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Abstract. We present a detailed experimental and theoretical study on the waveguide 
modes of distributed feedback (DFB) and helical feedback (HFB) gas lasers including for the 
first time the experimental verification of multimode-coupling and nonlinear-gain phenom- 
ena. For this purpose we used oversized hollow metal waveguides with periodic or helical 
corrugations. The latter exhibit the symmetry of either the single helix or the double helix. 
For the interpretation of our observations we developed a coupled-wave theory extended to 
multi-mode coupling and adapted the nonlinear-gain approach for strong coupling by 
Haus. The experiments with DFB and HFB gas lasers give new relevant information on 
these phenomena. 

PACS: 42.55E, 42.60 

Distributed feedback was introduced in the early 1970s 
[1, 2] in dye lasers. In one of the systems [2], the dye 
was pumped with the frequency-doubled radiation of a 
ruby laser. The coherent pump radiation was first split 
in two and then superimposed in the dye cell to form a 
periodic interference pattern. Thus, the laser dye was 
pumped periodically along a specific axis. The result 
was laser action without resonator mirrors providing 
the optical feedback. This feedback was obtained by 
quasi-Bragg reflection on the axially periodic gain 
modulation of the laser dye. Since in this arrangement, 
the optical feedback was not localized at the mirror 
surfaces, but distributed along the laser medium, it was 
named distributed feedback or DFB. This DFB in- 
corporated in the dye laser resulted in an extremely 
narrow and intense stimulated emission, In order to 
understand this phenomenon Kogelnik and Shank [3] 
performed a coupled-wave theory on the laser modes 
of a bulk medium with weak axially periodic modula- 
tion of refractive index and/or gain. They demon- 
strated that the threshold gains of the longitudinal 
DFB laser modes show a minimum near the Bragg 
frequency which provides an effective longitudinal 
mode selection in laser media with broadband gain. 
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However, their coupled-wave theory [3] does not 
properly explain the narrow emission of the first DFB 
dye laser [4] by almost pure gain modulation. The high 
selectivity among the longitudinal modes demon- 
strated for DFB dye lasers stimulated intensive re- 
search in this field. As a consequence, the first DFB 
semiconductor laser was realized by Nakamura et al. 
[5] and, almost simultaneously, the concept of a DFB 
gas laser was devised by Marcuse [6]. Seven years 
passed before DFB was incorporated in a gas laser 
[7-10], shortly after the application of a distributed 
Bragg reflector (DBR) to an optical gas laser [11]. The 
first DFB in a gas laser was achieved with an optically 
pumped 496 gm CH3F laser with an axially periodic 
waveguide of rectangular cross section. The observed 
mode configuration was explained by coupled-wave 
theory for periodic index modulation. In subsequent 
studies Preiswerk et al. [12-14] observed the first 
resonant emission of a laser of pure helical symmetry. 
This laser was an optically pumped 496 gm CH3F laser 
similar to the first DFB gas laser, yet equipped with a 
hollow metal waveguide of helical symmetry instead of 
a hollow axially periodic metal waveguide. On the 
basis of group theoretical considerations, the helical 
feedback (HFB) of the radiation of this laser was 
explained as a quasi-Bragg effect similar, yet different 
from standard DFB [12-14]. The observation of only 
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one resonant emission of the HFB gas laser in 
comparison to that of the numerous resonances of the 
corresponding DFB gas laser demonstrated the advan- 
tage of HFB over DFB with respect to mode selectivity 
due to polarization and symmetry effects. However, it 
was of basic interest to find resonant HFB emissions in 
addition to the resonance already observed [,14], 
because they give information on the detailed mode 
configurations of HFB lasers. 

As mentioned above, the present DFB and HFB 
gas lasers are operated with periodic or helical modula- 
tion of the waveguide cross section which is similar to 
most DFB semiconductor lasers with periodic modu- 
lated thickness of the active layer (e.g. [,,15-25]). In 
theory, however, all these types of lasers can be 
characterized by a periodic or helical modulation of 
the refractive index of the bulk of the laser medium [3]. 
On the contrary, gain modulation dominates in 
today's DFB dye lasers (e.g. [-26-33]). The DFB 
semiconductor lasers are of practical significance with 
respect to optical communication and integrated op- 
tics. Unfortunately, they are not well suited for the test 
of theories (e.g. [-3, 4, 18-20, 34, 35]) on DFB with 
periodic modulation of refractive index, since the 
detailed experimental study of their mode structure 
encounters serious problems, e.g. with tuning. This is 
manifested by the relatively modest results [,15-17, 
21-25] even under good experimental conditions. In 
contrast, the DFB gas lasers permit to test experiment- 
ally the theories on DFB with periodic modulation of 
effective refractive index in great detail (e.g. [9, 13, 14, 
36]) because they can be tuned conveniently and, in 
addition, exhibit a narrow gain width. This is the main 
reason for their investigation. The results from their 
study are therefore of interest to laser theoreticians as 
well as to designers of DFB semiconductor lasers. 

The purpose of the study on DFB and HFB gas 
lasers reported in this paper was firstly to detect the 
additional HFB resonant emissions mentioned above 
and, secondly, to gain insight into the origin and 
configuration of HFB modes as well as their relation to 
the standard DFB modes. By an intensified search, we 
were able to observe the missing additional HFB 
modes early in this project [37-38]. Subsequently, we 
investigated experimentally as well as theoretically the 
modes of 496txm CHaF laser with hollow metal 
waveguides of three different symmetries which were 
defined in a previous paper [14]. These were, besides of 
the symmetry Ghs of the symmetric helix inherent to the 
waveguide used for the original HFB gas laser [12-14], 
the symmetry G2hs of the symmetric double-helix and 
the symmetric Gps of the circular cylinder with sym- 
metric axially periodic corrugation. The latter pro- 
vides DFB which can be compared with the HFB due 
to the waveguides of the symmetries Ghs and G2hs. An 

optical waveguide of the effective symmetry G2h s was  
previously applied in the form of a cholestric liquid 
crystal in a dye laser which was originally labelled 
DFB laser [-39] and later recognized as an HFB laser 
[34, 40]. Therefore, it was of interest to realize and 
study an HFB gas laser with a waveguide of the 
symmetry G2hs of the double-helix. 

Group theory is a valuable tool for evaluating the 
general characteristics of DFB and HFB lasers, the 
symmetries of the fields of the modes as well as of the 
existence of couplings between these modes. Unfortu- 
nately, it does not give information on the strength of 
fields and couplings. For hollow metal waveguides 
with the corrugations required for DFB and HFB 
lasers, this information can be obtained by various 
methods studied in the past [,4148]. The only method, 
however, which allows the inclusion of helical corru- 
gations is the theory outlined by Katsenelenbaum [-41]. 
It is quite general yet requires detailed work if applied. 

In Sect. 1, we present the perturbation theory on 
corrugated hollow metal waveguides for DFB and 
HFB lasers on the basis of an extension of 
Katsenelenbaum's approach. This extension improves 
the applicability of this approach and allows for 
waveguide modes represented by complex fields. 
Throughout Sect. 1, we apply the general multi-mode 
formalism referring to the simplified two-mode cou- 
pling theory. Finally, we also discuss the influence of 
nonlinear gain saturation in addition to the standard 
linear coupled-wave theory. Nonlinear gain saturation 
is relevant for strong DFB and HFB mode couplings 
because of their strong internal fields. 

Section 2 of this paper is devoted to experiments 
performed with optically pumped 496 ~tm CH3F lasers 
equipped with hollow metal waveguides of the symme- 
tries Gps, Ghs, and Gzh s which provide DFB and HFB. 
Firstly, we discuss the waveguide design, the tuning 
mechanism, and the experimental set-up. Secondly, we 
present the observed DFB and HFB modes of the three 
different types of waveguides and the interpretation of 
these modes based on the theory outlined in Sect. 1. 
The results presented include the first demonstration 
of the effect of nonlinear gain saturation on the 
intensity distribution of DFB and HFB modes. 

1. Theory of DFB and HFB Gas Lasers 
with Corrugated Hollow Metal Laser Waveguides 

The aim of this section is to introduce a perturbation 
theory suitable for the calculation of DFB and HFB 
laser resonances. In the first Sect. 1.1, we derive the 
complex modes of a smooth metal waveguide and 
present an ortho-normalization condition which, due 
to the definition of the backward running modes, 
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allows for orthogonal counterpropagating waveguide 
modes. In Sect. 1.2, we formally introduce a magnetic 
surface current to describe a waveguide perturbation. 
With this formalism and with an expanded form of the 
waveguide modes, we derive an integral relation for the 
amplitude factors of the single modes. From this 
relation and the magnetic surface current appropriate 
for a hollow metallic waveguide with weak wall 
perturbation derived in Sect. 1.3, we deduce an ex- 
pression for the coupling coefficients between various 
coupling modes. In Sect. 1.4, we concentrate on the 
waveguides with axially periodic and helical perturb- 
ations. Firstly, we formulate the generalized coupled- 
mode equation valid for multi-mode couplings tog- 
ether with its formal solution for harmonic perturba- 
tions of various chiralities. This includes the solution 
of the simplified two-mode coupling. Secondly, we 
apply the wave potential and the expression for the 
coupling coefficients derived in Sect. 1.3 to the evalu- 
ation of the coupling constants and the selection rule 
for different types of pair-couplings. In Sect. 1.5, we 
present a modified dispersion relation valid for two- 
mode couplings and derived under consideration of 
our experimental conditions (cf. Sect. 2). Section 1.6 is 
devoted to the resonance condition for the extended 
mode coupling. Besides the evaluation of the pure 
resonance condition, we also derive an alternative 
method for the calculation of the resonant perturba- 
tion periods or pitches together with their corre- 
sponding threshold gains. This method devised for 
multi-mode coupling is based on the transmission or 
reflection matrix of the waveguide structure. Sub- 
sequently, we discuss the reduction of this formalism to 
two-mode coupling. In Sect. l.7, we consider the 
attenuation of waveguide modes in the FIR at 
496.1 ~tm wavelength which corresponds to the stron- 
gest emission line of CH3F used in our experiments. 
The last Sect. 1.8 of this chapter is devoted to the 
nonlinear saturation of the laser medium and its effect 
on the relative output power of different longitudinal 
DFB and HFB modes. 

1.1. Modes of a Cylindric Hollow Metal Waveguide 

The modes of a hollow cylindrical metal waveguide 
without wall corrugation can be derived from a scalar 
wave potential u(r, t) corresponding to the electric and 
magnetic Hertz vectors for TE and TM modes respec- 
tively [49]. Assuming harmonic time dependent 
electromagnetic fields of the form 

E(r, t) = Re {E(r) ei°"}, H(r, t) = Re {H(r) ei'°t}, (1) 

we define the scalar wave potential 

u(r, t) = u(r) e i'°t (2) 

with 
fq~(rtle -ipz for TM modes 

u( r )=4  " "(T(rt) e_iPz for r E  modes " (3) 

Here we have chosen the wave propagation parallel 
to z. co denotes the circular frequency, fi the propaga- 
tion constant, r the space coordinate vector, and r t its 
component perpendicular to the direction of propaga- 
tion. With the potentials (3), we find in accordance 
with Borgnis and Papas [49] for the electromagnetic 
field of the waveguide modes 

E ( r )  = - ifl Vtu(r) + k~u(r)e~ 
H(r) = - i k Z  o lez x Vtu(r ) for TM modes (4) 

and 

E(r) = ikZoe z x Vtu(r) 
H(r)=_iflVtu(r)+k2u(r)e z for TEmodes  (5) 

with Vt indicating the transverse component of the 
vector gradient. Zo is the vacuum impedance, k = 2ir/2 
the free-space circular wavenumber, and kc the mode- 
characteristic cut-off circular wavenumber. For a 
waveguide with ideally conducting walls, the latter is 
derived from the eigenvalue problem 

A,u(r) + k2u(r) = 0 (6) 

with the appropriate boundary conditions 

u(r)=0 for TMmodes  
(7) 

~u(r) =0  for TEmodes .  
~ n  

At is the transverse part of the Laplacian and n denotes 
the direction perpendicular to the boundary. 

By introduction of (6) into the Helmholtz equation 

flu(r) + k2u(r) = 0 (8) 

and by consideration of the scalar wave potential (3), 
we find the dispersion relation for waveguide modes 

 2=k2-k . (9) 
In order to avoid ambiguities and to be consistent 

with previous group theoretical investigations [14], we 
consider backward running modes as time-reversed 
forward propagating modes. Consequently, we derive 
the backward propagating modes from the modes 
defined by (3)-(9) and fi > 0 by application of the time- 
reversal operator T, which implies 

Tu(r) = u(r)*. (10) 

Thus, we obtain the following field transformations 

T E =  E*, T H = - H *  for TM modes 
(11) 

T E = - E * ,  7H=  H* for TEmodes 

with the asterisk indicating the complex conjugate. 
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In analogy to the condition of orthonormalization 
used by Katsenelenbaum [41], which holds for the 
field amplitudes E and H of the waveguide modes 
labelled by p and q, we put 

(Ep × H* + E* x H~)" eflA = 4 sgn([3p)6pq, (12) 
A 

where the integration is extended over the cross section 
A of the waveguide perpendicular to the axial unit 
vector % 6p~ denotes the Kronecker delta and sgn(x) 
the sign function, fl is positive for a forward running 
and negative for a backward running wave. By defi- 
nition (12), the average power carried by a mode 
running through the waveguide cross section is nor- 
malized to + 1 W for a forward propagating mode and 
- 1 W for a mode in the reverse direction. Definition 
(22) is equivalent to definitions by other authors 
[49-51-1, yet it has the advantage that TE and TM 
modes as well as, due to (11), a forward propagating 
mode and the corresponding time-reversed backward 
propagating mode are orthogonal. This in contrast to 
the theory by Katsenelenbaum [41], where the ortho- 
gonality condition is tied to the definition of the 
backward propagating modes. 

1.2. Perturbation of Waveguide Modes by Electric 
and Magnetic Current Densities 

The electric and magnetic fields E and H in vacuum in 
the presence of an electric current density j¢ and, 
formally, a magnetic current density jm, obey the 
extended Maxwell equations [52J 

/7 x E = - i k Z o H - j  m , (13a) 

V x H = i k Z  o 1E +j°, (13b) 

V . E = 0 ,  (13c) 

V . H = 0 .  (13d) 

We now consider two sets k = 1, 2 of fields Ek, Hk 
and current densities TM "~ lk, lk in a volume V enclosed by 
the surface F, and form the scalar products of(13a) and 
(13b) for set I with H* and E* as well as the 
corresponding products of the complex conjugates of 
(13a) and (13b) for set 2 with H1 and E~. Subsequently, 
we apply the vector identity 

V" (a x b ) = b - ( V  x a ) - a  .([7 x b). (14) 

By addition and application of the Gauss diver- 
gence theorem, we find 

S (E~ x H * + E *  x H O . n d F  
F 

"° • • Et +~a a2  • = -  ~ (i~ E~+j~* "m. *+i~ '* .n3dV (15) 
V 

This relation is analogous to that of Vainshtein 
[52J with the difference that it contains complex 
conjugate quantities. 

For the calculations described in the following 
Sect. 1.3, we need to adapt (15) to the description of a 
hollow cylindrical waveguide with an ideally conduct- 
ing wall and a wall perturbation represented by a 
magnetic surface-current density i m on the wall. 

In the unperturbed waveguide with ira=0, the 
modes with the fields Ep, lip are those derived in the 
previous Sect. 2.1. In the presence of a perturbation 
with ira#0, we expand the fields in modes of the 
unperturbed waveguide [42, 52] 

E = Z cp(z)Ep, n = Y, cp(z)np. (16) 
P P 

In order to apply (15) to the study of perturbed 
waveguides, we identify E 1, H 1 of (15) with E, H of (26) 
as well as E2, Hz with E~, Hp. In the absence of external 
current densities, we can assume 

J~ =J~ = iT  = o ,  
(17) 

{ ~  on thewal l  
JT - elsewhere 

We now choose as closed surface in (25), the surface 
formed by two planes perpendicular to the z-axis of the 
waveguide and situated at z and z+dz plus the 
waveguide wall between these two planes. Taking into 
account the condition (12) of orthonormalization and 
the fact that i m indicates a pure surface-current density, 
we can derive the following relation [42] from (15) 

dcp(z) i 
-- 4 sgn(flp) s~) im "H~ds. (18) dz 

The integral is performed over the closed path s(z) 
corresponding to the inner cross section of the unper- 
turbed waveguide at the axial position z. 

1.3. Surface Perturbations of Cylindric Hollow Metal 
Waveguides 

We consider a hollow metal waveguide with a small 
wall perturbation as shown in Fig. 1. The inner wall S 

_ez  
~ t_ bare 

perturbed wail 

~( 

s / s+ds 

ur/perturbed wall 

Fig. I. Boundary 
waveguide 

So 

perturbation S of a hollow cylindrical 
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of the perturbed waveguide is at a distance l(s, z) from 
the wall So of the unperturbed waveguide, z indicates 
the axial coordinate and s the path on the circum- 
ference of the unperturbed wall at z. The distance I is 
measured perpendicular to the unperturbed wall So 
and is positive when S is inside So in agreement with 
Katsenelenbaum [41]. n and t denote unit vectors in 
perpendicular and tangential direction to the unper- 
turbed wall So. Together with the axial unit vector % 
the vector triple (n, t, e~) forms a right-handed triad 

n x t = e ~ .  (19) 

We now apply Stokes' theorem to (13a) with jm =0  
for an infinitesimal are A B C D  of width ds with the 
assumption that Ill is considerably smaller than the 
wavelength and the waveguide cross section. Thus, the 
boundary condition on the ideally conducting per- 
turbed wall S can be replaced to the first order of /by an 
equivalent boundary condition on So [41] 

E.  t = ikZolt .  (n x H) + t. V(lE. n). (20) 

E as well as H are evaluated on the unperturbed surface 
So. 

In analogy to the relation between electric surface 
currents and magnetic fields on the surface, the tan- 
gential electric field component (E. t) on the unper- 
turbed wall So corresponds to a magnetic surface 
current on So given by 
*Ill "m °m 1 = l  H+IE, (21) 

w h e r e  

i~ = ikZoln x (n x H), (22a) 

i~ = n x V(1E" n). (22b) 

If(21) is combined with (18), the resulting integral is 
split in two parts according to (22). Making use of(13b) 
and of some transformations, we can represent these 
two parts as follows 

i~.  H*ds  = i k Z  o ~ I{(H- t) (H*. t) 
s(z) s(z) 

+ (H. e~)(H*, e~)}ds, (23a) 

-- ~ i~. H*ds = - i k Z o '  ~ I(E. n) (E*. n)ds 
s(z) s(z) 

- 83 S~z) I(E -n)(n*. t)ds. (23b) 

An explicit evaluation with the aid of (4), (5), and 
(16) shows that the second term of (23b) can be 
neglected [42]. The remaining terms of (23) result in 
the following system of ordinary differential equations 
for the mode coefficients defined by (16) and (18) 

dcp 
dz - • Feq(Z)Cq(Z) (24) 

q 

with 

ik 
Fvq(z) = 4Zo sgn(fl,) 

X '~ 2 , l{Zo(HvsHqs + H*zHqz )- E*.Eq.}ds (25) 
s(z) 

and 

H2s=Hj ' t ,  Hjz=Hj ' ez  

and (26) 

E j ,=Ej -n ;  j = p , q .  

The matrix elements Fpq(Z ) depend on the defi- 
nition of the scalar wave potentials u v and uq. If they are 
replaced by zTp = %up, ~q = r~uq with rp, rq as arbitrary 
complex constants, the matrix elements Fpq(z) are 
replaced by 

f f  pq(Z) ~- r qq Fpq(Z) .  (27) 
rp 

This follows from (25) and the condition (12) of ~ 
orthonormalization. Furthermore, the matrix ele- 
ments gpq(z) obey the symmetry relation 

sgn(fiq)Fqp(z) + sgn(flp)F*q(z) = 0. (28) 

This relation is equivalent to the condition, that the 
total power carried in the positive z-direction of the 
lossless waveguide 

P(z)= Y~ sgn(f iv)%(z)c*(z)=P (29) 
P 

does not depend on z. 
Here, it should be noticed that the expressions for 

the coupling coefficients inherent to a cylindrical 
deformed metal waveguide as derived by Joindot [45] 
is equivalent to the relations (24) and (25). This can be 
demonstrated by transformations. The difference of 
formulation is due to the different definition of the 
waveguide modes. 

1.4. Solution of  the Coupled-Wave Equation 
for  Waveguides with Axially Periodic 
or Helical Perturbations 

In the following, we restrict our considerations to 
axially periodic and helical perturbations of a cylin- 
drical waveguide of circular cross section. We assume 
a harmonic perturbation of the form 

l(¢, z) = a 1 COS [~/¢ - -  2floZ], 
(30) 

¢ = aretan(y/x); ~ = O, + 1, + 2, + 3 , . . . ,  

where flo = ~/L denotes the Bragg circular wavenum- 
ber and r~ is a measure for the chirality of the 
perturbation. L indicates the period or the pitch of the 
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Table 1. Symmetries of considered perturbations denoted accord- 
ing to Preiswerk et al. 1-13] 

[fit[ Symmetry Period Pitch 

0 Gp~ symmetric periodic circular L - 
structure 

1 Gr~ symmetric single-helix - L 
2 G2h~ symmetric double-helix L 2L 

perturbation. Axially periodic perturbations are char- 
acterized by rh = 0, right-handed and left-handed hel- 
ical perturbations by rfi > 0 and rh < 0 respectively. 

The symmetries of the perturbations represented 
by (30) can be evaluated with the group theory of 
waveguides and laser structures developed by Preis- 
werk et al. [14]. For In~l__<2, the result is given in 
Table 1. 

For the circular cylindric metal waveguide with the 
perturbation l(6, z) defined by (30), we now consider 
the case of m forward running modes with coefficients 
c+p(z) coupling to n backward running modes with 
coefficients c_q(z) near the Bragg condition, where the 
detuning or mismatch is given by 

2A +p_q= -2A_q+p=f l+p- f l_q-2 f lo"~O.  (31) 

If we neglect terms with large exponentials in (25) 
in accordance with the rotating-wave approximation 
common in laser physics [53], we find for the functions 
F+p_q which determine the coupling coefficients by 
(24) 
F + p_q= f + p_qe izz+.-~.  (32) 

f+p_q are complex constants depending on the 
modes +p  and - q .  The symmetry condition (28) is 
now 

- * . ( 3 3 )  F_q+p-F+p_q 

The exponential dependence in (32) can be re- 
moved by the transformation 

C+p=A+peiA+pz; c _ q = A _ ~ e  ia-qz, (34) 

where 

A+p=fl+p-f lo;  A -q=f l -q+f lo .  (35) 

If we now introduce (31), (32), (34), and (35) in (24), 
we find the following system of (m+n) ordinary 
differential equations with constant coefficients for 
A+p and A_q 

dA+p +iA+pA+p= ~f+p_~A_q,  
dz ~ (36) 

dA_ 
+iA_qA_q= Y,f_q+pA+p. 

dz p 

J. Arnesson et al. 

In addition, we can introduce loss or gain in the 
waveguide by replacing A + p by A + p + ia + p and A _ q by 
A_~-ia_q, with ~>0  for gain and a < 0  for loss. 
Equation (36) is solved by the eigenfunctions [54] 

a+pj=s+pje-i~z; Z_qj=S_qje -i~z 

with (37) 

j = l , 2 , 3 , . . . , m + n  

which can be derived from the solution of the eigen- 
value problem 

Ksj= - ir/j~i; j = 1 , 2 , 3  . . . .  , re+n,  (38) 

where - i~/j and sj are the eigenvalues and the eigenvec- 
tors of the (m + n) × (m + n) coupling matrix K given by 
(36). Provided that the eigenvalues -ir/i are discrete, 
the general solution can be written as 

A(z) = E ajAj= • ajsje -i"sz . (39) 

The vector A(z) contains all (m + n) functions A +p 
and A_¢ aj are arbitrary constants. In general, the 
eigenvalue problem represented by (38) has to be 
solved numerically. However, a simple analytical so- 
lution is possible in the case of two-mode coupling. 
This is a good approximation if the detunings Id +p-ql 
and IA -p + ql versus other modes are considerably larger 
than the respective coupling coefficients If÷p-~l and 
If-q+pl [46]. 

In the following considerations on the two-mode 
coupling, we denote the coefficients of the forward and 
backward running modes by c+ and c_ and the 
coupling coefficients by 

f÷ _ = ix_ = i x e  -ix , 
(40) 

f_+ = -i~c+ = - i r e  +ix. 

Equation (40) is in agreement with (32) and (33). By 
applying the transformation 

C+ =A+e  -+uz (41) 

with 

2A = fl + - fl_ - 2flo = fl + - fl_ - 27z/L (42) 

we obtain from (24) by taking into account gain or loss 
ct_+ 

dA÷ 
dz = - i(A + ia +)A + + ix_ A_,  (43a) 

dA_ 
dz = - ix + A + + i(A + ic~_)A_. (43b) 

These equations correspond to the coupling equa- 
tions given by other authors [42, 46, 47] as well as 
those originally derived by Kogelnik and Shank [-3] for 
the description of DFB lasers with a bulk laser medium 
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with periodic index and/or gain modulation. Recently, 
they were also used in a slightly modified form to 
describe the resonances of a phase-matched grazing- 
incidence DFB gas laser [36]. Similar equations were 
derived [43, 44] for two-mode couplings in circular 
and parallel-plate waveguides with sinusoidally cor- 
rugated walls. 

The solution of (43) in the form (40) is given by 

A_(z)J  = a + sl e(~" +it/)z 

where 

Sl, 2 = s e  +ix, s = tc/(A q- i~ q- r]) 

and 

, = sgn (A). {(A + i ~)2 _ tc2 }1/2, 

a=(a+ + e_)/2, ~a=(~+ - ~_)/2. 

The above expressions correspond to those used by 
Denisov and Reznikov [46] and by Bratman et al. 
[47]. Yet, these authors neglected the exponent A in the 
representation of the total field because it is small 
compared to the propagation constants j~ which define 
the dispersion relation of the modes in a perturbed 
waveguide. From (3)-(5), (16), (41), and (44), we obtain 
the propagation constants j~+ for the forward and the 
backward propagating modes 

~_+ =fie  _+(q-A). (45) 

• a l  
f + p _ q ~ l  - -  

where a represents the radius of the unperturbed 
cylindrical waveguide of circular cross section. 

If we introduce the mode + p defined by the wave 
potential (46) and a counterpropagating mode - q  
with an equivalent potential in the overlap integral 
(25), we find the following general selection rule for 
mode coupling 

m + p + m_q-r f i=O , (48) 

where m+p and m_q denote the azimuthal mode 
numbers of the coupling modes of the unperturbed 
waveguide and rh characterizes the symmetry of the 
perturbation according to Table 1 and (30). 

This rule can also be derived by group theoretical 
considerations [14]. An equivalent rule was also 
applied by Bratman et al. [47]. The different signs 
which occur in their selection rule originate in a 
different definition of the wave potentials for the 
counterpropagating modes. The coupling constants 
f+~_q can be evaluated directly with the overlap 
integral (25) and the definitions (21) and (22). For a 
circular cylindric waveguide, we find 

f+p_q=i al k2- f l+pf l -q  TM/TM, 
2a ~ / _  fl + pfl_, 

k([3 + p- -  [3_.) 

f + " - " =  2a ]/(kc, TEa) 2 _ m2E ~/-_ fl + pfl_q 

(k~ + pk~_ qa) 2 + m + pm_ q(k 2 - fl + vfl- a) 

2a ]/[(k~ + pa) 2 - m2+ p] [(k~ _ qa) 2 - m 2_ q] ~ / -  fl + ,fl _q 

(49a) 

TE/TM 
TM/TE'  

(49b) 

TE/TE (49c) 

Equation (44) implies that the modes of the per- 
turbed waveguide revert continuously to those of the 
unperturbed waveguide. This feature is missing in the 
formalisms of other authors. 

For an unperturbed cylindrical metal waveguide of 
circular cross section and symmetry Go, the forward 
propagating modes +p={m+p,n+p} can be repre- 
sented by the scalar wave potentials [14] 

u + p(r, (9, z)=N+pJim+~r(kc+pr)ei"+p% -ip+pz , (46) 

where (r, ~b, z) denotes the cylindrical coordinates, N + p 
the normalization factor of the mode +p, Jm(~) the 
Bessel function of the order m, and kc+p the cut-off 
circular wavenumber given by the n+p-th solution of 
the equation 

Jl,,+,l(kc+pa)=O for TMmodes  (47a) 

or  

d 
da Jl"+Pl(kc+pa)=O for TE modes, (47b) 

which implies that the phase factor Z introduced in (40) 
vanishes. From (49b), we conclude that no cross- 
couplings with TEo, are possible. It should be noticed 
that (49) agree with those derived by Denisov and 
Reznikov [46] if the difference in the definition of the 
wave potential is taken into account. Equations (49) 
can be transformed into those given by Schill and 
Seshadri [48]. Their equations contain an additional 
term which corresponds to the small term neglected in 
(23b). Equations (49) are also equivalent to those 
recently presented by Palmer [55] with one exception. 
In Palmer's TE/TE coupling, the first term in the 
numerator of (49c) is missing. This would exclude a 
coupling for m+p and/or m_q equal zero. 

1.5. Modified Dispersion Relation 
of a Two-Mode Coupling 

In general, the dispersion relation of an electromagne- 
tic wave in a waveguide expresses the propagation 
constant of the wave as a function of the free-space 
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frequency or wavelength. For  specific experimental 
conditions, however, it can be advantageous to choose 
another variable to represent the variation of the 
propagation constant. In this study, we are bound to a 
fixed wavelength of 496.1 gm characteristic for the 
methyl fluoride as active medium in our waveguide 
lasers. Instead of the wavelength, we have varied in our 
experiments the period or pitch L defined in Table 1. 
The corresponding modified dispersion relation is then 
described by 

~(L) = Re {~(L)} + i Im {~(L)}, (50) 

where 2g = 2rc/Re{~(L)} denotes the guide wavelength. 
This relation can be derived from the dispersion 
relation (45). For real and imaginary parts of ~(L), we 
find for a two-mode coupling 

Re{~(L)} = fl + - A(L)+ Re{t/(L)}, (51a) 

Im{]~(L)} = Im{~/(L)}, (5 lb) 

where A(L) is given by (42). 
A typical modified dispersion relation according to 

(51) is plotted in Fig.2 for an ideally conducting 
waveguide without gain or loss (4 = 0). The geometrical 
parameters are chosen identically to those of one 
single-helix HFB waveguide used in our experiments 
with an oversize factor f =  2a/2=9.77 and the first 
Fourier coefficient al =75.0gin of the perturbation. 
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Fig. 2. Modified dispersion relation of a two-mode coupling in a 
passive (5=0) right-handed single-helix HFB waveguide of 
infinite length with oversize factor f=9.77 and first Fourier 
coefficient a 1 = 75.0 p~m. The corrugation pitch L is plotted versus 
real and imaginary parts of the propagation constant ~. The two 
solid curves display a forward running TM 11 mode coupling into 
a backward running TMo~ mode and vice versa. Both are 
symmetrically arranged around the Bragg condition Re{~} = rolL 
given by the dashed hyperbola. The two dotted lines represent the 
TM 11 mode (left) and the TM01 mode (right) of the unperturbed 
waveguide. The arrow on the abscissa marks Re{j~} = k where 
Vph~C 

The two solid curves represent the two possible 
couplings between a TMol and a TM1 ~ mode. Because 
of the different cut-off wavenumbers for the two modes, 
they appear symmetrically displaced from the hyper- 
bola given by Re{~} = flo = niL which is indicated by a 
dashed line. Both couplings are equivalent and cannot 
be distinguished in their resonances. As a consequence, 
a resonant HFB or DFB laser mode is always two-fold 
degenerate. Without gain or loss (~=0), q is real 
outside the stopband (IAI > I~:1) and imaginary inside 
the stopband (IAI< Itcl). The exponential damping of a 
wave in the stopband is guaranteed by the equation 

lim sgn(~) = - 1. (52) 
~ o -  

If we introduce a weak loss or gain (4 + 0), the sharp 
band edges become rounded, and in the case of gain 
(~>0), the imaginary part Im{~} changes sign. The 
arrow in Fig. 2 on the horizontal axis marks the 
position where Re{~} = k=  2n/2, i.e. where the phase 
velocity Vph of the propagating mode falls short of the 
speed of light c. The two dotted lines indicate the 
propagation constants of the unperturbed waveguide 
modes TMo~ and T M ~ .  The left shows that of the 
TM11 mode and the right that of the TM0a mode. 

1.6. Resonance Conditions 

While the dispersion relation of the modes of axially 
periodic and helical laser structures are strictly valid 
for infinite length, the corresponding resonance con- 
ditions are determined by the boundary conditions at 
the ends of the structure. These boundary conditions 
have to be applied to the solution of the coupled-wave 
equation (39). In order to simplify the notation, we 
rewrite (39) in a more convenient matrix form 

A=SeN=a (53) 

with 

(A+) s s++ 
A =  A_ ' \ S _ +  S_ ' 

(eo+  0 . 

A + and A_ denote the two vectors corresponding 
to the m forward and the n backward propagating 
modes. S is a matrix with the eigenvectors sj taken as 
columns, and N a diagonal matrix consisting of the 
eigenvalues - iqj; j = 1, 2 . . . .  , (m + n) with Re{ - iqj} < 0 
for j = 1, 2,...,  m and Re{-i tb} > 0 for j = m + 1, 
m + 2 . . . .  , (m + n), corresponding to the eigenvectors s r 
Both S and N are divided into submatrices, with S+ + 
and N+ being of dimension (mx m), S_ _ and N_ of 
dimension (n x n), and S+_ and S_ + of dimensions 
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(mx n) and (n x m) respectively, a + and a_ are vectors 
containing m and n arbitrary constants. 

We consider a laser structure of length R between 
z = 0 and z = R and choose as boundary conditions [3] 

A+(0)=0; A_(R)=0.  (54) 

If we apply these boundary conditions to (53), we 
find 

(s++ s+ )(a+)0 
S_+e  N+R S__e  N-R a _  

The nontrivial solution of this equation represents 
the self-consistent oscillation of the laser structure and 
thus, determines the resonance condition. It only exists 
if the determinant of the matrix of the system of (55) 
vanishes. This results in 

de t ( I -S+*  ~ ~-N-R~- ,~  ~N+R, n (56) 

where I indicates the unit matrix. This equation 
determines the resonances and their corresponding 
threshold gains. 

An alternative method to evaluate the resonances 
and the threshold gains makes use of the transmission 
matrix. For this purpose, we introduce the modified 
boundary conditions 

A+(0) = Ao; A_(R) = 0 (57) 

in (53) and evaluate the matrix t of the amplitude 
transmission defined by 

A+(R) =tA+(0). (58) 

Thus, we find 

t = S +  + { I -  S+*+S+ _S2 t_S_ +}e N+R 

x {I--S+lS+_e-N-Rs_-l_S_+eN+g}-*S+l+. (59) 

If we compare this expression with (56), we recog- 
nize that the determinant det(t) of the transmission 
matrix t contains the inverse determinant of the 
resonance condition. For  this reason, det(t) becomes 
singular at the resonances. The method based on det (t) 
is advantageous for the numerical calculations of the 
resonances and their threshold gains. 

A similar method applies the reflection matrix r 
defined by 

A_(0) =rA+(0). (60) 

If we apply the boundary conditions (57) and the 
above definition (60) to (53), we obtain 

r = { S _  + - S _ _ e - N - a  s - k S _  + e N + g }  

x {I--S+*+S+_e-N-RS-~_S_+eN+R}-XS+ 1 . (61) 

Det(r) also contains the inverse determinant of the 
resonance condition (56) and can, therefore, be applied 

in order to determine the resonances of multi-mode 
couplings. 

For  two-mode couplings, the expressions corre- 
sponding to (59) and (61) were derived by Gnepf and 
Kneubiihl [4]. In the case of two counterpropagating 
modes, the submatrices in (53) are scalars. If we identify 
these scalars with the parameters of solution (44) of the 
two-mode coupling, we find the following resonance 
condition 

sZe-2'ta= 1 =e-2~q; ~=0, _+l, +2, +3  . . . .  , (62) 

where ~ labels the longitudinal DFB or HFB modes. 
= 0 defines a resonance in the center of the stopband 

[4]. This so-called gap mode cannot oscillate in a 
waveguide with homogeneous periodic or helical per- 
turbation and symmetric boundary conditions. How- 
ever, this mode becomes active if the symmetry of the 
boundary condition is broken [56-59] or by the 
introduction of a gap in the waveguide [34--36, 60] or 
by an otherwise produced phase shift [46]. Since we 
consider neither asymmetric boundary conditions nor 
built-in phase shifts, the gap mode with ~ = 0  is 
excluded. 

In order to evaluate the resonances of DFB and 
HFB laser systems with gain (~ > 0), we split (62) into 
real and imaginary parts. After some transformations, 
we find 

Re{t/} = R - I "  {rc~ + arg(s)}, (63a) 

Im{q} = - R -  t .  In [s[. (63b) 

The arg(s) is positive for negative mode numbers 
and vice versa. The position of the resonances are 
given by the modified resonance propagation constant 

/~re~ = (/7+ -- 1~_)/2 = (re~L) + r I (64) 

introduced by Wildmann et al. [36] on the basis of the 
round-trip condition for resonance. With this relation 
(64), we derive from (63a) the resonance condition 

Re{~res} = (K/L)" [1 + M-1  {~ + rc-t arg(s)}] 

= 2zC/2g, res, (65) 

where M = R / L  indicates the number of periods of the 
laser structure and )~g . . . .  the resonance guide wave- 
length. In the limit of vanishing threshold gains, i.e. 
~th=0 and arg(s)= 0, we obtain the resonances from 
the intersections between the curves 

Re{/~res} = (r~/L) + (rcgl/R), (66a) 

Re{fires} = (re~L) + Re{t/(L)}. (66b) 

In this case, the resonant perturbation periods L(q) 
can be represented by 

L(q) = (2/2). [(w+ + w_)/2 

- sgn(~) (2/2) {(~/R) 2 + (/~./re)2 }-] -1, (67) 
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where 2 is the free-space wavelength of the laser 
emission, w+ and w_ denote the normalized propaga- 
tion constants of the forward and backward propa- 
gating modes of the unperturbed waveguide 

w +_ = hff ± / k l  = {1 -(ako+_/rcf)2} 1/2 . (68) 

249.8 

m TEoI/TEII I =. 249.7 . . . . . . . . . . . . . . .  

j 249.6 f = 9.77 I( . . . . . . . . . . . . . .  ~=+2 

249,5 a1=75"0 IJm l / ' "  ' . . . . . . . . . . .  

249.4 _ ~ _ ' .  '~. q=+i 

249.2249~ _ ----_~~tg@@~_ 
249.1 × low-gain ~" . . . . . . . . . . .  ~=-1 

approx. /~ . . . . . . . . . . . . .  
249.0 0 exact 

solution ~' . . . . . . . . . . . . .  
248.9 x h igh -ga in  ~ i ~ i ~ i i ~ . ~ _  q=-2 
248. fl approx.  [ 

i 
24B. 7 i . . . .  i i , , , 

~2600 i2605 
Re{ ~res} [ l /m ] 

Fig. 3. Comparison between the high-gain and the low-gain 
approximations as well as the exact solution of the resonance 
condition for the weak TEo~/TE~a coupling in a right-handed 
HFB waveguide with oversize factor f=9.77 and first Fourier 
coefficient al = 75.0 I.tm. The solid curve shows the corrugation 
pitch L versus the real part of the resonant propagation constant 
~=~ in the low-gain approximation (~t~0). The crosses (x), 
asterisks (.), and the open circles (o) denote the resonant pitches 
L~ for the lowest longitudinal modes ~ as given by the low-gain 
and the high-gain approximations as well as those from the exact 
solution of the resonance condition for two-mode coupling 

U 

m+ ",%-/ "" " / ~ " ' ~ ' "  

/m+ ~ ,  
m+,/ ",, m_ 

A,, I L 

~IL Re { p } 

I two-mode 
coupling 

E I quasi two-mode 
coupling 

coupling with 
frustrated 
intrastopbond 
modes 

coupling 
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Fig. 4. Schematic representation of a multi-mode coupling 
between three forward (m+) and three backward (m_) propagat- 
ing modes. All nine possible two-mode couplings are assumed as 
allowed, yet of different strengths. The resulting resonance 
frequency spectrum, illustrated in the plot of the imaginary part 
of the propagation constant ~, can be divided into three 
categories depending on the degree of interaction between the 
various two-mode couplings 

Far from cut-off, w+ fulfil the condition 

(w + + w_)/2 -~ 1 (69) 

which implies L(O)'-~ 2/2. 
For mode couplings where the threshold gains of 

the longitudinal modes are not neglectable compared 
to the coupling strength, the term arg(s) of (65) causes a 
shift of the hyperbolas given by (66a) towards the 
stopband edges. 

In Fig. 3, the resonances of the four lowest longi- 
tudinal modes next to the stopband of the TEol/TE11 
coupling in a single-helix HFB waveguide are plotted 
under three different conditions. The geometrical 
waveguide parameters, f = 2a/2 = 9.77 and 
al = 75.0 gin, are chosen typical to those of the wave- 
guides used in this work. The solid curve represents the 
limit of low-gain approximation (~,h~ [xD. The crosses 
mark the resonances for different values of ~. On the 
right vertical axis the corresponding resonant pitches 
of perturbation are depicted as horizontal bars. Since 
the coupling coefficient of the considered coupling is 
small compared to the threshold gains (~th>8 m-1) 
given by (62), the rounding of the stopband edges is 
significant. As a consequence, the resonant pitches 
represented by circles which correspond to the exact 
solution of the resonance condition deviate signifi- 
cantly from the low-gain approximation. For com- 
parison, also the solutions of the high-gain approxi- 
mation limit (0~th>>lX]) characterized by arg(s)=zc/2 
are shown as asterisks in the plot. 

In our waveguides, essentially all possible cou- 
plings are considerably stronger than that shown in 
Fig. 3. Since, moreover, the threshold gains vary 
approximately inversely proportional to the square of 
the coupling strength, the low-gain approximation, i.e. 
(67) gives a good estimation for two-mode resonances 
observed in our experiments. 

The theoretical investigations on the mode spectra 
of multi-mode couplings have mostly been performed 
by numerical calculations making use of the trans- 
mission matrix (59) because it was found that the roots 
of(56) are more difficult to evaluate than the equivalent 
poles of (59). As in the case of a two-mode coupling, all 
modes present in a multi-mode coupling obey the 
selection rule (48). For a specific multi-mode coupling 
defined by the pair (m +, m_) according to the selection 
rule (48), we have to presume that the resonance 
frequencies of waveguide modes with the azimuthal 
mode number m+ or m_ lie very dose. These modes are 
separated in two sets defined by m+ and m_. A mode 
within one set couples only with a mode in the other set 
in accordance with the actual waveguide symmetry. 

When considering the frequency spectrum ofmidti- 
mode couplings, one has to distinguish the three cases 
illustrated in Fig. 4. For the simple case A the multi- 
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Fig. 5. Contour lines corresponding to fixed values of the 
transmission determinant det(t) in the plane defined by the 
waveguide tuning temperature T and the normalized effective 
threshold gains (~th. L. R) of a multi-mode coupling between the 
TEl, forward propagating and the TE_ 1, backward propagating 
sets of modes in a periodic DFB copper waveguide with 
corrugation period L = 252.0 ~tm, mean radius a = 2.369 mm, and 
first Fourier coefficient al =92.3 ~tm. In this given temperature 
range between 22°C and 250°C, the resonances observed are 
characteristic for modes of a quasi two-mode coupling 
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Fig. 6. Contour lines corresponding to fixed values of the 
transmission determinant det(t) in the plane defined by the 
waveguide tuning temperature T and the normalized effective 
threshold gains (~th, L. R) of a multi-mode coupling between the 
TEo, and TMo, forward running and the TE2, and TM2, 
backward propagating sets of modes in a double-helix HFB brass 
waveguide with corrugation pitch 2L=499.8 ~tm, mean radius 
a = 1.948 ram, and first Fourier coefficient a 1 --75.5 ~tm. In this 
given temperature range between 22°C and 250°C, the re- 
sonances observed are characteristic for the so-called frustrated 
intrastopband modes 

mode coupling consists of widely separated two-mode 
couplings without mutual interaction. Thus, the result- 
ing multi-mode spectrum is the sum of the spectra of 
the individual two-mode couplings. On the other hand, 
when modes with partially or totally overlapping two- 
mode stopbands are combined, a large multi-mode 
stopband arises. In this case C, resonances similar to 
those of the two-mode case A exist outside the two 
edges of the wide multi-mode stopband. In addition, 
also intrastopband resonances emerge. In contrast to 
the ingap modes generated by a phase shift, e.g. by a 
gap in the periodic waveguide structure [34-36, 60], 
these new frustrated intrastopband modes usually 
show considerably higher threshold gains than the 
resonances outside the stopband edges. An intermedi- 
ate case B occurs when the multi-mode coupling 
consists of relatively weak two-mode couplings which 
do not overlap, yet have noticeable mutual interaction. 
Under this condition, one observes a repulsion of the 
neighbouring stopband edges together with a fre- 
quency shift of the resonances. The threshold gains of 
these shifted quasi two-mode resonances are usually 
higher yet of the same order of magnitude as those of 
the standard resonances of the related two-mode 
couplings. 

The two contour  plots of Figs. 5 and 6 represent 
cases B and C of multi-mode couplings. The abscissa 

corresponds to the waveguide temperature T of a 
periodic DFB copper waveguide of period 
L =  252.0 ~tm for Fig. 5 and of a doublex-helix HFB 
brass waveguide of pitch 2L=499.8 ~tm for Fig. 6. In 
this context, it should be mentioned that these wave- 
guides are tuned by thermal expansions at the fixed 
wavelength 2=496.1 ~tm of the methyl fluoride laser 
emission, cf. Sect. 2.2. The ordinate indicates the nor- 
malized threshold gain ~th, L. R for a lossy waveguide, 
where R denotes the total length of the waveguide 
structure. The contour lines correspond to fixed values 
of the determinant det(t) of the transmission matrix t 
introduced by (59). At a two-mode or multi-mode 
resonance, det(t) approaches infinitely. In Figs. 5 and 6, 
the waveguide parameters and the temperature range 
correspond to our experimental conditions, of. Sect. 2. 
The resonances observed in Fig. 5 corresponding to 
case B represent a multi-mode coupling between the 
m+ = + 1 and rn_ = - 1 sets, each consisting of three 
TE modes of the DFB waveguide. The series of the 
observed resonances with low threshold gains are 
quasi two-mode resonances shifted from the mutual 
interaction region of the pure TEl  a/TE-11 and the 
TEI~/TE_~3 two-mode couplings. In the case C, 
illustrated in Fig. 6, we deal with a multi-mode cou- 
pling between the m + = 0 and m_ = + 2 sets of modes 
each consisting of four TE and four TM modes of a 
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double-helix HFB waveguide. In this case, there exist 
many overlapping two-mode couplings of similar 
strength. As a result, we observe frustrated intrastop- 
band modes inside the wide multi-mode stopband. The 
mode at the waveguide temperature T=205°C ex- 
hibits a low threshold gain compared to all other 
calculated resonances in this temperature range and 
could therefore result in HFB laser oscillation. 

From a comparison between the threshold gains of 
the resonances of both two-mode and multi-mode 
couplings, we conclude that the resonances originating 
in simple two-mode couplings are more likely to 
oscillate than those generated by complex multi-mode 
couplings. 

1.7. Waveguide Loss in the F I R  

In Sect. 1.4, we introduced the effective gains ~+p and 
_q for the forward and backward propagating modes. 

Since the waveguide is, however, not ideal, these 
effective gains represent the differences between proper 
gains and the corresponding waveguide losses. Con- 
sequently, we write 

G L O~+p=O~+p--[O~+pl; p =  1,2,...,m, (70a) 

~ - q = ~ - q - l ~ q l  ; q= l ,2 , . . . , n .  (70b) 

In order to evaluate the true threshold gain for a 
resonance labelled c~ in a lossy waveguide, we have to 
correct the corresponding gain of (56) by a resonance- 
independent function which includes the loss terms of 
all participating modes 

(~th L =th  0 -  ~' = ~ '  -rB(l~L+pi, l~k~l). (71) 
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Fig. 7. Field attenuation for TM modes in a gold covered 
waveguide versus the generalized continuous root akc,,,, of the 
corresponding Bessel function for four different oversize factors f 
The dashed vertical lines denote the respective cut-off values 
ako,,.. = ~f  

Since the medium gain must compensate the losses, 
we have to require a positive function B. For multi- 
mode couplings it is not possible to represent B in a 
closed form. Therefore, the only way to determine the 
medium threshold gain is to solve (56) with the 
complete expression for the effective gain described by 
(70). For a two-mode coupling, however, we can derive 
from (44) and (62) the following simple expression for 
the loss function 

n(Icc~ I, I~ L-- I) = (1~½1+ [~L_ I)/2 = I~LI. (72) 

Thus, the medium threshold gain is simply 
evaluated by adding the mean value of the mode losses 
to the effective threshold gain given by (62). 

The waveguide loss in the far infrared is well 
defined by the standard skin effect. For hollow metal 
waveguides, this loss was described by Borgnis and 
Papas [49]. For a circular symmetry, we find for the 
two possible types of modes 

O~mn= --(2/fWmn )'(~/0"c~o23) 1/2 TM modes, (73a) 

O~m n -~- - -  (2 /  f w  mn) " ('1~/~7C]..10 ~ 3 ) 1/2 

(ake, mn/JTf) 2 + (mw,,,/ak~ ran) 2 TE modes, 
X 

1 -(mWm,/akc,m,) 2 (73b) 

where m and n denote the azimuthal and radial mode 
numbers of the propagating mode. k . . . .  is the corre- 
sponding cut-offwavenumber defined by (47) and a the 
waveguide radius, a indicates the dc conductivity 
whilst c and #o are the speed of light and the 
permeability of vacuum. In the above equations (73), 
we also use the oversize factor f = 2 a / 2  and the 
normalized propagation constant Win, defined by (68). 

Although the ak~,,,, are discrete, we have plotted 
for simplicity the attenuation {a,,,[ versus the corre- 
sponding continuous parameter ak . . . .  for a gold 
waveguide. The wavelength 2 = 496 txm corresponds to 
the dominant emission of the CH3F laser. In Fig. 7, we 
show the attenuation of the TM modes for four 
different oversize factors f. Characteristic for TM 
modes are the monotonous growth of the waveguide 
loss with increasing akc, m. and the phenomenon that 
all modes experience approximately the same attenu- 
ation as long as they are sufficiently distant from the 
cut-off given by ak~=rcf  On the other hand, the 
attenuation of the TE modes behaves more com- 
plicated as demonstrated in Fig. 8. Firstly, the de- 
pendence of the attenuation on the magnitude on the 
azimuthal mode number Iml is evident for small akc, m, 
and secondly, all curves except those for m=0  are 
characterized by a local minimum, The latter implies 
that only for m = 0 the mode with lowest attenuation 
coincides with that of lowest ak . . . .  . 
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Fig. 8. Field attenuation for TE modes in a gold covered 
waveguide versus the generalized continuous root ak . . . .  of the 
derivative of the corresponding Bessel function for four different 
oversize factors f The different sets of curves are characterized by 
the magnitude of the azimuthal mode number [mr. The dashed 
vertical lines denote the respective cut-off values ak . . . .  = ~ f  

1.8. Ga in  S a t u r a t i o n  

From the resonance condition (62), we find for a strong 
two-mode coupling (~h~[~[), which is also called 
overcoupling, an approximate expression for the thresh- 
old gain for DFB and HFB resonances in the vicinity 
of the stopband edges by neglecting the waveguide loss 
[34-36] 

cTm, o. R ~- (~ff/l~clR) 2 (74) 

This expression implies a quadratic increase of the 
threshold gain with growing longitudinal mode num- 
ber. This relation implies that the strongest laser 
output should occur for the lowest magnitude Iql of the 
mode number ~. Since, however, the gain of the laser 
medium cannot be assumed to remain constant for 
growing field intensity, nonlinear gain saturation has 
to be taken into account when describing the output 
characteristics of strongly coupled resonances with 
strong intracavity fields. Hill and Watanabe [62] first 
postulated a model including the envelope-gain satu- 
ration. In this context, they calculated the influence of 
gain saturation on the resonance frequencies as well as 
the small-signal gain required for a given output power 
for various coupling strengths. In the same year, Haus 
[63] devised an approximate method for the calcu- 
lation of the small-signal gain as a function of the 
normalized output power for overcoupled (]xlR >4) 
DFB resonances. This method was later improved by 
Szczepanski [64] to allow for lower coupling strengths 
([~]R > 0A). Furthermore, extended models have been 
presented which include reflections at the ends of the 
DFB structure [65-67]. All these efforts, however, 
have been devoted to the optimization of laser design, 

yet not to the interpretation of the behaviour of an 
operating DFB or HFB laser. 

Since all couplings in the laser waveguides we have 
investigated yield coupling strengths considerably larg- 
er than I~IR= 1, we observe in accordance with the 
predictions by Hill and Watanabe [62] no shift in the 
resonance frequencies caused by gain saturation. 
Therefore, we can calculate the location of our re- 
sonances by assuming linear coupling according to (43) 
and (62). If we assume, in contrast to the previously 
mentioned papers, that the small-signal gain of a given 
coupling is known, we can apply a modification of the 
approach by Haus [63] to calculate the relative output 
power for all consecutive longitudinal modes. A sub- 
sequent comparison with the measured spectra pro- 
vides us the best fit of the experimentally determined 
small-signal gain. The results obtained by this proce- 
dure show a qualitatively good agreement with our 
observed resonances and their relative output power 
(Sect. 2). Therefore, a brief description of the method is 
worthwhile. 

An energy-conservation theorem for a two-mode 
coupling can be derived from the coupled-wave 
equation (43). In our notation, this theorem can be 
formulated as follows 

IA +(R)l 2 + [A_(0)[ 2 
R 

: 2 S ( c ~ -  I~L[)([A + [2 + IA-[2)dz • (75) 
0 

Here, we make use of the fact that the effective gain 
and loss in the waveguide during one cycle correspond 
to the average of the two individual gains and losses 
given by (71) and (72). In order to include gain 
saturation, we write the medium gain in the form 

8G = %/{1 + ([A + 12-~ - [A_ [2)/Ps} , (76) 

where % and P~ denote the small-signal gain and the 
saturation power. 

According to Kogelnik and Shank [3], the energy 
per cycle emitted at the waveguide ends is for strong 
couplings small compared to the energy stored in the 
structure. Under this assumption, Haus [63] estimated 
the distributions of A+ and A_ at resonance for 
C~a=cTL=0 near the stopband edges (IAI~I~[). Our 
corresponding result is 

fA + [ "~ [A sin(qoZ)[ - [A_ l, (77) 

where r/oR= Re{r/R} =r@ With this approximation, 
the output power at one waveguide end can be 
evaluated from (43) for the lossless waveguide. Since 
the output power for a symmetric waveguide corru- 
gation is equal at both ends [62], (43) and (74) imply 

P - I A  +(R)I 2 = IA _(0)1 z -- c~ n' °RlZl 2 . (78) 
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By application of (76)-(78) to the energy theorem 
(75), we find, after performing the integration over the 
waveguide length and rearranging the terms, the 
output power P of the longitudinal mode with number 

normalized with respect to the saturation power P~, 
to obey the following relation 

P, 8 1 + ~h'LJ 

"~- 8 t~0  1 /2  

=th, 0 and =th, L where ~? e~ are given by (62), (71), and (72). 
The first factor is monotonically growing with I~1 
whilst the second is maximum for I~1 = l and vanishing 
for :th, L ~ -- ~0" Consequently, there exist two resonances 
q=-+]qopt] with maximum output power which, in 
practice, do not coincide with the longitudinal modes 

= _+ 1 at the stopband edges. 
The influence of the gain saturation of the laser 

medium on the output power is illustrated in Fig. 9 for 
a coupling with IKIR--143, which is well within the 
validity range [xlR>4 of our approximation. As a 
consequence of the gain saturation, we find that the 
output power decreases toward the stopband edges. 
This in contrast to the predictions of the linear 
coupled-wave theory. 

The behaviour of the relative output power can 
also be plausibly explained from another point of view. 
As [~[ approaches 1, the magnitude of the scattering 
factor s for the two-mode coupling given by (44) tends 
to unity and, consequently, the conversion between the 
two present modes becomes perfect. Thus, the struc- 
ture reflection of the waveguide reaches almost 100% 
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Fig. 9. Comparison of the relative output power of the lowest 
longitudinal modes ~ around the stopband of a symmetric DFB 
or HFB waveguide for a coupling with [~[R = 143 and a small- 
signal gain Cto = 0.46 m -  1. The dots (o) represent a laser medium 
with gain independent of the field strength whilst the plus sign 
(+)  show the situation when gain saturation is included 

which implies that no radiation can emerge from the 
waveguide ends. This explanation is in agreement 
with the output characteristics of mirror resonators 
described in terms of the output-coupler reflectivity. 

Equation (79) does not include the effects of spatial 
hole burning, dispersion of the laser medium, inhomo- 
geneous pumping etc. Therefore, it cannot be expected 
to explain the full dynamics of a DFB or HFB gas 
laser. Nevertheless, it is in good qualitative agreement 
with our experiments on various DFB and HFB 
couplings in the optically pumped 496 gm CH3F laser 
described in the following Sect. 2. 

2. Measurements on Waveguide Lasers 
with Periodic and Helical Corrugations 

The first part of this section is devoted to the design 
and to the operational characteristics of our optically 
pumped 496 ~m CHaF DFB and HFB gas lasers 
while the second part comprehends measurements and 
results. In Sect. 2.1, we present the mechanical data and 
discuss the manufacture of the different DFB and HFB 
waveguide structures. In the following Sect. 2.2, we 
describe the tuning of these waveguide structures by 
thermal expansion. In Sect. 2.3 and Sect. 2.4, we explain 
experimental arrangement and the experimental con- 
ditions under which our mode spectra were recorded. 
We elucidate the measured mode spectra of the DFB 
waveguide lasers as well as of the single- and double- 
helix HFB waveguide lasers in Sects.2.5-2.7. Sub- 
sequently, we perform a tentative identification of the 
observed resonant modes on the basis of the pertur- 
bation theory outlined in Sect. 1. In addition, we 
introduce the gain saturation of the laser medium 
described in Sect. 1.8 to explain the observed output 
characteristics of the different detected longitudinal 
DFB and HFB laser modes. 

From the numerical evaluations of the resonance 
conditions for both the two-mode coupling deter- 
mined by (62) and the complex multi-mode coupling 
defined by (56), we find, as already mentioned in 
Sect. 1.6, that for our waveguide and corrugation 
parameters only the weakest two-mode couplings 
show threshold gains equivalent to those of the multi- 
mode couplings. Therefore, we assume that the two- 
mode couplings dominate over the multi-mode cou- 
plings when we attempt to identify the measured 
resonant DFB and HFB laser emissions. Hence, we 
first tried to assign the observed resonant modes to 
potential resonances of two-mode couplings deter- 
mined by the selection rule (48) and the resonance 
condition (62). In the last Sect. 2.8 of this chapter, we 
finally present the output characteristics of various 
DFB and HFB laser modes as a function of the 
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polarization state of the pump beam from the CO2 
laser. 

2.1. Laser-Waveguide Design and Manufacture 

In this study, we have investigated the mode spectra of 
the 496 gm CHaF laser equipped with a large variety of 
hollow circular cylindric metal waveguides of 300 mm 
length with periodic or helical corrugations on their 
inner walls. Three different symmetries of corrugation 
were chosen. These symmetries correspond to the 
actually periodic DFB waveguide structure, the single- 
helix HFB, and the double-helix HFB waveguide 
structure. With the notations introduced by Preiswerk 
et al. [14] and discussed in Sect. 1.4, our waveguides 
can be assigned to the symmetries Gps, Ghs, and G2hs 
respectively. 

From group theoretical considerations [14], one 
finds relations between first order double-helix HFB, 
second order single-helix HFB, and second order DFB 

m 
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Fig. 10. Schematic view of the circular symmetric FIR-laser 
waveguides for a) periodic DFB; b) single-helix HFB; c) double- 
helix HFB. The parameters are defined in the text 

which concern periods and pitches of periodic and 
helical corrugations. Since we restricted our experi- 
ments to the laser medium methyl fluoride CH3F 
which has its dominant emission at the vacuum 
wavelength 2 = 496.1 gin, we had to choose the pitch of 
the double-helix structure about twice the pitch of the 
single-helix. The latter has to be similar to the period of 
the linear periodic waveguides to achieve operation of 
identical order feedback v (cf. Table 1). In other words, 
the effective structure period L~-v2/2, i.e. the shortest 
translation along the waveguide axis necessary to 
reproduce the corrugation has to coincide more or less 
for all waveguides. 

In Fig. 10, we show the geometries of the three 
investigated types of waveguides. All waveguides are 
designed for operation at feedback of the first order 
v = 1. Consequently and in agreement with the con- 
siderations outlined above, we have chosen the effec- 
tive corrugation period near L = 2 5 0 g m  for all 
waveguides. The precise geometrical data of the vari- 
ous investigated types of waveguides together with the 
respective waveguide materials are presented in 
Table 2. The first Fourier coefficient al and the mean 
diameter 2a of each corrugation have been evaluated 
from the known corrugation shape and the depth 2h 
determined by the tool used for cutting. For our DFB 
and HFB waveguides, the relevant formulae are given 
in the form 

2a = 2am,,, - (2hb/L) 
DFB (80a) 

al = (4h/re) • sin(rob~L) 

and 

2a --_ 2ami n + 2h 
HFB.  (80b) 

al ~- (2L~/3/rc2) • sin 2 (2~h/L~/3) 

Table 2. Parameters of the investigated waveguides 

Single-helix Double-helix 
DFB HFB HFB 

Material Copper Brass (58) Brass (58) 

R [mm] 300 + 1 

L [~tm] 240.0 ±0.1 
244.0 +0.1 
248.0 -+ 0.1 
252.0 +_0.1 

2a [ram] 4.750_+0.015 

a 1 [gm] 70-95 

300 _+ 1 300 ± 1 

250.0 _+0.1 250.1 -+0.1 

2.850_+0.010 3.890_+0.010 
3.890__.0.010 4.890_+0.010 
4.870_+ 0.010 
5.890-+0.010 

75-85 70-80 
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Due to the circular symmetry and the relatively 
small diameters, the linear periodic waveguide struc- 
tures cannot be manufactured in one single step. Thus, 
we first cut periodical grooves into a precision-grinded 
brass pipe of outer diameter 2area x = 4.880 mm. For this 
purpose, we applied a turning tool of width b = 124 gm. 
The cutting depth and the period were varied from 
waveguide to waveguide (cf. Table 2). In a second step, 
the structure was covered with a gold layer by means of 
vapour deposition. This step was followed by an 
electrolytic copper deposition onto the gold. The brass 
pipe was finally etched away to form the definite 
periodic waveguide structure. The gold layer, which is 
required for the manufacturing process, also serves as 
protection of the final periodic waveguide structure 
against oxidation. Since gold and copper exhibit 
different thermal expansion coefficients, we have 
chosen a gold layer of a relatively large thickness of 
about 50pro in order to avoid destruction due to 
thermal stress during the tuning process described in 
the following Sect. 2.2. The thickness of the gold layer 
well surpasses the skin depth at our operation 
wavelength. 

In contrast to our DFB waveguides, the single- 
helix and the double-helix HFB waveguides could be 
fabricated in one operation. In both cases, we used 
prebored pipes of 300 mm length made of a brass alloy 
consisting of 58% copper, 39% zinc, and 3% lead. The 
helical structures were then cut into the inner wave- 
guide wall with the aid of precision-grinded screw 
taps with a single-helix or a double-helix corruga- 
tion symmetry. 

The accuracy of the nominal period L and the 
nominal pitches L and 2L of our different waveguide 
symmetries taken as an average error over the entire 
waveguide length R, is by different methods estimated 
to the order of A L/L = 4 x 10-4. The local accuracy of 
the linear period, however, may be one order of 
magnitude worse, since in this case one has to consider 
the positioning error of the lathe. If, as expected, this 
variation is randomized around the nominal value, it 
does not give rise to any consecutively changing phase 
factor, so-called chirp, in the expression for the corruga- 
tion (30), which would result in a shift in the resonance 
spectrum [61-1. In a first approximation, we therefore 
neglect such local variations. A more critical param- 
eter, however, is the corrugation depth, which by its 
linear dependence on al can cause a considerable shift 
of the resonant modes. By manufacturing the periodic 
waveguides at the tolerance limit and from the indirect 
measurement of the depth of the helical waveguides 
mentioned above, we can postulate a relative error of 
a 1 to Aal/a 1 = + 10%. Since the coupling coefficient x 
for all types of coupling is according to (49) propor- 
tional to al, we find the same relative error for x. This 

results in an adequate shift of the resonant structure 
periods or pitches versus the calculated resonance 
lengths (67). In order to estimate this mismatch of L~, 
we notice the weak al-dependence on arg(s) near the 
stopband edges according to (44). Hence, our esti- 
mation can be based on the approximation for L~ 
described by (67). We define 

A L~ = L~(a 1 . . . .  1) - L~(a 1, est) ( 8 2 )  

with al .... ~ and al,es t denoting the true and the 
estimated first Fourier coefficient al of the waveguide 
structure. In Fig. 11 a, we show the shift A L~ of the first 
resonant mode next to the lower stopband edge for 
various mode couplings in a single-helix HFB wave- 
guide with oversize factor f =  I0 and an estimated 
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Fig. 11. a Relative shift in the effective resonance period L~ (left 
axis) and resonance temperature (right axis) for a longitudinal 
mode with $ = -  1 in a waveguide with oversize factor f =  10 
versus the relative uncertainty in the corrugation amplitude al 
plotted for five different two-mode couplings of a single-helix 
HFB laser waveguide, h Relative shift in the effective resonance 
period L~ versus the estimated coupling strength x est for various 
relative uncertainties in the corrugation amplitude al in a 
waveguide with oversize factor f = 10. The labelled ticks on the 
horizontal axis refer to the couplings shown in a 
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Fourier coefficient a 1 = 80 gm. On the left vertical axis, 
we have plotted the relative change in the resonant 
pitch AL~/L~ due to incorrect estimation of the Fourier 
coefficient, whilst on the right vertical axis, we indicate 
the corresponding shift in the resonance temperature T 
for the brass waveguides applied for the HFB lasers (cf. 
Sect. 2.2) with an average thermal expansion coefficient 
0 = 2  x 10 -5 K -1. Whilst the pure TE/TE as well as 
the cross-couplings show a strong variation between 
different mode couplings as a result of the complex 
mode dependence in their coupling coefficients (49), the 
pure TM/TM couplings remain approximately con- 
stant. The pure TE/TE couplings with one m = 0 are 
weak and, therefore, insensitive to variations of a~, as 
indicated for the TEol/TEa a coupling. Characteristic 
for the descent of the curves is the coupling strength of 
the considered mode coupling. A plausible proof for 
this statement which is independent of the mode and 
holds for all types of couplings and waveguide symme- 
tries can be derived from (67) under the assumption 
that the oversize factor f =  2a/2 is large enough to 
permit the approximation [fl_+[ =k.  If we make use of 
[~cl ~ k which is true for weak waveguide modulations 
and put ~ = 0- ,  we find 

AL~ ~ IKrest] A I~:1 I~:os,I Aaa (83) 
L ~ -  k [~est[ k al 

The almost linear dependence of ALJL~ on Aal/a ~ 
which results from a more accurate numerical calcu- 
lation is presented in Fig. 11b for various errors of 
estimations concerning the Fourier coefficient. The 
longer ticks on the horizontal axis mark the actual 
strengths of the couplings presented in the previous 
Fig. 1 la. If we consider the TMo~/TM~ a coupling as 
an example, a relative error of Aaa/al = _+ 10% causes 
a relative shift in the resonance pitch of about AL~/L~ 
-~0.3%. This uncertainty which originates in depth 
and shape of the corrugation is equivalent to AL 

+ 0.75 gm or d T ~  _.+ 150 °C (cf. Sect. 2.2) for a brass 
waveguide with the nominal pitch L = 250 gin. 

2.2. Tuning Mechanism 

The homogeneously broadened [68] FIR laser emis- 
sion at 496.1 gm of the optically pumped CH3F laser 
has a gain bandwidth of about 120MHz at our 
operation pressure of about 3 Torr. Our periodic 
and helical waveguides of length R have an equiva- 
lent free spectral range c/2R of about 500 MHz. 
Therefore, we require a special tuning mechanism 
to match the laser emission with the waveguide 
resonances. For  this purpose, we apply the method 
used by Preiswerk et al. [12-14] which relies on the 
thermal expansion of the waveguide material. This 
method involves an indirect heating, where the 

waveguide is totally surrounded by a heating jacket 
which consists of a cylindrical quartz dewar (cf. 
Sect. 2.3) filled with silicon oil in direct contact with a 
heating coil. By this method, we attain an almost 
homogeneous temperature distribution in the wave- 
guide over the entire tuning range from room tempera- 
ture to about T=250°C. Our measurements of the 
thermal distribution have revealed a moderate temper- 
ature variation between the center and the ends of the 
waveguide of a few degrees in the upper temperature 
range. This deviation corresponds to a frequency shift 
less than about half the laser bandwidth over the entire 
tuning range. It can, therefore, be expected that this 
causes a broadening of the observed resonances and 
contributes to the variation of the output power 
among different measurements. It may also increase 
the mode competition between neighbouring resonant 
modes because it reduces the precision of the corru- 
gation period or pitch. These resonant modes can be 
assigned to the corresponding structure period or 
pitch, when the thermal expansion of the waveguide 
material is known. Since we are measuring over a 
relatively wide temperature range, we have to take into 
account the variation of the thermal expansion with 
temperature T which is described in a first approxi- 
mation by the relation 

x(T)/x o = 1 + Oa(T- To)+ 0 2 ( T -  To) 2 . (84) 

Here, x represents any of the linear parameters R, 
L, a, or h or the waveguide, x o is the corresponding 
value at room temperature T o. Ot and 0 2 denote the 
linear and the quadratic thermal expansion coeffi- 
cients. In Table 3, we have summarized the approxi- 
mate coefficients for brass(58), copper, and gold 
[69, 70] for T o = 20°C. With these numbers, we calcu- 
late a spectral tuning range for our waveguides made of 
brass or copper/gold (cf. Sect. 2.1) of approximately 32 
or 2.52 corresponding to about 3 GHz or 2.5GHz 
expressed in terms of frequency. The second values 
valid for the copper/gold DFB waveguides are 
evaluated under the assumption that the copper alone 
is responsible for the expansion. This can be consid- 
ered as a good approximation since the thickness of 
the copper is about 50 times that of the 50 gm gold 
layer. 

Table 3. Linear and quadratic thermal expansion coefficients of 
the waveguide materials applied 

Material 01 [K- 1] O 2 [K- 2] 

Brass (58) 18.6 x 10 -6 15.0 x 10 -9 
Copper 16.7 x 10 -6 7.2 x 10 -9 
Gold 14.2 x 10 -6 5.2 x 10 -9 
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Fig. 12. Experimental set -up: HJ heating jacket; HC heating coil; 
V Variac; TC thermocouple; TG temperature gauge; PED 
pyroelectric detector; LI lock-in amplifier; P plotter; M1 and M2 
gold mirrors; WI salt window (KC1); W2 quartz window; L1 and 
L2 salt lenses (KC1); QW quarter-wave plate (CdS); Ge ger- 
manium plate; PH iris pin hole 

2.3. Experimental Arrangement 

The experimental arrangement shown in Fig. 12 is 
similar to those used in previous studies on optically 
pumped parallel-plate DFB, single-helix HFB, and 
grazing-incidence DFB 496 gm CHaF gas lasers [7-10, 
12-14, 36, 60, 71, 72]. The pump laser is a hybrid CO 2- 
laser (LSI-PRF150) with a linear polarization of the 
emission and tuned to the 9P(20) line at 9.55 gm 
wavelength. At the 9P(20) line, this laser produces 
pulse energies up to about 80 mJ for the TEMo0 mode 
with a pulse duration of approximately 150 ns. This 
yields a maximum peak pulse power of the order of 
500 kW. The infrared radiation emitted by this laser is 
guided through two mirrors M1 and M2 and fed into 
the 496 pm CH3F-laser sYstem through a potassium 
chloride (KC1) window W1. 

Besides investigations with linearly polarized radi, 
ation, we have also performed experiments with cir- 
cularly polarized pump radiation. For this purpose, we 
put a cadmium sulfide (CdS) quarter-wave plate QW 
into the CO2-1aser pump beam and replaced the 
Brewster-angle mount of the KC1 window by a mount 
where the plane of the KC1 window is almost per- 
pendicular to the waveguide axis. In order to assure 
that only the 496 gm CHaF-laser radiation reaches the 
pyroelectric detector PED (ELTEC Instruments, 
Model 406), the laser system is equipped with a FIR 
transparent quartz window W2 to block the nonab- 
sorbed fraction of the 9.55 gm CO2-1aser pump beam 
after one pass through the laser waveguide. In order 
to reduce external noise on the detected signal, we apply 
a lock-in amplifier LI (Stanford Research Systems - 
SR 510) locked to the trigger frequency of the 9.55 gm 

CO2-1aser. With this technique, we have the possibility 
to average over a number of detected 496 gm laser 
pulses. The output signal from the lock-in amplifier is 
recorded on a plotter P as a function of the waveguide 
temperature T. In Fig. 12, the heating jacket mentioned 
in the previous Sect. 2.2 is denoted by HJ. It is a closed 
double-wall quartz cylinder which is mounted stress- 
less and vacuum-sealed in a jig. In order to avoid stress 
during heating, one side of the jig is freely movable on 
guide bars parallel to the cylinder axis. The tempera- 
ture control uses as sensor a chromel-alumel ther- 
mocouple TC attached to one end of the waveguide. A 
laboratory-made temperature gauge TG converts the 
thermoelectric voltage into degrees centigrade with an 
accuracy of better than A T=  _ 1 °C over the tuning 
range. Relevant for our measurements is that the 
recorded spectra are not affected by disturbing 
external resonator effects caused by reflections be- 
tween the detector and the waveguide. By arranging 
the detector and the quartz window in a skew direction 
to the waveguide axis, as indicated in Fig. 12, and by a 
convex cut of the waveguide end on the output side, we 
have limited the influence of these effects on the 
measured resonances to less than 5%. For the beam 
alignment, we have applied a HeNe laser aligned 
collinear to the pump beam with the aid of a plane 
parallel germanium plate Ge. Also shown in Fig. 12 is 
an iris pin hole PH and a telescope lens system L1 and 
L2 for the variation of the cross-sectional energy 
density of the 9.55 gm CO2-1aser pump beam. 

2.4. Experimental Procedure 

Although our CO2 pump laser is equipped with an 
invar-stabilized internal-resonator mount, we have 
observed several irregularities which cause instable 
mode operation and beam disadjustment during 
warm-up. After about 30 rain of continuous operation 
at a repetition frequency of 10 Hz, which corresponds 
to the recording conditions of the presented spectra, 
the CO 2 laser proved to be stable with an energy- 
output fluctuation less than AE=_+2% over more 
than 1 h. This corresponds to the duration of one 
temperature scan of our mode spectra. In order to 
control the temporal shape of the laser beam, we used a 
photon drag detector which is inserted occasionally 
into the pump beam to verify the single-longitudinal- 
mode operation. The spatially stable CO2 beam with a 
Gaussian intensity profile is then aligned collinear with 
the waveguide axis by application of a set of pin holes 
and a graphite foil. For the fine adjustment, we use the 
background fluorescence at room temperature to 
determine the optimal pump direction. We have also 
performed several experiments with the pump beam 
entering the CHaF-laser system under a small angle of 
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about 10 ° relative to the waveguide axis. This changes 
the pump condition. Fortunately, it does not cause any 
principal change in the measured spectra. Only the 
output power of the observed resonances decreases 
due to the reduced illumination of the laser gas CH3F. 
A total reproducibility of the 496 gm output power for 
the different detected resonant modes could not be 
achieved, even though all measurable parameters such 
as pump energy, pump polarization, beam profile, and 
CH3F gas pressure were held constant. One reason for 
this failure is the narrow 9.55 ~tm absorption of the 
CH3F and the displacement of this line relative to the 
center of the CO2-1aser pump line [68]. As a result, a 
small shift in the CO2 pump laser frequency due to an 
instable resonator length reduces the pump efficiency. 
With the output coupler of the CO2 pump laser 
attached to a set of piezo crystals, we have tuned the 
resonator length by maintaining the single- 
longitudinal-mode operation. Thus, we registered a 
change of the output power by more than a factor 2, 
with as well as without focusing the pump beam into 
the CH3F-laser waveguide. Another possible explana- 
tion of the poor reproducibility of the output power of 
the 496 ~tm CH3F laser may be the slightly inhomo- 
geneous temperature distribution over the waveguide 
length as discussed in Sect.2.2. In particular for 
couplings with large coupling constants tc which yield 
high resonance densities on the temperature axis, or for 
an overlap between resonances belonging to different 
two-mode couplings, mode suppression and/or mode 
competition appears and results in output instabilities 
even for a small temperature variation over the 
waveguide. We have also registered influences of the 
pump mechanism. With the telescope lens system 
mentioned in Sect.2.3 which generates a higher 
9.55 gm energy density on the CH3F-laser waveguide 
axis in addition to a significant gradient on the energy- 
density distribution over the waveguide cross section, 
the output power of the observed 496 ~tm resonant 
modes shows a stronger fluctuation between different 
measurements than in the case when the pump beam is 
unfocused. Besides, the optical noise on the spectra 
diminishes with increasing homogeneity of the energy- 
density distribution of the COz-laser pump beam. In 
order to achieve highest possible reproducibility, we 
frequently pumped the waveguide 496 gm CH3F-laser 
without the beam-contracting lens system. 

Since measurements with different polarization 
states of the pump beam for both DFB and HFB 
waveguides have shown no changes in the mode 
spectra as far as the resonant temperatures are con- 
cerned, we generally applied linearly polarized 9.55 gm 
pump radiation. All presented spectra refer to this 
polarization state. Yet, we have shown that the in- 
fluence of the pump polarization on the output power 

varies among different resonant modes. Therefore, we 
present measurements on the polarization dependence 
of selected strong resonant modes in DFB and HFB 
laser waveguides in the last Sect. 2.8. 

In order to show all detected resonant modes for 
each waveguide geometry, we present combinations of 
the results from different temperature scans made with 
the same waveguide and under equivalent conditions. 
With respect to the difficult questions concerning 
output power of optically pumped standard DFB and 
HFB gas lasers, we renounce to list the output power of 
our detected resonant modes as quantitative data. 
Thus, the figures on the vertical axes of the presented 
mode spectra denoting the relative output power are 
merely quantitative measures and serve for an approxi- 
mate comparison of the DFB and HFB mode charac- 
teristics of different waveguides and symmetries. Yet 
the a~zerage measured output power of our CH3F 
496 gm laser emissions is estimated to be of the order of 
200 W, whilst the maximum detected output power 
reached several kilowatts. 

2.5. Measurements on DFB Waveguide 496 gm CHaF 
Lasers 

In Figs. 13 to 16, we show the results of the measure- 
ments performed on 496 pm CH3F lasers equipped 
with periodic waveguides of different corrugation 
periods L. The waveguide parameters are listed in the 
figures. When comparing qualitatively the peaks in 
Figs. 13 to 15 with those in Fig. 16, we find that the 
halfwidth of a single resonance of the waveguides with 
L < 248.0 gm is less by a factor of about four than that 
of the waveguide with L = 252.0 gin. This indicates that 
for the waveguides with L<248.0 gin, the observed 
couplings are stronger than the couplings responsible 
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Fig. 13. Resonance spectrum of a DFB laser with a periodic 
waveguide of corrugation period L=240.0pm, mean radius 
a = 2.376 mm, and first Fourier coefficient al = 81.7 ~tm. The open 
circles (O) on the dash-dotted saturation curve indicate the 
calculated output powers and resonance temperatures for the 
lowest longitudinal modes below the lower stopband edge of the 
TMol/TM0~ coupling for the small-signal gain ~o = 0.47 m- ~ 
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Fig. 14. Resonance spectrum of a DFB laser with a periodic 
waveguide of corrugation period L=244.0 pm, mean radius 
a = 2.381 ram, and first Fourier coefficient aa = 73.0 pm. The open 
circles (o) on the dash-dotted saturation curves indicate the 
calculated output powers and resonance temperatures for the 
lowest longitudinal modes below the stopband edge of the 
TM2~/FM_z~, TM3~/TE_3t, TMoz/TMo2, and TM~z/TM_~/ 
couplings. For the best envelope fits, we used the small-signal 
gains %=0•40m-1, %=0.48m-a, %=0.40m-X, and 
ao=0.50m -~ 
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Fig. 15. Resonance spectrum of a DFB laser with a periodic 
waveguide of corrugation period L=248.0pm, mean radius 
a = 2.370 mm, and first Fourier coefficient a~ = 89.1 ~tm. The open 
circles (o) on the dash-dotted saturation curve indicate the 
calculated output powers and the resonance temperatures for the 
lowest longitudinal modes below the lower stopband edge of the 
TM22/TM- 22 coupling for the small-signal gain ~o = 0.46 m- ~ 

for the resonant modes of the waveguide with 
L = 252.0 gin. This conclusion is based on the rule that 
the stronger the coupling the more perfect the "dis- 
tributed resonator mirrors". Their performance is 
determined by the waveguide corrugation and by the 
increase of the quality factor for the DFB or HFB laser 
waveguide for increasing coupling strength [46]. Since, 
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Fig. 16. Resonance spectrum of a DFB laser with a periodic 
waveguide of corrugation period L= 252.01am, mean radius 
a = 2.369 ram, and first Fourier coefficient a 1 = 92.3 pm. The four 
leftmost peaks are identified with quasi two-mode resonances of 
the multi-mode coupling between TE modes belonging to the 
m+ = 1 and m_ = - 1 sets of modes (cf. Fig. 5), while the three at 
higher resonance temperatures represent the three lowest longi- 
tudinal modes below the lower stopband edge of the TE 11/TE- 13 
coupling 

in addition, the threshold gains for strong coupling are 
considerably lower than for weak coupling, this case is 
characterized by a high field intensity inside the 
waveguide which gives rise to gain saturation (cf. 
Sect. l.8). In addition, the approximation [tc[>>& th'L 
which is the basis of the equation (67) for the resonance 
lengths L~ is valid and can, therefore, be used to 
identify the mode couplings• 

Beginning with the periodic waveguide with period 
L =  240.0 ~tm, we find for the measured corrugation 
parameters  when taking into account the selection rule 
(48) that the only two-mode coupling with s topband 
edge in the tuning range of interest is the lowest pure 
T M / T M  coupling. For  a Fourier coefficient slightly 
modified according to the uncertainty mentioned in 
Sect.2.4 and the nonlinear thermal expansion de- 
scribed by (84), the lowest s topband edge for the 
TMol/TMox coupling is located at T=149°C .  The 
dash-dotted envelope of the measured spectrum indi- 
cates the relative output  power evaluated from the 
approximate  saturation theory by Haus  [63], (79), for 
consecutive longitudinal modes ~, which are indicated 
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by open circles. The best fit is obtained for a small- 
signal gain eo = 0.47 m-1. The qualitative agreement 
between experiment and theory is striking for the 
lowest modes I~1<10. The resonance qopt with the 
strongest output is identified as ~/opt = - 7  from the 
measured data. Its half width FWHM is about 
A T - 5 ° C  corresponding to a frequency bandwidth of 
Av-~60MHz. 

The results of the second periodic waveguide 
illustrated in Fig. 14 show four different couplings with 
lower stopband edges within the tuning range. From 
the solution of the resonance condition (62), however, 
there is an additional fifth two-mode coupling to be 
expected. If we start with the coupling at the lowest 
resonance temperature, these five couplings are: 
TM21/TM_zl at T=55°C,  TM31/TE_31 at 
T = l l 4 ° C ,  TMll/TE_11 at T=122°C, TMo2/TMo2 
at T=165°C, and T M t l / T M _ I / a t  T=218°C. If we 
compare these calculated couplings with the measured 
mode spectra, we find that the TM1 t/TE_ 11 coupling 
is missing. This absence can be explained by the fact 
that both the TM31/TE_31 and the missing coupling 
TM11/TE-11 have approximately the same interac- 
tion range, i.e. T -  ~ 70°C to 120 °C. Since, moreover, the 
ratio between the strengths 1~¢1 of these couplings is 
about 1.6:1.0, the TM31/TE_ 31 coupling is favoured. 
Therefore, the TMll/TE-11 coupling may be sup- 
pressed. All remaining couplings have about the same 
coupling strength Ix[<400m -1, which is almost as 
large as that of the TMol/TMol coupling in the 
previously discussed waveguide (Fig. 13). Consequent- 
ly, also the bandwidths of all these resonant modes are 
almost identical, i.e. Av  ~- 70 MHz. As before, the dash- 
dotted envelopes in Fig. 14 represent the theoretical 
output power fitted to the experimental data. For these 
fits, we used the small-signal gains eo=0.40m -1, 
% = 0.48 m-  1, eo = 0.40 m-  1, and c~ o = 0.50 m -  ~ for the 
four observed couplings. 

For the periodic waveguide with period 
L=  248.0 gm (Fig. 15), we again find only one two- 
mode coupling with the interaction range inside the 
tuning range. The calculated lower stopband edge at 
T-~175°C as well as the coupling strength 
]~c[ '-~475 m-  1 of this TMzz/TM_22 coupling indicate 
that the set of observed resonant modes can be 
assigned to this coupling with high certainty. The 
excellent fit of the output-power envelope for the small- 
signal gain eo=0.47m -1 as well as the agreement 
between measured and calculated resonance tempera- 
tures also prove the identification of the coupling. 

For the periodic waveguide with period 
L = 252.0 gm (Fig.ol 6), the theory predicts five different 
two-mode couplings with azimuthal mode numbers 
[m[ < 5 and stopband edges somewhere in the tempera- 
ture range between room temperature and T =  250 °C. 

However, taking the mode separation and the width of 
the measured resonances as criterions, the two strong 
couplings TM1 a/TM-14 and TEl l/TE_ 1 ~ have to be 
rejected. Comparing the resonance temperatures of the 
experimental spectrum with those of the theoretical 
spectrum, we find the strongest of the remaining 
couplings, i.e. the TEll/TE_I3 coupling with 
]~c I-~31 m -1 and with the lower stopband edge just 
below T=200°C, to fit the three resonant modes at 
T=137°C, T=167°C, and T=190°C. In this case, 
however, we have to allow for variations of the 
resonance temperatures of A T-~ __ 3 °C between differ- 
ent scans. 

The four resonances observed at resonance temper- 
atures below T = 100 °C show a phenomenon observed 
for many of the investigated waveguides. If the theoret- 
ical resonance density is equal or less than the mea- 
sured width of two neighbouring resonances, it may 
occur that a new resonance appears followed by an 
almost total suppression of the two neighbouring 
resonances. We mark these rarely observed resonances 
as dashed peaks. A plausible explanation is the slight 
variation of the temperature over the waveguide, 
which reduces the resolution power and simulta- 
neously favours mode competition (cf. Sect. 2.2). 

In order to identify the observed resonances in the 
temperature range below T= 100°C, we first consider 
the two remaining weak couplings TE0~/TEo2 and 
TElz/TE_ 12. Since both are very weak ([xl < 10 m-1), 
high threshold gains occur even for the lowest longi- 
tudinal modes Iql = 1. A comparison between experi- 
mental and theoretical resonance temperatures of 
these couplings shows that the mode with the lowest 
threshold gain, i .e.  the c~=+l  mode of the 
TElz/TE_12 coupling, explains well the observed 
resonance at T=96°C. The other resonant peaks, 
however, cannot be explained by the two-mode cou- 
pling theory. Therefore, we have applied the extended 
multi-mode theory outlined in Sect. 1. Although the 
multi-mode couplings are in general suppressed by 
two-mode couplings, multi-mode resonant modes can 
arise under certain conditions. They are observed 
when there is a number of overlapping, relatively weak 
two-mode couplings in the vicinity of the tufting range. 
In the waveguide considered, there are two weak 
couplings of the m + = 1 and m_ = - 1 sets of modes. 
Hence, a multi-mode coupling can dominate. The 
waveguide parameters used for the contour plot Fig. 4 
are identical with those of the waveguide under 
consideration. If we compare the measured spectrum 
of Fig. 16 with the calculated resonances of the 
TEI,  I _ 3 / T E _ I , I _  3 multi-mode coupling, we find a 
good agreement for all the four resonant modes below 
T=  100°C. The small temperature shifts are assumed 
to originate in the strong sensitivity of multi-mode 



22 J. Arnesson et al. 

resonance temperatures and threshold gains on ad- 
ditional modes of the two considered sets of modes m + 
and m_. Whether the calculated mult i-mode resonance 
at about  T = 9 6 ° C  is identical with the observed 
resonance or whether it originates in the previously 
investigated TEa2/TE_ ~z coupling cannot be decided 
definitely. In both  cases, the threshold gain is of the 
same order of magnitude. 

2.6. Measurements on Single-Helix HFB 
Waveguide 496 pm CHaF  Lasers 

The geometrical parameters  of the two helical wave- 
guides whose mode spectra are presented in Figs.J7 
and 18 allow us to make temperature scans in a region 
full of potential two-mode couplings, as for the DFB 
waveguide with corrugation period L =  252.0 ~tm. 
From the character of the observed resonant modes 
and with the experience from the interpretation of the 
previously shown resonances of high output  power, we 
presume that also here we are primarily dealing with 
moderate  couplings basically containing TE modes.  

For  the waveguide with pitch L=250.0  Ixm and 
oversize factor f -~8 ,  we find that the TEz2 /TE_t I  
coupling with a theoretical lower s topband edge at 
T = 2 1 2 ° C  explains the set of resonances around 
T = 200 °C (Fig. 17). If  we assume the dashed resonance 
to represent the ~ = - 2  mode, the resonance separa- 
tion for this coupling fits the theory indicated by open 
circles which also mark  the calculated power of the 
saturated output. This fit has been performed with the 
small-signal gain 0% = 0 . 5 0 m - x .  The observed strong 
variation of the output in this range can, except for 
internal mode competition, be related to another 
slightly stronger coupling which also involves the 
TE_ a~ mode. Furthermore,  these two couplings are 
characterized by almost identical lower s topband 
edges. These observations, together with the fact that 
three further two-mode couplings including modes 
belonging to the m+ = 2  and m_ = - I  sets of modes 
have interaction regions in the neighbourhood, justify 
the assumption of a multi-mode coupling. The numer- 
ical evaluation of the corresponding 
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coupling predicts a frustrated intrastopband multi- 
mode resonance just below T=  120°C in consistence 
with the measured spectrum. Since on one hand, there 
are no indications of a split of this observed resonance 
and on the other hand, there are no weak two-mode 
couplings present in the tuning range, we suggest this 
resonance to result from the mentioned multi-mode 
coupling. 

The experimental mode spectrum of the waveguide 
with pitch L=249.9 gm and oversize factor f~-10 is 
shown in Fig. 18. The geometry of this waveguide 
corresponds approximately to that used by Preiswerk 
et al. [12-14] for the first realization of the HFB gas 
laser with the difference that the corrugation of the 
discussed waveguide is cut with another screw tap. In 
contrast to the single resonance observed by Preiswerk 
et al. [12-14], we detect a large number of resonances 
distributed over the entire tuning range. Correspond- 
ingly, measurements on various waveguides with of- 
ficially identical geometry have shown a strong vari- 
ation in the detected mode spectra. From the experi- 
mental point of view, it seems that the coupling 
responsible for the resonant modes around T= 100 °C 
occurs easily, whilst the set of resonances in the center 
of the spectra was found to be the most critical. For all 
investigated waveguides, we observed at least one 
resonance near T= 100°C, yet only for the waveguide 
discussed here, all the resonances of Fig. 18 were 
observed. 

The mode competition in the temperature tuning 
range below T = l l 0 ° C  gives rise to one instable 
resonance (dashed peak) located at T=  100°C. Under 
the assumption that this peak represents a true reso- 
nant mode, the comparison between experiment and 
two-mode coupling theory for the TMo2/TE12 cou- 
pling gives good agreement for all four observed 
resonances in this range. For the best fit of the output 
power, we used the small-signal gain eo = 1.17 m-  1. In 
the temperature range from T= 150°C to 200°C, the 
mode competition between the resonant modes is 
stronger than at lower temperatures. This serves as an 
indication of a higher resonance density, equivalent to 
a stronger coupling. Correspondingly, we assign the 
observed resonant modes to various longitudinal 
modes of the TE32/TM_21 coupling which is about 
twice as strong as the TMoz/TElz coupling and 
exhibits a lower stopband edge at T=190°C. In 
contrast to the resonances near T= 100°C, the three 
lowest longitudinal modes centered around the mode 
at T=  186°C show a mode competition which does not 
exhibit distinct resonances at shifted temperatures, yet 
a more or less well-defined broadening of the main 
resonance ~ = - 2. For this reason, not all longitudinal 
modes expected are present in Fig. 18 but only those 
with distinct peaks. We assume that the observed 

feature of this mode coupling has its origin in the 
previously mentioned difficulties in exciting the 
coupling. 

Finally, the split strong resonant modes occurring 
above T= 225°C are identified with the TM31/TE_22 
coupling with the lower stopband edge at T=  249 °C. 
The observed mode separation for the four lowest 
longitudinal modes at the lower stopband edge of this 
coupling once more coincides to a high extent with the 
calculated resonant tuning temperatures. The esti- 
mated output power for these four modes with a small- 
signal gain e0 =0.70m-1 also agrees well with our 
experiment. In order to verify the calculated lower 
stopband edge, we extended the temperature tuning 
range to T=275°C without observing additional 
resonances. 

Measurements on a helical waveguide with over- 
size factor f - 6  show without exception only a weak 
superradiation from the CH3F-laser gas. According to 
theory, the corrugation parameters promise two stop- 
band edges within the temperature tuning range. Both 
couplings, however, are almost twice as strong as the 
observed strong couplings in the DFB waveguides of 
Figs. 13-15. Consequently, the virtual resonator mir- 
rors of the corrugated waveguide become practically 
perfect and the mode couplings only cause a build-up 
of an internal field without allowing for any output. On 
the other hand, we detect many resonances homo- 
geneously distributed over the temperature tuning 
range for a waveguide with oversize factor f-~ 12. Due 
to the large number of either weak or strong couplings 
with an interaction region in this range, no definite 
identification of resonant modes can be performed. 
None of the resonances, however, reaches the output 
power of the strongest modes detected in the other 
single-helix HFB waveguides. 

2.7. Measurements on Double-Helix HFB 
Waveguide 496 l.tm CH3F Lasers 

For the first time, we have achieved laser action with 
hollow corrugated metal waveguides with the symme- 
try of the double helix as feedback devices. Figure 19 
shows the measured mode spectrum of a waveguide 
with pitch 2L= 499.8 gm and oversize factor f-~ 8. As 
expected for the temperature range below T= 170°C 
where the observed resonance density is high, the mode 
competition in this region is strong. As a consequence, 
the presented spectrum is therefore a combination of 
different scans. In contrast, the two rightmost broad 
resonances are both reproduced unaltered from scan 
to scan. This indicates that we in the upper tuning 
range are dealing with an effectively high mode 
separation as a result of a weak coupling. 
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Fig. 19. Resonance spectrum of an HFB laser with a double-helix 
waveguide of corrugation pitch 2L=499.8~m, mean radius 
a = 1.948 mm, and first Fourier coefficient al = 75.5 ~tm. The open 
circles (o) on the dash-dotted saturation curves indicate the 
calculated output powers and resonance temperatures for the 
lowest longitudinal modes below the lower stopband edge of the 
TEll/TEl2 , TMol/TE22, and TMll/TE12 couplings. For the 
best envelope fit, we used the small-signal gains % = 1.00 m-1, 
% = 0.85 m-~, and ao = 1.00 m-a. The first of the two remaining 
resonances is identified with the first longitudinal mode above the 
upper stopband edge of the TE01/TE2~ coupling, and the one at 
highest resonance temperature represents a frustrated intrastop- 
band mode of the multi-mode coupling between TE and TM 
modes belonging to the m+ =0 and m_ =2 sets of modes (cf. 
Fig. 6) 

The identification of the observed resonances can 
be performed similar to that of the DFB and the single- 
helix HFB waveguides. The only basic difference is that 
we now have to apply the chirality factor rh = 2 for a 
right-handed double helix in the selection rule (48) for 
the selection of the possible two-mode couplings. 
From the calculation of all resonance temperatures 
within the spectral window investigated, we can iden- 
tify the three resonances at the lowest temperatures 
with the first three longitudinal modes at the lower 
stopband edge of the TE 11/TE12 coupling. The next set 
of four distinct resonances can be assigned with the 
same accuracy to the TMo~/TE22 coupling which has 
its lower stopband edge at T =  104°C. Since its cou- 
pling strength is twice that of the previous coupling, its 
spectrum is denser. The three following resonances 
between T = 1 3 4 ° C  and T = I 6 0 ° C  in Fig. 19 can be 

identified with the TM 11/TE12 coupling whicfi is the 
only one with an interaction region in this temperature 
range. Its lower stopband edge is located at T =  167°C, 
whilst its coupling strength is between those calculated 
for the previous two couplings. 

In analogy to the spectra presented for DFB-laser 
waveguides, the dash-dotted envelopes represent the 
normalized output power according to (79) fitted to the 
experimental data. The circles denote the theoretical 
resonance temperatures which have to be compared 
with the experimental resonances indicated by the 
hatches on the temperature axis. Again, the qualitative 
reproduction of the power characteristics and the 
striking agreement between experimental and theoret- 
ical resonance temperatures are remarkable. The 
output-power fits are calculated for the three couplings 
with the small-signal gains ~0 = 1.00 m -  1, 
~o =0.85 m -a, and ao = 1.00m -1. 

Finally, we observe in Fig. 19 that the resonant 
modes at T = 1 8 3 ° C  and T=2 1 0 ° C  are more than 
twice as broad as the other resonances of this wave- 
guide, which implies that their origins are either weak 
two-mode couplings or multi-mode couplings. In 
agreement with this assumption, we find that the only 
weak coupling at hand, i.e. the TEol/TEzx coupling, 
has its first longitudinal mode ~=  + 1 above the 
stopband at T =  181.5°C. The next longitudinal mode 

= + 2 of this coupling is located at T = 213 °C. Since 
the threshold gain of this mode exceeds the maximum 
gain of the CH3F gas at 496.1 ~tm [73], we doubt, 
however, that this mode can oscillate. Instead, we 
postulate a frustrated stopband mode of the multi- 
mode coupling between the sets of modes m+ = 0  and 
m_ = 2 as an explanation of the observed resonance at 
T=210°C.  The contour plot of the theoretical evalu- 
ation of the determinant of the transmission matrix 
(59) for this multi-mode coupling which includes eight 
forward and eight backward propagating modes is 
shown in Fig. 5. As shown, the resonance at T = 208 °C, 
which has the lowest threshold gain, fits well with the 
measured peak. Since its threshold gain is slightly less 
than that for the ~ = + 1 of the TE01/TE2~ coupling, 
the difference in output  power between these two 
broad resonances can be explained as well. 

Double-helix HFB resonances have also been 
observed for a 496 gm laser with a waveguide of 
oversize factor f -~  10. The resulting spectrum is shown 
in Fig. 20. Instead of combining different scans in order 
to avoid smearing out of resonances due to mode 
competition, we have represented the rarely oscillating 
resonances by dashed lines as in Figs. 16-18. For  the 
waveguide with the parameters indicated in Fig. 20, we 
find three two-mode couplings which match the 
measured spectrum. The experimental resonance tem- 
peratures for the four resonances below T = 7 5 ° C  
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Fig. 20. Resonance spectrum of an HFB-laser with a double-helix 
waveguide of corrugation pitch 2L=499.Sgm, mean radius 
a = 2.449 mm, and a~ = 74.8 gin. The open circles (o) on the dash- 
dotted saturation curves indicate the calculated output powers 
and resonance temperatures for the lowest longitudinal modes 
below the lower stopband edge of the TE~ z/TM_~, TE¢~/TE_ ~, 
and TMoz/TE~z couplings. For the best envelope fits, we used the 
small-signal gains % = 1.20 m- ~, ~o = 0.65 m- ~, and 
~0 = 0.68 m- ~ 

agree well with the TE 32/TM_ 11 coupling as indicated 
by the open circles of the dash-dotted power envelope 
fitted with the small-signal gain % = 1 . 2 0 m  -~. An 
interesting feature of Fig. 20 is the output power of 
mode ~ = - 6, which is considerably stronger than that 
of mode ~ =  - 5 .  An explanation may be the slightly 
inhomogeneous temperature distribution over the 
waveguide length above room temperature. This im- 
plies a more efficient coupling at room temperature 
than at higher temperatures where the distribution of 
the corrugation pitch or period becomes broader. A 
similar, yet smaller deviation between saturation fit 
and measured spectrum is also observed for the ~ = - 3 
mode of the TE~I/TE~2 coupling at T = 2 5 ° C  in 
Fig. 19. With similar agreement between experimental 
and theoretical resonance temperatures, we can iden- 
tify the residual observed resonances of this waveguide 
by the TEgl/TE_22 and the TMo2/TEz2 couplings 
with lower stopband edges at T = I I 3 ° C  and 
T=157°C.  For  the output-power fits of these cou- 
plings, we have applied the small-signal gains 
% = 0 . 6 5 m  -1 and % = 0 . 6 8 m  -1. 

2.8. Dependence of DFB and HFB Resonances 
on the Polarization of the Pump Radiation 

In order to investigate the dependence of the FIR 
output power on the polarization state of the CO2- 
laser pump beam, we have applied an AR coated 
quarter-wave plate mounted in a holder which permits 
a continuous rotation around the direction of propa- 
gation of the pump beam. Furthermore, we have 
replaced the Brewster-angle mount  on the pump side 
of the waveguide 496 gm CH3F laser by another 
mount  with the salt window almost perpendicular to 
the beam. This serves to minimize the discrimination of 
different polarizations and simultaneously to avoid the 
formation of an external resonator (cf. Sect. 2.3). 

A result of this kind of measurements is shown in 
Fig. 21. Here, the normalized output power for five 
resonant modes of the DFB-laser waveguide with 
period L=252.0 gm (Fig. 16) is shown for different 
rotation angles of the quarter-wave plate. As observed 
in the figure, a linearly polarized pump beam favours 
the resonances below T = 100 °C, whilst the resonances 
at higher temperatures reach maxima for circularly 
polarized pump radiation. The influence of the polar- 
ization on the threshold condition for the different 
resonances is not covered by the coupled-wave theory 
described in Sect. 1. Nevertheless, it seems obvious that 
resonances belonging to the same coupling react sim- 
ilarly to a change in the pump polarization. Conse- 
quently, we can apply the pump-polarization measure- 
ments to confirm the identification of the resonances in 
the spectra. A comparison between different measure- 
ments at the same resonance shows that small changes 
in the operational conditions can cause a noticeable, 
yet not always reproducible variation of the magnitude 
of the minima observed for the curves in Fig. 21. 

L =252.0 ,u,m DFB v T=56oc • T=167oc 
a =2.369 mm o T=73oc ,~ T=Igooc 
a = 92.3 pm o T=96oc 

LCP LP RCP LP 

, - - I  . 

0.5 

, , .~,. _ #;, q 
~ " ~  11 .d • 

0 90 
rotation angle [deg] 

Fig. 21. Dependence of the FIR output power on the polarization 
state of the pump radiation for five different resonances of the 
DFB resonance spectrum shown in Fig. 16. The normalized 
output power is plotted versus the angle adjust of the quarter- 
wave plate 
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Fig. 22. Dependence of the FIR output power on the polarization 
state of the pump radiation for three different resonances of the 
single-helix HFB resonance spectrum shown in Fig. 18. The 
normalized output power is plotted versus the angle adjust of the 
quarter-wave plate 
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However, the angles corresponding to maximal and 
minimal output powers remain unchanged for a given 
resonance. This implies that these angles are specific 
for each coupling. The errors indicated by bars are due 
to variations occurring in each measurement. They do 
not include variations among different experimental 
surveys of a fixed resonance. 

Experimental measurements on waveguides with 
helical symmetry showed similar characteristics with 
the difference that every investigated resonance shows 
a maximal output for linearly polarized pump radi- 
ation. In Fig. 22, the behaviour of one resonance of 
each set of resonances shown in Fig. 18 is illustrated. 
The total absence of the resonance at T=  186°C for 
both circular polarization states is remarkable. Among 
all the investigated strong resonances, this is the only 
which exhibits such a strong dependence on the 
polarization of the pump radiation. It is difficult to 
determine whether the TE3//TM_21 coupling really 
implies a higher discrimination of circularly polarized 
pump radiation than the other observed couplings, or 
whether the observed effect is merely a result of a less 
efficient pumping. Since the maximum output powers 
for the T= 100°C and the T=  186°C resonances are 
approximately equal, it seems obvious, however, that 
the dependence on the polarization of the pump 
radiation plays a dominant role. 

In contrast to the investigated DFB-laser wave- 
guides, the right-handed HFB-laser waveguides show 
a weak, yet definite indication of a lower oscillation 
threshold for right-handed than for left-handed cir- 
cular pump polarization. This implies that a proper 
theory of the observed features has to include the 
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polarization of the pump beam as well as the symmetry 
of the waveguide corrugation. 

3. Conclusions 

We have performed theoretical as well as experimental 
studies on circular oversized hollow periodic and 
helical metal waveguides used in DFB and HFB FIR 
gas lasers. These waveguides are tuned to the DFB and 
HFB resonances by thermal expansion. 

The theoretical investigation is based on the 
coupled-wave theory, which was extended in order to 
allow for the coupling of an unlimited number of 
simultaneously counterrunning modes in the cor- 
rugated waveguide. In analogy to the derivation of the 
resonance condition in the scalar formalism of the two- 
mode coupling, we derived the corresponding re- 
sonance condition for the generalized multi-mode 
coupling in a matrix form. Moreover, both the trans- 
mission and the reflection matrix characteristic for the 
oversized periodic or helical waveguides were for- 
mulated. When the number of counterrunning modes 
is reduced to two, all expressions derived for the multi- 
mode coupling revert into those relevant for the two- 
mode coupling. This is a confirmation of the validity of 
our multi-mode extension. Our numerical investiga- 
tions of the resonance condition have shown that the 
resonances of a multi-mode coupling can be divided 
into different categories depending on whether the 
individual two-mode couplings involved in the multi- 
mode coupling are interfering or not. On the first hand, 
in regions where the interaction between different 
couplings is weak, the calculated resonance spectrum is 
practically identical with that of the solution of the 
resonance condition of the simple two-mode coupling. 
On the other hand, resonances occuring in regions 
where various two-mode stopbands are either fully or 
partly overlapping cannot be compared with re- 
sonances of a two-mode coupling. The important 
feature of these resonances is that the threshold gains 
of these so-called frustrated intrastopband modes are 
considerably higher than the corresponding gains for 
pure two-mode couplings. Therefore, we conclude that 
the generation of a multi-mode resonance becomes 
suppressed in the presence of resonances originating in 
a pure two-mode coupling although the corrugated 
waveguide is strongly oversized. Oscillations due to 
multi-mode coupling are consequently only possible at 
frequencies, or temperatures, sufficiently far away from 
the stopband edges of the two-mode coupling. 

In the experimental part of this study, we have 
measured the mode spectra of a large number of DFB 
and HFB gas lasers of different geometries. We have 
for the first time realized and investigated circular 
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symmetric waveguides with periodic wall corrugations 
and demonstrated operation of HFB lasers with the 
waveguide symmetry of the double helix. For  HFB 
lasers with single-helix waveguides, we have succeeded 
in increasing the number of observed laser modes. The 
reproducibility of detected laser spectra for different 
waveguides with identical geometries within the frame 
of the manufacturing tolerances was found to be good 
as far as the position of the observed resonances is 
concerned. The output power of the individual laser 
modes, however, shows a strong variation from 
waveguide to waveguide. This fact is an indication for 
the assumption that the average waveguide param- 
eters alone are responsible for the location of the 
resonances on the frequency or temperature axis, 
whilst small local deviations along the waveguide axis 
can affect the effective threshold gains of the laser 
modes. 

The statement that the probability of a laser 
oscillation originating in a multi-mode coupling is low 
due to high threshold gains was experimentally veri- 
fied. Almost all of the detected laser modes of the 
various investigated waveguides were identified with 
modes assigned to pure two-mode coupling. Those 
resonances, however, which could not be explained in 
terms of two-mode couplings were found to coincide 
well with calculated multi-mode couplings of low 
threshold gains. The good agreement between theoret- 
ical predictions and experimental observations con- 
cerning resonance temperatures and separations be- 
tween consecutive longitudinal modes is a confir- 
mation of the validity of the coupled-wave theory 
applied. It also manifests the accuracy of the overlap 
integral for the calculation of the coupling strengths 
and the selection rule for coupling modes in hollow 
metal waveguides with periodic or helical 
corrugations. 

Although the linear coupled-wave theory in its 
usual form is found satisfactory for the interpretation 
of the observed resonance temperatures, it cannot be 
used to explain the observed output-power character- 
istics of the longitudinal modes in a strong coupling. In 
disagreement with the prediction of strongest output 
power at the stopband edges made under the assump- 
tion of a medium gain independent of intensity, we 
observed a shift of the maximum output power away 
from the stopband. This feature observed for the first 
time is explained by the introduction of a nonlinear 
gain into the coupled-wave equations in accordance 
with an approach by Haus [63] derived for strong 
coupling. The optimal longitudinal mode which ex- 
hibits the strongest output power is found theoretically 
as well as experimentally to vary with the coupling 
strength. In case of a sufficiently weak coupling, the 
effect of the saturation disappears as far as the output- 

power is concerned. In this case, the output-power 
characteristics are described by the linear coupled- 
wave theory. 
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