
Biol. Cybern. 59, 257-263 Biological
Cybernetics
�9 Springer-Verlag 1988

Accelerating the Convergence of the Back-Propagation Method

T. P. Vogl 1, J. K. Mangis 1, A. K. Rigler 2, W. T. Zink ~, and D. L. Alkon 3

1 Environmental Research Institute of Michigan, 1501 Wilson Boulevard, Arlington, VA 22209, USA
z Computer Science Department, University of Missouri, Rolla, MO 65401, USA
3 Neural Systems Section, National Institute of Neurological and Communicative Disorders and St(gke,
NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

Abstract. The utility of the back-propagation method
in establishing suitable weights in a distributed adap-
tive network has been demonstrated repeatedly. Un-
fortunately, in many applications, the number of
iterations required before convergence can be large.
Modifications to the back-propagation algorithm de-
scribed by Rumelhart et al. (1986) can greatly accele-
rate convergence. The modifications consist of three
changes: 1) instead of updating the network weights
after each pattern is presented to the network, the
network is updated only after the entire repertoire of
patterns to be learned has been presented to the
network, at which time the algebraic sums of all the
weight changes are applied: 2) instead of keeping q, the
"learning rate" (i.e., the multiplier on the step size)
constant, it is varied dynamically so that the algorithm
utilizes a near-optimum q, as determined by the local
optimization topography; and 3) the momentum fac-
tor c~ is set to zero when, as signified by a failure of a
step to reduce the total error, the information inherent
in prior steps is more likely to be misleading than
beneficial. Only after the network takes a useful step,
i.e., one that reduces the total error, does ct again
assume a non-zero value. Considering the selection of
weights in neural nets as a problem in classical non-
linear optimization theory, the rationale for algo-
rithms seeking only those weights that produce the
globally minimum error is reviewed and rejected.

The Back-Propagation Method
The back propagation method of Rumelhart et al.
(1986) is a gradient descent method that will establish
the weights in a multi-layer, feed-forward adaptive
"neural" network. Small arbitrary weights are chosen
to initialize the system. Learning is accomplished by
successively adjusting the weights based on a set of
input patterns and the corresponding set of desired
output patterns. During this iterative process, an input

pattern is presented to the network and propagated
forward to determine the resulting signal at the output
units. The differences between the actually resulting
output signal and the predetermined desired output
signal in each output unit represents an error that is
back-propagated through the network in order to
adjust the weights. The learning process continues
until the network responds with output signals the sum
of whose root-mean-square errors from the desired
output signals is less than a preset value. The equations
governing Rumelhart's method are reproduced in
(1-4).

When an input pattern p is applied to the network,
the activation of each unit is dynamically determined
using the logistic activation function:

1

where opj is the activation of unit j as a result of the
application of pattern p, wji is the weight from unit i to
unit j, and 0j is the bias for unit j. Back propagation is
then invoked to update all of the weights in the
network according to the following rule:

Awji(n + 1) = ~/- 6pj. Opi + ~ . A w j i (n) , (2)

where n is the presentation number i.e., the number of
times the system has been presented a pattern, q is the
learning rate, 6pj is the error signal for unit j, and ~ is
the momentum factor. The error signal 6pj for an
output unit j is calculated from the difference between
the target value and the actual value for that unit:

6pt = (t p t - opj) . Opj . (1 - - Opj). (3)

The error signal 6pj for a hidden unitj is a function of
the error signals of those units in the next higher
layer connected to unit j and the weights of those
connections:

&pj = opt. (1 - opt) �9 ~k &pkWkt. (4)

258

In practice this algorithm is currently employed as
follows: after each input pattern is presented to the
network, the consequent error vector across output
units is determined and back-propagated through the
network to update the weights 1. The next pattern is
then presented and the process repeated. Two para-
meters r/and e, respectively an adjustment of step size
and a weight on the "memory" of previous steps, are at
the disposal of the user. Assuming q and e are
appropriately chosen, the back-propagation process
will generally converge to a minimum that satisfies the
criterion imposed by the user, usually that the sum of
the squares of the error of the output signal,

(tpj- opj) z will be less than a predetermined value for
all p.

Back-propagation, as described above, encounters
two difficulties in practice. These are:

1) a step (a change of weights and activations
based on the corrections produced by the back-
propagation) that reduces the error with respect to one
pattern will not, in general, produce a network with
reduced errors with respect to all the other patterns
which the system is to learn. Such a step may mis-
direct the optimization path and thus may increase
considerably the number of iterations required for
convergence;

2) the value of q, which modulates the step size, is
sensitive to the local shape of the hyper-dimensional
terrain which is being traversed in the optimization. If
a steep V- shaped valley is being followed (particularly
if that valley has twist and turns), too large a value of
will cause steps that bounce between the two opposite
sides of the valley rather than following the contour of
its bottom. On the other hand, too small a value of q
will prevent the system from making reasonable pro-
gress across a long fiat slope. Choosing a suitable
learning rate for a particular problem thus involves
experimenting with different values to see how the
convergence reacts. Rumelhart et al. (1986) state that
for the most rapid learning, ~ should be as large as
possible without leading to oscillation. Unfortunately,
even though one value of q may be optimum at one
stage of the learning, there is no guarantee that the
same learning rate will be appropriate at any other
stage of the learning process.

The optimum value of r/ depends on the to-
pography of the domain being traversed. If the con-
tours of constant error are circular, then clearly neither
the step size nor the acceleration factor will influence
the outcome and gradient descent will converge. If the
contours are elliptical and/or bent, and local minima

t Rumelhartetal.(1986),intheir footnote 1, note that "the values
of the bias can be learned just like any other weights. We simply
imagine that the bias is the weight from a unit that is always on"

do exist, then convergence to the global minimum
cannot be guaranteed or expected. Only relatively slow
convergence to some local minimum, that may fortui-
tously also be the global minimum, will be achieved.
However, if that local minimum satisfies the criterion
originally imposed for stopping the back-propagation
method, that minimum will be indistinguishable from
the global minimum unless the search is repeated with
a fortuitously well-chosen different starting point. We
return to this issue in the discussion below.

A number of recent papers have featured higher
order methods. A few remarks on the relative merits
of Newton-type methods, gradient, and conjugate
direction [e.g. Parker (1987); Pineda (1987)] are ap-
propriate at this point in order to set our suggested
algorithm in a proper context with respect to other
methods.

First, the second order convergence of Newton's
method occurs only in the neighborhood of a local
solution and the size of that neighborhood diminishes
with increasing number of variables. The inclusion in
the algorithm of higher order derivatives will, there-
fore, generally not accelerate convergence far from a
solution. This statement does not imply that higher
order derivatives are not of value in other approaches.

Secondly, the conjugate direction algorithms are
superlinearly convergent in the neighborhood of a
local solution, and several of these conjugate direction
algorithms, such as the Polak-Ribiere variant of the
Fletcher-Reeves method and the Broydon-Fletcher-
Goldfarb-Shanno variant of Davidon's algorithm have
been used successfully for simply conducting a descent
search. (See Luenberger (1984) for references.) Muneer
(1988) offers empirical evidence for the superiority of
conjugate direction algorithms over Newton's method.

Finally, the gradient descent method (of which
Back Propagation is an example) is notorious for its
slowness. The reason for its tendency to stagnate was
explained by Akaike (1959). In essence, its behavior is
dominated by the two-dimensional subspace deter-
mined by the eigenvectors associated with the largest
and least eigenvalues of the Hessian matrix. In con-
trast, conjugate direction methods explicitly construct
their searches using linearly independent vectors that
span the space. Our variation of the gradient search
changes learning parameters from time to time, thus
"bumping" the current solution from the two-
dimensional "cage" which is characteristic of the pure
gradient scheme.

The Modified Back-Propagation Method

To accelerate the convergence of back-propagation,
the Rumelhart algorithm was modified based on
experience gained with other non-linear optimization

algorithms (Pegis et al. 1966) that have been used for
the design of a variety of engineering problems with
non-linear properties and constraints, including op-
tical design problems, mechanical design problems,
and piping flow problems. The following modifica-
tions were made to the Back Propagation method:

1. The network weights are not updated after each
pattern is presented. Rather, the weights are modified
only after all input patterns have been presented. After
each pattern is presented, all weight changes are
calculated as usual through back-propagation, but
these changes are not immediately applied. Instead, the
changes for each weight are summed over all of the
input patterns and the sum is applied to modify the
weight after each iteration over all the patterns. Thus
(2) is modified as follows:

A wji(m + 1) = r I �9 ~, (3pppi) + c~. A wji(m). (5)
P

Note that m (in contrast to n in (2)) represents the
iteration number rather than the presentation number,
since the weights are updated only once per iteration
through all the patterns.

2. The learning rate r/ is varied according to
whether or not an iteration decreases the performance
index (the total error for all patterns). If an update
results in reduced total error, q is multiplied by a factor
4,> 1 for the next iteration. If a step produces a
network with a total error more than a few (typically,
1-5) percent above the previous value, all changes to
the weights are rejected, r/ is multiplied by a factor
fl < 1, ~ is set equal to zero, and the step is repeated.
When a successful step is then taken, e is reset to its
original value.

The rationale behind this maneuver is that as long
as the topography of the terrain is relatively uniform
and the descent is in a relatively smooth line, the
memory implicit in c~ will aid convergence. If, however,
a step results in a degradation of the performance of the
system, then clearly the topography of the terrain
demands a change in the direction of the optimization,
and prior experience (incorporated in the term in e) will
be more misleading than beneficial. Hence e is set to 0
so that memory from previous steps is lost. Only after
the network takes a step that reduces the total error
will e again assume a non-zero value.

Comparison of the Two Methods

A simple subject for comparison of the Rumelhart
Back Propagation Method and our modification
thereof, is the three-layer T - C case examined by
Rumelhart et al. (1986) using a 3 x 3 pixel receptive
field and considering all four orientations of the two

259

OUTPUT UNITS

HIDDEN UNITS
(SECOND LAYER)

HIDDEN UNITS

(FIRST LAYER)

RECEPTIVE FIELD = 3 X 3

INPUT FIELD

7 X 7 UNITS

Fig. 1. Network used is like Rumelhart's et al. (1986) T - C
network but with one additional layer of hidden units and more
than one output unit. Each hidden unit in the first layer connects
to a "receptive field" of nine input units. All hidden units in the
second layer connect to all hidden units in the first layer and to all
of the output units

letters. For this case, the original back propagation
method using an ~/=0.1 and an e=0.9 required 2119
iterations while the modified method required 826
iterations.

In a more difficult problem, a four-layer network
(shown in Fig. 1), consisting of a 2-dimensional input
plane of 7 x 7 input elements, a layer of hidden units of
equal size, a second layer of 8 hidden units, and an
output layer consisting of 4 units, was posed the
problem of learning the characters shown in Fig. 2 in a
translationally independent manner using the same
constraints described in the T - C problem discussed
by Rumelhart et al. (1986). Using the original Rumel-
hart algorithm described above with e--0.9 and vari-
ous learning rates between 0.01 and 0.25, convergence
was not achieved after more than 30,000 iterations (the
measure of learning, the performance index, is cal-
culated after each iteration. It is the sum of the squares
of the errors on the output units for all patterns; one
iteration consists of one set of presentations of each of
the different input patterns). Given a small enough q
and enough iterations, it is suspected that this problem

Output Vector Learning Pattern

I I I I

U 0 0 0 1

0 0 1 0

260

0100

:tO.'

rq[-1
i J l i 1000
Fig. 2. The four sets of patterns to be learned

will converge to a solution; unfortunately, as the
learning rate (~/) gets smaller, more iterations are
needed before convergence is achieved. Figure 3 shows
the total learning error as a function of iteration using
the modified method (th = 1.05,/3 = 0.7) from the same
starting point and with the same convergence criterion.
The revised algorithm converged after 1,000 rather
than after 30,000 + iterations.

We found that in the initial stages of the optimi-
zation, t/can be quite large, on the order of 0.1; during

6.

==

2.0

1.5

1.0

0.5 t

0 . I I I I I I I : 1 ,
O. 200. 400. 600. 800. 1000.

Iteration Number

Fig. 3. Convergence behavior for TCLX problem using the
modified back-propagation method

the intermediate portions of the optimization, q may
have to decrease in size by several orders of magnitude
and remains small until the end game when r/can again
increase in size to 0.1 or more. It is the extreme flatness
of the plateau, coupled with a characteristic that may
be characterized as "roughness," that makes it desir-
able to permit the performance index to increase
slightly before corrective measures are taken. Finally,
in the endgame, the errors are small and therefore t/
needs to be large in order to make significant changes.

Figures 4 and 5 show the convergence and r/
behavior respectively for a yet more difficult problem.
Using the modified algorithm, 21 patterns were taught

0
rY
rY
uJ

t_9
Z
k-4
Z
n-"
<3::
UJ
J

_.J
s

0
I--

8.

4.

2.

O. I I
O. i000.

I 1 t
2000. 3000.

ITERATION NUMBER

4000. Fig. 4. Convergence behavior for
the 21 patterns problem

0.5 261

(I:
I----
LLI

0 .4

0.3

0 .2

0.1

O.
O. 1 0 0 0 . 2 0 0 0 . 3 0 0 0 .

ITERATION NUMBER

to a network with a 9 x 13 input field incorporating a
5 x 7 receptive field, a hidden layer also of 9 x 13 units,
a second hidden layer of 24 units, and 6 output units.
Figure 5 shows that the system starts with relatively
large values of t/(about 0. i) that become smaller for the
intermediate steps (about 0.005), and then increase
again to larger values at the end (about 0.08).

In order to separate the effects of varying i/from the
effects of replacing the acceptance of each step by the
composite step resulting from summing over all the
input patterns, fl and ~b were set to 1.0, thus effectively
locking ~/to a constant value; the convention of setting
alpha equal to zero for unsuccessful steps remained in
force. The value of t /was then varied between 0.05 and
0.3 for a simple T - C problem without rotational or
translational independence. This problem was chosen
to keep the computation time for multiple runs with-
in reasonable bounds. The resulting curve is shown in
Fig. 6. With variable q, 137 iterations were required
for convergence, a value that intersects at the knee of
the curve. Since many experimental computer runs
are required to establish the optimum ~/ for each
problem, the variable t/ method makes significant
contributions to efficiency. In particular, it should be
noted that the lowest number of iterations on this
problem was 80, achieved at a ~/=0.261. At I/>0.263
no convergence was obtained.

Discussion

The requirements of realistic neural nets to be com-
posed of extremely large numbers of individual ele-
ments implicitly demand attention to computational
efficiency. We show that simple changes in the details

300

250

.o_ 200

Q

"6
.~ 150

137
z

100

50

I I

4000.

Fig. 5. Learning rate behavior for
the 21 patterns problem

No Convergence

I I I I I I
0 .05 0.1 0.15 0.2 0.25 0.3

eta

Fig. 6. The number of iterations required for convergence at
constant ~/ accepting only composite changes representing the
sum of changes from all individual patterns. Use of the variable
scheme described in this paper required 137 iterations for
convergence, i.e., a point at the knee of the curve. Value of

> 0.261 produced no convergence after thousands of iterations

of the back propagation algorithm can significantly
improve convergence, at least for a class of problems of
moderate complexity.

In any area of study, problems arise that are of
theoretical interest and intrinsically worthy of so-
lution, but that are not necessarily relevant to the

262

practical application of the theory. The search for a
global solution is a conspicuous example of an idea
that falls into this category. Global optimization has a
large body of literature and several classes of compu-
tational methods have been proposed. These include:
(1) Methods depending upon special properties of the
problem; for example convexity and methods for more
general problems derived from this property. See, for
example, the survey by Pardalos and Rosen (1986); (2)
Exhaustive search by interval computation (Walster et
al. 1985) in the continuously differentiable case and
implicit enumeration for large-scale discrete problems;
(3) Continuation methods that depend on a systema-
tic deformation of the problem, (reviewed by Watson
1986); (4) Tunneling methods that find local optima,
then find a passage through the wall of the local well to
a neighboring sidehill (Levy and Gomez 1985); and (5)
Stochastic methods such as random adaptive search,
multiple restart methods, and simulated annealing that
generally are convergent in probability (Rinnooy-Kan
and Timmer 1986; Lundy and Mees 1986). Of these,
only the first two supply any assurance that the global
solution has indeed been found, although the other
classes of algorithms can produce an extremum that
would convince a jury (beyond reasonable doubt) but
fail to satisfy the mathematical guarantee of being
global.

In many practical situations, it is not important
that the solution be global or even a local extremum.
The purpose of the optimization algorithm is to guide
the search for a feasible solution point at which some
prescribed criterion is satisfied, generally that some
measure of error is below a given tolerance. Another
reason for eschewing the search for the Holy Grail of a
global optimum is that the mathematical model may
describe very well the gross characteristics of the
system under study, but does not possess the fine detail
needed for its global optimum to be practically mean-
ingful. Furthermore, the cost of finding the global
solution may not be justified by any subsequent
advantage of having obtained it. In the context of the
network learning model, satisfaction of the learning
criterion requires a successful search for a threshold
point, as mentioned above, not the point of minimal
error. One might even conjecture that a global mini-
mum may be undesirable. After a system has learned its
lesson, a portion of the network may be destroyed.
However, when any additional constraint or reduction
of size (damage to the network) is imposed upon an
optimal feasible solution of a nonlinear program, the
most likely consequence is that it is no longer feasible
or optimal. Commencing a relearning at a point that
satisfied the original constraints and threshold and
continuing the search for a satisfactory feasible point
from there, makes lesser demands on the optimization

algorithm than asking it to recover from a superop-
timal extreme point.

Related to this last point is the importance of
commencing a search from a propitious starting point.
Iterative procedures for solving problems arising in the
more traditional areas of science and engineering often
depend on a good first guess for arriving at an
acceptable solution. This initial guess is usually pro-
vided by the user and is most commonly based upon a
history of similar problems. In a new area, such as
adaptive neural networks, it is perhaps more impor-
tant to develop a repertoire of suitable first guesses,
than it is to be concerned about the global versus the
local nature of the solution. A technique for locating
the knee of the "Nebraska" curves (Figs. 3 and 4) would
be most useful.

These results show how much remains to be
learned about the topography of the optimization
space and the effects on convergence and performance
of varying the connectivity of the elements and the
number of layers, both of which are clearly problem
dependent. Our results also suggest that in some cases
additional layers of elements markedly facilitate con-
vergence. Clearly, a theoretical basis for the organi-
zation of elements is crucial for progress.

Perusal of the recent literature reveals an enormous
body of work on neural network computing, non-
linear optimization, artificial intelligence, and on areas
for their application; it also reveals a parochialism that
must be overcome. For example, the. 1988 ACM
Computer Science Conference contains one brief paper
on Parallel Distributed Processing (PDP) (Whitson
and Kulkarni 1988). The associated ACM conference
on Computer Science in Education also contained but
one paper in the field (by the same author Whitson
1988) appealing for a closer tie between AI and PDP.
In the same vein, we believe in the importance of closer
ties between the computer science community and
neurophysiologists in the development of more effec-
tive "neural" computer networks.

To this end, we have embarked on an effort to
model the neural connections and activity of the
marine mollusk, Hermissenda crassicornis. Extensive
intersensory convergence within the neural system of
this animal, as it relates to a specific associative
learning task, has now been mapped in detail and the
relevant biophysics at the neuronal level delineated
(Alkon 1983, 1984, 1985). Consequently, a detailed
model of the system will permit biological comparison
with the computer model, particularly as it relates to
convergence and adaptive modification, as well as
enabling the exploration of questions relating to the
effects of the number of neural layers as well as the
detailed properties of individual neurons on the ability
of the model to learn, store, and recall information.

263

References

Akaike H (1959) On a successive transformation of probability
distribution and its application to the analysis of the
optimum gradient method. Ann Inst Statist Math 11:1-17

Alkon DL (1983) Learning in a marine snail. Scientific Ameri-
can (July 1984), pp 70-84

Alkon DL (1984) Calcium-mediated reduction in ionic currents:
a biophysical memory trace. Science 226:1037-1945

Alkon DL (1985) Conditioning - induced changes of Hermis-
senda channels: relevance to mammalian brain function. In:
Weinberger NM, McGaugh JL Lynch G (eds) Memory
systems of the brain. The Guiford Press, New York

Levy AV, Gomez S (1985) The tunneling method applied to
global optimization. In: Boggs PT, Byrd RH, Schnabel RB
(eds) Numerical optimization 1984. SIAM, Philadelphia,
pp 213-244

Luenberger DG (1984) Linear and nonlinear programming,
2nd ed. Addison-Wesley, Reading, Mass

Lundy M, Mees A (1986) Convergence of an annealing algorithm.
Math Prog 34:111-124

Muneer T (I 988) Comparison of optimization methods for non-
linear least squares minimization. Int J Math Educ Sci Tech
19:192-197

Pardalos PM, Rosen JB (1986) Methods for global concave
minimization: a bibliographic survey. SIAM Rev 28:367-379

Parker DB (1987) Optimal algorithms for adaptive networks:
second order back propagation, second order direct propa-
gation, and second order Hebbian learning. In: Caudill M,
Butler C (eds) Proceedings of the 1st International Con-
ference on Neural Networks, San Diego, Calif., June 1987.
IEEE Cat. ~ 87TH0191-7, pp II-593-II-600

Pegis RJ, Grey DS, Vogl TP, Rigler AK (1966) The generalized
orthonormal optimization program and its applications. In:
Lavi A, Vogl TP (eds) Recent advances in optimization
techniques, Wiley, New York, pp 47-60

Pineda FJ (1987) Generalization of back propagation to recur-
rent and higher order neural networks. Proceedings of the
IEEE Conference on Neural Information Processing Sys-
tems, Denver, Colorado 1987: (to be published)

Rinnooy-Kan AHG, Timmer GT (1985) A stochastic approach
to global optimization. In: Boggs PT, Byrd RH, Sehnabel RB
(eds) Numerical optimization 1984. SIAM, Philadelphia, pp
245-262

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning
internal representation by error propagation. In: Rumelhart
DE, McClelland JL and the PDP Research Group (eds)
Parallel distributed processing, vol 1, chap 8. MIT Press,
Cambridge, Mass

Walster GW, Hansen ER, Sengupta S (1985) Test results for a
global optimization algorithm. In: Boggs PT, Byrd RH,
Schnabel RB (eds) Numerical optimization 1984. SIAM,
Philadelphia, pp 272-287

Watson LT (1986) Numerical linear algebra aspects of globally
convergent homotopy methods. SIAM Rev 28:529-545

Whitson GM (1988) An introduction the the parallel distributed
processing model of cognition and some examples of how it is
changing the teaching of artificial intelligence. In: Dreshem
HL (ed) Proceedings of the 19th Annual Technical Sym-
posium on Comp Sci Education. ACM, New York, pp 59-62

Whitson GM, Kulkarni A (1988) A testbed for sensory PDP
models. Proceedings of the 16th Annual Comp Sci Conf.
ACM, New York, pp 467-468

Received: October 22, 1987

Dr. Thomas P. Vogl
Environmental Research Institute of Michigan
1501 Wilson Boulevard, Suite 1105
Arlington, VA 22209
USA

