the second moments is (o-~ + o-z) ( V ~ - x )  
(x-17i) and the following theorem can be proved. 
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Theorem 2. The sequence of  processes X ,  given by (4.3) 
under the conditions (2.10), (3.2), (3.3), (3.11), (3.12), 
and (3.18) converges weakly in [VI, liE] to the diffusion 
process (2.4) specified by (3.19) and 

a2(y)=(o-2+o- 2) (VE--y) (Y--VI), y e  I-V1, VE]. (4.4) 

Proof  (Appendix). Both models established in 
Theorems 1 and 2 differ only in the variances o-2(y) 
while their drifts are identical. Let us demonstrate what 
is the consequence of this change. We transform the 
state space [V~, Vg] on the interval [0, 1] in such a way 
that Y describes instead of the difference of the 
membrane potential from the resting level its difference 
from inhibitory reversal potential V~. We put 

y ' =  ( v -  V,) / (V~-  V,) (4.5) 

and we obtain instead of (3.19) and (4.4) the coefficients 

#(Y') = -- VJ(z(VE- "6)) + o~ + (fl - 1/z - a) y' 

=a ' -~ , y '  (4.6) 
O'2(y') = (0-2 + a2) ( 1 - - y ' ) y ' = a 2 y ' ( 1 - - y ' ) ,  (4.7) 

where for a' and ~ defined in (3.5) and by (4.6) hold 
a '>0 ,  7 > 0  as it follows from (2.2) and (2.3). The 
diffusion process with the parameters (4.6) and (4.7) is 
well known in genetical applications and its behaviour 
at zero depends on the quantity 2a'/o- 2 (Goel and 
Riehter-Dyn 1974). Particularly, in our model for 

2~(VE - VI)T + 2V, < z ,(o -2 + a 2) (VE - V,) (4.8) 

the boundary zero is regular and in the opposite case it 
is an entrance boundary. 

As we pointed in the Introduction, the model with 
different types of excitation and inhibition plays a 
significant role in neuronal modelling not only for 
formal reasons. Let excitation in (2.13) be restricted on 
its deterministic part. The required sequence for the 
diffusion approximation can be written analogously to 
(3.8) and (4.3) 

X.(t) = - i_ i X.(s) ds + a. i (VE-- X.(s)) dN+ (s) 
TO 0 

N~ (t) 

+ Y. I . j ( X , ( t ~ ) - -  V,) for n = 1 . . . .  (4.9) 
j = l  

and in the same way as in the previous cases the 
theorem follows. 

Theorem 3. The sequence of  processes X ,  specified by 
(4.9) under the conditions (2.10), (3.2), (3.12), and (3.18) 
converges weakly on [Vx, VE] to the diffusion process 
(2.4) with coefficients (3.19) and 

a2(y)--aZ(y--V1) 2 for  ye[Vx,  VE],n--+oo. (4.10) 
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Proof (Appendix).  A m o r e  convenient  fo rm of the 
result ing diffusion process  is ob ta ined  by  the t rans-  
fo rma t ion  (4.5) achieving the drift (4.6) and  

a2(y3 = a f y ' 2 .  (4.11) 

So, after a tedious der iva t ion  and  a r g u m e n t a t i o n  
we reach the mode l  with coefficients (2.7) a n n o u n c e d  
by  W a n  and  Tuckwel l  (1979). T o  show the compa t i -  
bility of  this mode l  with (2.1) we have  to p rove  tha t  zero 
is an inaccessible boundary .  Us ing  the no ta t ion  of  
Ricciardi  (1977) we have  for  x ' >  0, 

=K(x ' )  exp ( a ' a / 2 x  -1 +Ttri -2 l nx )  r s x ' ) ,  

g(x) = (a2x2f(x))-i 

=~1ax -2K(x  ') 

x exp( -- a'a; Zx- 1 _ 7o[ 2 lnx)  e ~e(0, x ' ) ,  

where  K(x3 does not  depend  on  x and  a '  and  7 are 
defined by  (4.6). By reason  of  integrabi l i ty  of  f ( x )  and 
g(x) we deduce  tha t  for  our  p a r a m e t e r s  a '  and  ~ the 
b o u n d a r y  zero is inaccessible. 

The  last  mode l  we would  like to p ropose  in this 
p a p e r  is a c o m b i n a t i o n  of  those  der ived in T h e o r e m s  2 
and  3. Let  us assume tha t  mode l  (4.2) is b r o u g h t  closer 
to the basic  one (2.1) and  the sequence of  X ,  is defined 
in this m a n n e r  

1 t t 

x . ( t )  = - - I x . ( s )  as  + a .  I - X . ( s ) )  d N  + (s) 
T O  0 

t 

+ i, I (Xn(s) - Vz)dN2 (s) 
0 

N~ (t) 
+ E I ' , j (X , ( th) -  V~) 1/2 (4.12) 

j = l  

with no ta t ions  re ta ined f rom (4.3). Wi th  exact ly the 
same  a rgumen ta t i on  as in the previous  cases, the last  
t heo rem can  be stated. 

Theorem 4. The sequence of processes (4.12) under the 
conditions (2.10), (3.2), (3.3), (3.12), and (3.18) con- 
verges weakly in [Vx, VE] with n~oo  to the diffusion 
process (2.4) specified by (3.19) and 

a2(y)=a2(y - V~), y ~  [VI, V~]. (4.13) 

Proof(Appendix). Apply ing  the t r ans fo rma t ion  (4.5), 
the drift is given by  (4.6) and  

~72(y ') = a21y'(VE -- VI)-1 = tr}2y,. (4.14) 

The  diffusion process  with coefficients (4.6) and  (4.14) 
was first s tudied by  Feller  (1951). The  na ture  of  the 
b o u n d a r y  zero for  it is the same  as for  the process  
establ ished in the T h e o r e m  2 (Goel  and  R ich te r -Dyn  
1974). 

N o t  only  vary ing  P S P  ampl i tudes  but  also non-  
cons tan t  input  rates can be included into the models  
X(t)  (Lfinsk~ 1984a). Consider ing  n o n - h o m o g e n e o u s  
Po i sson  processes with rates 2~(t) and  co,(t) then simple 
addi t ional  condi t ions  ensure tha t  Theo rems  1 ~  hold 
with nons t a t i ona ry  l imiting diffusion processes. These  
processes can be valuable  main ly  in descript ion of 
a d a p t a t i o n  p h e n o m e n a  in spike generat ion,  (Gestri  et 
al. 1980; Lfinsk~ 1983b; Bruckste in  et al. 1983; Bruck-  
stein and  Zeevi  1985). N o n - s t a t i o n a r y  diffusion pro-  
cess as the limit of  Stein's mode ls  was also suggested for  
the descr ipt ion o f " b u r s t  like" neuron ' s  s t imulat ion by  
Ricciardi  (1982). 

Appendix 

Before proving the Theorems we shortly indicate the meaning of 
the weak convergence. [For detailed explanation see Billingsley 
(1968).] 

Let D[0, oo) be the space of all real-valued right continuous 
functions defined on 1-0, oo). Then a stochastic process 
X= {X(t); t> 0} can be defined as a function X:I2~D[O, oo), 
where (0,~,  P) is a probability space. D[O, oo) with the Skoro- 
chod metric becomes a complete, separable metric space. The 
distribution of X is a measure on the Borel sets &(D), 

#x(A) = P(o):X(., co) e A), A e M(D). 

The weak convergence of a sequence of stochastic processes X, to 
a stochastic process Y with sample paths in D[O, oo) is a 
statement about the distributions #x. and #r. The meaning of it 
can be understood as follows: The sequence of distributions #x. 
converges weakly to Pr if 

f dl~x~ --r ~ f d#r 
D[O, co) D[O, o0) 

for any real continuous bounded fimction feD[O, oo). The 
processes Xn and Y need not be defined on the same sample 
space. 

To prove the weak convergence of the considered models we 
apply the martingale approach. We bring several definitions for 
that purpose at the beginning. 

Let ~-' = {~'t, t > 0} be a nondecreasing family of a-algebras, 
and jr be a family of quadratically integrable martingales with 
respect to ~ ' .  For M e d/2 we define 

M"(t) = 2 (M(s) --M(s-))2z{lM(s) - M ( s - )  [ > e}. 
s<=t 

by M"(tj we denote the compensator of M"(t). In our case ME(t) is 
a continuous increasing process such that M~(t)-M"(t) is a 
martingale. We say that a sequence of M,, M, ~ j /z ,  fulfils a 
condition of"asymptotic small jumps" (ASJ) iffor any e > 0 M~(t) 
converges to zero in probability, as n~oe. Two sequences of 
stochastic processes {X~(O,t>O} and {Z,(t),t>O} are 
"C-contiguous" (C - C) iffor any Tsup {t e [0, T] [X,(t) -- Z,(t) 1} 
tends to zero in probability, as n ~  oo. A stochastic process X is 
called a semi-martingale if there exists M E j /2  and an integrable, 
non-decreasing process V={V(t), t>0} such that X(t)=X(O) 
+ M(t) + V(t), t > O. Let the symbol { < M(t) >, t > 0} denotes the 
quadratic variation of a martingale {M(t), t>0}. For #(.), 



a2( . ) > 0 real, continuous and bounded we define 

t 

a ( f  t)= ~ a2(f(s))ds, (A.1) 
o 
t 

V(f, t) = I #(f(s))ds, (A.2) 
o 

where (f, t) ~ D[0, T]xR+. 
For the proof of our Theorems we use the Theorem due to 

Rebolledo (1979). 

Theorem. Let X ,  be a sequence of semi-martingales, 
X.(O) =x.  e R and let the following conditions hold. 

(i) For M,  the condition "ASJ" hold. 
(ii) The couples of sequences ( M , )  and A(X., .), and V. and 
V(X., .) are " C - C " .  
(iii) x.-* Xo e R. 

Then the probability distributions of X ,  converge weakly to the 
probability distribution of X, as n-+o% where X is given by 
stochastic differential equation 

dX( t) = g( X( t) )dt + a( X( t) )dW( t), X ( O) = Xo. 

To verify the assumptions (i)-(iii) for our sequences of 
stochastic processes X,  means to prove our Theorems. 
Moreover, due to the convention introduced in the second part of 
this paper the condition (iii) is always fulfilled as x, = x0 = 0 for all 
the models. 

Let us start with the proof of Theorem I defining M,(t), 

1 t t 

�9 t.(t) =x . ( t ) -  ~ ! x . ( s ) d s -  ~o [~(A.)~.(VE--X.(s)) 

+ F~(I3 co.(X.(s) -- V,)]ds. (A.3) 

Then M,(t) are quadratically integrable martingales and their 
quadratic variations are 

N,, + (t)  N,~ (t) 
(M.( t )>= E 2 + 2 lz(X.( t~)  . (A.4) A d l ( V E - X n ( t n j ) )  + E - - V / )  2 

j=i j=l 

Now/~(y) and a(y) are given by (3.19) and (3.20) for y e [Vx, VE] 
and let #(Y)=#t, a (y )=a l  for y_-< 11i, #(Y)=#2, a(Y)=a2, for 
y>  VE, Pl, #2, el ,  a2 are constants such that g(y) and a(y) are 
continuous on R, (#a =/~(VI), crz=a(V~), al  =a(Vi ), az=a(VE). 
For the condition of the Rebolledo's theorem we have 

M~(t) = Z (X.(s) --X,(s-))zx{]X,(s)  - X , ( s - )  I > e} 
s~t  
N+(t) 

= Z Az.j(VE--X(th))zz{IA.JVE--X.(t+)I >~} 
j = l  

N,7 (t) 

+ E IZ.JX.(t~)'-V~)2X{II.j(X.(t~)-V~)I >e} (A.5) 
j = l  

and the compensator of M~.(t) is 

t t 

M~.(t) = 2. I w+ (X.(s))ds + co. I w;(X,(s))ds, 
o o 

where 

w+ (x) = I( Vu-  x)2y2 z { l y( V~- x) l > e}de+ (y) , 

w;(x) = I(x-- V~)2y 2 ;({ lY(X- IIi) 1 > e} dF;(y) ,  

F,+(y), resp. F2(y), stands for the distribution function of A,, 
resp. 1,. So applying conditions (3.18) the preposition (i) is 
proved. 

25 

For (ii) we have A(X.,  t) and V(X.,  t) defined by (A.1) and 
(A.2) and therefore the proof of (ii) is identical with the assertion 
that for n~oo 

sup t ~ D, ~2(X.(s))ds- Z 2 + 2 A d V~- X,(t,j)) 
0 j = l  

x~, (t) } 
- Z I~ .~ ( x . ( th ) -  v,) 2 - ~ o ,  

j = l  

which is obvious, as we realize that the term inside the absolute 
value is a martingale with quadratic variation approaching 0, as 
n ~  0o. The second part of (ii) follows immediately from the fact 

1 t t 
V.(t) = -- - ~ X . ( s )ds-  ~ [2.E(A.) (V~-X,(s))  

"~o o 

+~o.E(I.) (X.(s) - V~)]ds. 

For the Theorem 2 (resp. 3., 4) the martingale has the same 
form (A.3) as for the proof of Theorem 1. There X, are replaced by 
(4.3) [resp. (4.9), (4.12)] with only formal changes for determin- 
istic and random PSP amplitudes. The proofs are for these 
Theorems identical and we bring here only the relationships of 
the corresponding quadrate variations (A.4). For Theorem 2. 

N+ [t) 
(M.(t)) = 2 a'~ [(V~-X,(t+)) (X.(t+) - V~)] 

j = l  

Nff (t) 

+ Z I '~[(VE--X.(t~))(X,(t~)--V3] 
j = l  

+ i a~.(V~-X.(s)VdN.+(s) + i i~.(x.(s) - V y d N ; ( s ) .  
o o 

In the case of Theorem 3 the quadratic variation is 

t Nff (t) 

(M.(t)> = SaZ.(Vg--X.(s))ZdN+(s) + • I'~(X,(t~) -- V~) z 
o ,i=1 

and finally for Theorem 4 

<M.(t) > = i a2(VE-X.(s))2dN+(s) + J i2(X.(s) -- V~)2dN; (s) 
o o 

Nff (t) 
+ E ,2 - V~). I.i(X,(t,j) -- 

j = l  
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