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Abstract. The utility of the back-propagation method 
in establishing suitable weights in a distributed adap- 
tive network has been demonstrated repeatedly. Un- 
fortunately, in many applications, the number of 
iterations required before convergence can be large. 
Modifications to the back-propagation algorithm de- 
scribed by Rumelhart et al. (1986) can greatly accele- 
rate convergence. The modifications consist of three 
changes: 1) instead of updating the network weights 
after each pattern is presented to the network, the 
network is updated only after the entire repertoire of 
patterns to be learned has been presented to the 
network, at which time the algebraic sums of all the 
weight changes are applied: 2) instead of keeping q, the 
"learning rate" (i.e., the multiplier on the step size) 
constant, it is varied dynamically so that the algorithm 
utilizes a near-optimum q, as determined by the local 
optimization topography; and 3) the momentum fac- 
tor c~ is set to zero when, as signified by a failure of a 
step to reduce the total error, the information inherent 
in prior steps is more likely to be misleading than 
beneficial. Only after the network takes a useful step, 
i.e., one that reduces the total error, does ct again 
assume a non-zero value. Considering the selection of 
weights in neural nets as a problem in classical non- 
linear optimization theory, the rationale for algo- 
rithms seeking only those weights that produce the 
globally minimum error is reviewed and rejected. 

The Back-Propagation Method 
The back propagation method of Rumelhart et al. 
(1986) is a gradient descent method that will establish 
the weights in a multi-layer, feed-forward adaptive 
"neural" network. Small arbitrary weights are chosen 
to initialize the system. Learning is accomplished by 
successively adjusting the weights based on a set of 
input patterns and the corresponding set of desired 
output patterns. During this iterative process, an input 

pattern is presented to the network and propagated 
forward to determine the resulting signal at the output 
units. The differences between the actually resulting 
output signal and the predetermined desired output 
signal in each output unit represents an error that is 
back-propagated through the network in order to 
adjust the weights. The learning process continues 
until the network responds with output signals the sum 
of whose root-mean-square errors from the desired 
output signals is less than a preset value. The equations 
governing Rumelhart's method are reproduced in 
(1-4). 

When an input pattern p is applied to the network, 
the activation of each unit is dynamically determined 
using the logistic activation function: 

1 

where opj is the activation of unit j as a result of the 
application of pattern p, wji is the weight from unit i to 
unit j, and 0j is the bias for unit j. Back propagation is 
then invoked to update all of the weights in the 
network according to the following rule: 

Awji(n + 1) = ~/- 6pj. Opi + ~ . A w j i ( n ) ,  (2) 

where n is the presentation number i.e., the number of 
times the system has been presented a pattern, q is the 
learning rate, 6pj is the error signal for unit j, and ~ is 
the momentum factor. The error signal 6pj for an 
output unit j is calculated from the difference between 
the target value and the actual value for that unit: 

6pt = ( t p t -  opj) . Opj . (1 - -  Opj). (3) 

The error signal 6pj for a hidden unitj is a function of 
the error signals of those units in the next higher 
layer connected to unit j and the weights of those 
connections: 

&pj = opt. (1 - opt ) �9 ~k &pkWkt. (4) 
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In practice this algorithm is currently employed as 
follows: after each input pattern is presented to the 
network, the consequent error vector across output 
units is determined and back-propagated through the 
network to update the weights 1. The next pattern is 
then presented and the process repeated. Two para- 
meters r/and e, respectively an adjustment of step size 
and a weight on the "memory" of previous steps, are at 
the disposal of the user. Assuming q and e are 
appropriately chosen, the back-propagation process 
will generally converge to a minimum that satisfies the 
criterion imposed by the user, usually that the sum of 
the squares of the error of the output signal, 

(tpj-  opj) z will be less than a predetermined value for 
all p. 

Back-propagation, as described above, encounters 
two difficulties in practice. These are: 

1) a step (a change of weights and activations 
based on the corrections produced by the back- 
propagation) that reduces the error with respect to one 
pattern will not, in general, produce a network with 
reduced errors with respect to all the other patterns 
which the system is to learn. Such a step may mis- 
direct the optimization path and thus may increase 
considerably the number of iterations required for 
convergence; 

2) the value of q, which modulates the step size, is 
sensitive to the local shape of the hyper-dimensional 
terrain which is being traversed in the optimization. If 
a steep V- shaped valley is being followed (particularly 
if that valley has twist and turns), too large a value of 
will cause steps that bounce between the two opposite 
sides of the valley rather than following the contour of 
its bottom. On the other hand, too small a value of q 
will prevent the system from making reasonable pro- 
gress across a long fiat slope. Choosing a suitable 
learning rate for a particular problem thus involves 
experimenting with different values to see how the 
convergence reacts. Rumelhart et al. (1986) state that 
for the most rapid learning, ~ should be as large as 
possible without leading to oscillation. Unfortunately, 
even though one value of q may be optimum at one 
stage of the learning, there is no guarantee that the 
same learning rate will be appropriate at any other 
stage of the learning process. 

The optimum value of r/ depends on the to- 
pography of the domain being traversed. If the con- 
tours of constant error are circular, then clearly neither 
the step size nor the acceleration factor will influence 
the outcome and gradient descent will converge. If the 
contours are elliptical and/or bent, and local minima 

t Rumelhartetal.(1986),intheir footnote 1, note that "the values 
of the bias can be learned just like any other weights. We simply 
imagine that the bias is the weight from a unit that is always on" 

do exist, then convergence to the global minimum 
cannot be guaranteed or expected. Only relatively slow 
convergence to some local minimum, that may fortui- 
tously also be the global minimum, will be achieved. 
However, if that local minimum satisfies the criterion 
originally imposed for stopping the back-propagation 
method, that minimum will be indistinguishable from 
the global minimum unless the search is repeated with 
a fortuitously well-chosen different starting point. We 
return to this issue in the discussion below. 

A number of recent papers have featured higher 
order methods. A few remarks on the relative merits 
of Newton-type methods, gradient, and conjugate 
direction [e.g. Parker (1987); Pineda (1987)] are ap- 
propriate at this point in order to set our suggested 
algorithm in a proper context with respect to other 
methods. 

First, the second order convergence of Newton's 
method occurs only in the neighborhood of a local 
solution and the size of that neighborhood diminishes 
with increasing number of variables. The inclusion in 
the algorithm of higher order derivatives will, there- 
fore, generally not accelerate convergence far from a 
solution. This statement does not imply that higher 
order derivatives are not of value in other approaches. 

Secondly, the conjugate direction algorithms are 
superlinearly convergent in the neighborhood of a 
local solution, and several of these conjugate direction 
algorithms, such as the Polak-Ribiere variant of the 
Fletcher-Reeves method and the Broydon-Fletcher- 
Goldfarb-Shanno variant of Davidon's algorithm have 
been used successfully for simply conducting a descent 
search. (See Luenberger (1984) for references.) Muneer 
(1988) offers empirical evidence for the superiority of 
conjugate direction algorithms over Newton's method. 

Finally, the gradient descent method (of which 
Back Propagation is an example) is notorious for its 
slowness. The reason for its tendency to stagnate was 
explained by Akaike (1959). In essence, its behavior is 
dominated by the two-dimensional subspace deter- 
mined by the eigenvectors associated with the largest 
and least eigenvalues of the Hessian matrix. In con- 
trast, conjugate direction methods explicitly construct 
their searches using linearly independent vectors that 
span the space. Our variation of the gradient search 
changes learning parameters from time to time, thus 
"bumping" the current solution from the two- 
dimensional "cage" which is characteristic of the pure 
gradient scheme. 

The Modified Back-Propagation Method 

To accelerate the convergence of back-propagation, 
the Rumelhart algorithm was modified based on 
experience gained with other non-linear optimization 



algorithms (Pegis et al. 1966) that have been used for 
the design of a variety of  engineering problems with 
non-linear properties and constraints, including op- 
tical design problems, mechanical design problems, 
and piping flow problems. The following modifica- 
tions were made to the Back Propagation method: 

1. The network weights are not updated after each 
pattern is presented. Rather, the weights are modified 
only after all input patterns have been presented. After 
each pattern is presented, all weight changes are 
calculated as usual through back-propagation, but 
these changes are not immediately applied. Instead, the 
changes for each weight are summed over all of the 
input patterns and the sum is applied to modify the 
weight after each iteration over all the patterns. Thus 
(2) is modified as follows: 

A wji(m + 1) = r I �9 ~, (3pppi) + c~. A wji(m). (5) 
P 

Note that m (in contrast to n in (2)) represents the 
iteration number rather than the presentation number, 
since the weights are updated only once per iteration 
through all the patterns. 

2. The learning rate r/ is varied according to 
whether or not an iteration decreases the performance 
index (the total error for all patterns). If an update 
results in reduced total error, q is multiplied by a factor 
4,> 1 for the next iteration. If a step produces a 
network with a total error more than a few (typically, 
1-5) percent above the previous value, all changes to 
the weights are rejected, r/ is multiplied by a factor 
fl < 1, ~ is set equal to zero, and the step is repeated. 
When a successful step is then taken, e is reset to its 
original value. 

The rationale behind this maneuver is that as long 
as the topography of the terrain is relatively uniform 
and the descent is in a relatively smooth line, the 
memory implicit in c~ will aid convergence. If, however, 
a step results in a degradation of the performance of the 
system, then clearly the topography of the terrain 
demands a change in the direction of the optimization, 
and prior experience (incorporated in the term in e) will 
be more misleading than beneficial. Hence e is set to 0 
so that memory from previous steps is lost. Only after 
the network takes a step that reduces the total error 
will e again assume a non-zero value. 

Comparison of the Two Methods 

A simple subject for comparison of the Rumelhart 
Back Propagation Method and our modification 
thereof, is the three-layer T - C  case examined by 
Rumelhart et al. (1986) using a 3 x 3 pixel receptive 
field and considering all four orientations of the two 
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(SECOND LAYER) 

HIDDEN UNITS 

(FIRST LAYER) 

RECEPTIVE FIELD = 3 X 3 

INPUT FIELD 

7 X 7 UNITS 

Fig. 1. Network used is like Rumelhart's et al. (1986) T - C  
network but with one additional layer of hidden units and more 
than one output unit. Each hidden unit in the first layer connects 
to a "receptive field" of nine input units. All hidden units in the 
second layer connect to all hidden units in the first layer and to all 
of the output units 

letters. For this case, the original back propagation 
method using an ~/=0.1 and an e=0.9  required 2119 
iterations while the modified method required 826 
iterations. 

In a more difficult problem, a four-layer network 
(shown in Fig. 1), consisting of a 2-dimensional input 
plane of 7 x 7 input elements, a layer of hidden units of 
equal size, a second layer of 8 hidden units, and an 
output layer consisting of 4 units, was posed the 
problem of learning the characters shown in Fig. 2 in a 
translationally independent manner using the same 
constraints described in the T - C  problem discussed 
by Rumelhart et al. (1986). Using the original Rumel- 
hart algorithm described above with e--0.9 and vari- 
ous learning rates between 0.01 and 0.25, convergence 
was not achieved after more than 30,000 iterations (the 
measure of learning, the performance index, is cal- 
culated after each iteration. It is the sum of the squares 
of the errors on the output units for all patterns; one 
iteration consists of one set of presentations of each of 
the different input patterns). Given a small enough q 
and enough iterations, it is suspected that this problem 
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Fig. 2. The four sets of patterns to be learned 

will converge to a solution; unfortunately, as the 
learning rate (~/) gets smaller, more iterations are 
needed before convergence is achieved. Figure 3 shows 
the total learning error as a function of iteration using 
the modified method (th = 1.05,/3 = 0.7) from the same 
starting point and with the same convergence criterion. 
The revised algorithm converged after 1,000 rather 
than after 30,000 + iterations. 

We found that in the initial stages of the optimi- 
zation, t/can be quite large, on the order of 0.1; during 
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Fig. 3. Convergence behavior for TCLX problem using the 
modified back-propagation method 

the intermediate portions of the optimization, q may 
have to decrease in size by several orders of magnitude 
and remains small until the end game when r/can again 
increase in size to 0.1 or more. It is the extreme flatness 
of the plateau, coupled with a characteristic that may 
be characterized as "roughness," that makes it desir- 
able to permit the performance index to increase 
slightly before corrective measures are taken. Finally, 
in the endgame, the errors are small and therefore t/ 
needs to be large in order to make significant changes. 

Figures 4 and 5 show the convergence and r/ 
behavior respectively for a yet more difficult problem. 
Using the modified algorithm, 21 patterns were taught 
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4000. Fig. 4. Convergence behavior for 
the 21 patterns problem 
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to a network with a 9 x 13 input field incorporating a 
5 x 7 receptive field, a hidden layer also of 9 x 13 units, 
a second hidden layer of 24 units, and 6 output units. 
Figure 5 shows that the system starts with relatively 
large values of t/(about 0. i) that become smaller for the 
intermediate steps (about 0.005), and then increase 
again to larger values at the end (about 0.08). 

In order to separate the effects of varying i/from the 
effects of replacing the acceptance of each step by the 
composite step resulting from summing over all the 
input patterns, fl and ~b were set to 1.0, thus effectively 
locking ~/to a constant value; the convention of setting 
alpha equal to zero for unsuccessful steps remained in 
force. The value of t /was then varied between 0.05 and 
0.3 for a simple T -  C problem without rotational or 
translational independence. This problem was chosen 
to keep the computation time for multiple runs with- 
in reasonable bounds. The resulting curve is shown in 
Fig. 6. With variable q, 137 iterations were required 
for convergence, a value that intersects at the knee of 
the curve. Since many experimental computer runs 
are required to establish the optimum ~/ for each 
problem, the variable t/ method makes significant 
contributions to efficiency. In particular, it should be 
noted that the lowest number of iterations on this 
problem was 80, achieved at a ~/=0.261. At I/>0.263 
no convergence was obtained. 

Discussion 

The requirements of realistic neural nets to be com- 
posed of extremely large numbers of individual ele- 
ments implicitly demand attention to computational 
efficiency. We show that simple changes in the details 
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Fig. 6. The number of iterations required for convergence at 
constant ~/ accepting only composite changes representing the 
sum of changes from all individual patterns. Use of the variable 
scheme described in this paper required 137 iterations for 
convergence, i.e., a point at the knee of the curve. Value of 

> 0.261 produced no convergence after thousands of iterations 

of the back propagation algorithm can significantly 
improve convergence, at least for a class of problems of 
moderate complexity. 

In any area of study, problems arise that are of 
theoretical interest and intrinsically worthy of so- 
lution, but that are not necessarily relevant to the 
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practical application of the theory. The search for a 
global solution is a conspicuous example of an idea 
that falls into this category. Global optimization has a 
large body of literature and several classes of compu- 
tational methods have been proposed. These include: 
(1) Methods depending upon special properties of the 
problem; for example convexity and methods for more 
general problems derived from this property. See, for 
example, the survey by Pardalos and Rosen (1986); (2) 
Exhaustive search by interval computation (Walster et 
al. 1985) in the continuously differentiable case and 
implicit enumeration for large-scale discrete problems; 
(3) Continuation methods that depend on a systema- 
tic deformation of the problem, (reviewed by Watson 
1986); (4) Tunneling methods that find local optima, 
then find a passage through the wall of the local well to 
a neighboring sidehill (Levy and Gomez 1985); and (5) 
Stochastic methods such as random adaptive search, 
multiple restart methods, and simulated annealing that 
generally are convergent in probability (Rinnooy-Kan 
and Timmer 1986; Lundy and Mees 1986). Of these, 
only the first two supply any assurance that the global 
solution has indeed been found, although the other 
classes of algorithms can produce an extremum that 
would convince a jury (beyond reasonable doubt) but 
fail to satisfy the mathematical guarantee of being 
global. 

In many practical situations, it is not important 
that the solution be global or even a local extremum. 
The purpose of the optimization algorithm is to guide 
the search for a feasible solution point at which some 
prescribed criterion is satisfied, generally that some 
measure of error is below a given tolerance. Another 
reason for eschewing the search for the Holy Grail of a 
global optimum is that the mathematical model may 
describe very well the gross characteristics of the 
system under study, but does not possess the fine detail 
needed for its global optimum to be practically mean- 
ingful. Furthermore, the cost of finding the global 
solution may not be justified by any subsequent 
advantage of having obtained it. In the context of the 
network learning model, satisfaction of the learning 
criterion requires a successful search for a threshold 
point, as mentioned above, not the point of minimal 
error. One might even conjecture that a global mini- 
mum may be undesirable. After a system has learned its 
lesson, a portion of the network may be destroyed. 
However, when any additional constraint or reduction 
of size (damage to the network) is imposed upon an 
optimal feasible solution of a nonlinear program, the 
most likely consequence is that it is no longer feasible 
or optimal. Commencing a relearning at a point that 
satisfied the original constraints and threshold and 
continuing the search for a satisfactory feasible point 
from there, makes lesser demands on the optimization 

algorithm than asking it to recover from a superop- 
timal extreme point. 

Related to this last point is the importance of 
commencing a search from a propitious starting point. 
Iterative procedures for solving problems arising in the 
more traditional areas of science and engineering often 
depend on a good first guess for arriving at an 
acceptable solution. This initial guess is usually pro- 
vided by the user and is most commonly based upon a 
history of similar problems. In a new area, such as 
adaptive neural networks, it is perhaps more impor- 
tant to develop a repertoire of suitable first guesses, 
than it is to be concerned about the global versus the 
local nature of the solution. A technique for locating 
the knee of the "Nebraska" curves (Figs. 3 and 4) would 
be most useful. 

These results show how much remains to be 
learned about the topography of the optimization 
space and the effects on convergence and performance 
of varying the connectivity of the elements and the 
number of layers, both of which are clearly problem 
dependent. Our results also suggest that in some cases 
additional layers of elements markedly facilitate con- 
vergence. Clearly, a theoretical basis for the organi- 
zation of elements is crucial for progress. 

Perusal of the recent literature reveals an enormous 
body of work on neural network computing, non- 
linear optimization, artificial intelligence, and on areas 
for their application; it also reveals a parochialism that 
must be overcome. For example, the. 1988 ACM 
Computer Science Conference contains one brief paper 
on Parallel Distributed Processing (PDP) (Whitson 
and Kulkarni 1988). The associated ACM conference 
on Computer Science in Education also contained but 
one paper in the field (by the same author Whitson 
1988) appealing for a closer tie between AI and PDP. 
In the same vein, we believe in the importance of closer 
ties between the computer science community and 
neurophysiologists in the development of more effec- 
tive "neural" computer networks. 

To this end, we have embarked on an effort to 
model the neural connections and activity of the 
marine mollusk, Hermissenda crassicornis. Extensive 
intersensory convergence within the neural system of 
this animal, as it relates to a specific associative 
learning task, has now been mapped in detail and the 
relevant biophysics at the neuronal level delineated 
(Alkon 1983, 1984, 1985). Consequently, a detailed 
model of the system will permit biological comparison 
with the computer model, particularly as it relates to 
convergence and adaptive modification, as well as 
enabling the exploration of questions relating to the 
effects of the number of neural layers as well as the 
detailed properties of individual neurons on the ability 
of the model to learn, store, and recall information. 
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