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Abstract. A sharp increase in the variance of the photon counting distribution for long 
collection times indicates an intermittent fluorescence signal, caused by (macroscopic) 
quantum jumps. Mandel's Q-parameter presents a convenient measure for the deviation of 
the actual statistics from that of a Poisson process. While the short time limit of Q(T) reflects 
the quantum statistical properties of individual emission events, the long time behaviour is 
dominated by the quasi-classical aspects of a random sequence of bright and dark periods. 
The typical signatures of quantum jumps, as they appear in the statistical description, can be 
visualized when comparing fluorescence from a two- and a three-level system. The classical 
aspects become obvious when comparison is made between the properties of a classical 
random telegraph signal and those of the quantum statistical calculation. 

PACS: 42.50Q 

To emphasize the various peculiar features of quantum 
mechanical processes, it has been particularly helpful 
in the past to devise elementary and transparent 
experiments that involve e.g. only a few atoms. 
Oversimplified as they were, those experiments il- 
lustrated very clearly certain specific aspects of the 
quantum mechanical formalism and were of invalu- 
able pedagogical importance. However, it was com- 
monly understood that they are forbiddingly unreal- 
istic, so they could never be performed in practice. 
Nobody in the time of Einstein and Schr6dinger was 
able to prophesy the revolutionary technical develop- 
ments that would bring those Gedanken-experiments 
into reach of a laboratory test. Since it became possible 
to store and to manipulate a small number or even a 
single ion for an arbitrarily long time in a trap [1], 
those "impossible" Gedanken-experiments suddenly 
became feasible. 

Among such suggested elementary experiments is 
the measurement of the randomness of fluorescence 
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photons from a single atom. Particularly attractive was 
the idea to look for photons from a long-lived state, 
since here the quantum jumps should occur at conve- 
nient time intervals of between 1 and 100 s - the 
corresponding signal, however, would be extremely 
weak. In order to raise that signal to a measurable 
macroscopic level, it was suggested that one couples the 
forbidden transition via a common level to an allowed 
transition [2, 3]. The individual quantum jumps from 
the metastable state could then be monitored by the 
random appearance and extinction of the strong 
fluorescence signal. This phenomenon is obviously a 
unique single atom effect, which is averaged out 
entirely in the presence of a number of scatterers, since 
part of the atomic ensemble contributes to fluo- 
rescence, while the rest remains shelved in the meta- 
stable state. 

For the description of this quantum mechanical 
single-particle effect, it is necessary to formulate the 
photon statistics in greater detail. A quite general tool 
for the characterization of the statistical behaviour of 
light is the photon counting probability W(n, T, q) i.e. 
the probability of registering n events in an observation 
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interval of duration T. Here ~/is the quantum efficiency 
of the entire detection process, which takes into 
account that not every photon emitted is also recorded. 
Spontaneous emission is triggered by vacuum fluctu- 
ations, therefore the counting probability must be 
derived in a quantum mechanically consistent way. 
Cook and Kimble [4] have revived interest in this 
problem by a heuristic description of the jump proba- 
bilities and subsequent papers have treated the prob- 
lem with various degrees of rigor - from plausible 
assumptions to attempts at a first-principles derivation 
[5-15]. Since Dehmelt first suggested this pheno- 
menon in 1975, it was more than 10 years before this 
effect was demonstrated experimentally [16-18]. 

While the counting probability W(n, T, ~l) for arbi- 
trary n provides a detailed description, it can hardly 
ever be obtained analytically for the general case. Even 
the probability of observing no event W(n=0, T, q) 
already requires the knowledge of the entire hierarchy 
of multiphoton correlation functions [10]. Provided it 
is possible to calculate the "no event" probability 
W(n = 0, T, ~/) in analytical form, then it is a straightfor- 
ward task to find the probability for arbitrary n by 
differentiation: 

The analytical form is essential, since we are interested 
in n varying from 1 to 108. A more compact, but less 
complete characterization of the statistical behaviour 
is contained in the ensemble averages, such as the 
moments and the variances of the photon counting 
rates: 

or Mandel's Q-parameter 

It may appear that in order to calculate those averages 
we would need the complete probability distribution 
W(n, T, i/) anyway, and by summing over n we could 
only lose most of that information again. Fortunately 
this is not the case, and there is a less cumbersome way 
to obtain those averages directly. It is entirely sufficient 
to know W(n = O, T, q) and its first and second order 
derivatives to calculate the average photon number 
and its variance. This can be seen by inserting (1) into 
(2) and (3) and by interpreting the obtained sum as a 
Taylor series: 

In order to demonstrate how the occurrence of quan- 
tum jumps can be read off from the variance, we 
compare the properties of a driven two-level system 
which lacks this feature, with the fluorescence signal 
from a three-level atom. Rate equations are compared 
with the more involved Bloch treatment to demon- 
strate the role of coherent superposition states and 
Rabi oscillations. 

It has been suggested- rather convincingly- on the 
basis of classical arguments that, in the limit T~o% 
Q(T) must vanish in general [19]. The basic idea was 
that for large collection times in a photon counting 
experiment, the intensity fluctuations should be aver- 
aged out, since the intensity enters only under the time 
integral. In the quantum mechanical formulation, 
however, this is clearly not the case, neither for the two- 
nor for the three-level system. In such a situation one 
might be tempted to attribute this discrepancy to the 
action of quantum fluctuations. On closer inspection, 
however, it appears highly improbable that such a 
large deviation, especially in the long time limit, should 
be a consequence of quantum effects. In order to clarify 
this point, we present an entirely general and classical 
calculation, based on a Markovian process which 
demonstrates clearly that there exists no universal long 
time limit for Q(T). A model of dichotomous noise, 
which intuitively simulates the intermittent f l u -  
orescence classically, is presented in Sect. 2.3 and 
compared with the quantum result. While the predic- 
tions do not agree in the short time limit, they do so 
quantitatively for long times. This comparison is 
helpful for the interpretation of the general quantum 
mechanical result. 

1. General Definitions and Results 

1.1. Quantum Mechanical Photon Counting Statistics 

In a photon-counting experiment light falls on the 
cathode of a photomultiplier creating a sequence of 
random electrical pulses. The average counting rate is 
proportional to the intensity of the incident field. In 
this section the photon counting statistics is deter- 
mined for systems where the quantum nature of the 
field as well as of the detection process is relevant. The 
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probability of observing n counting events in a time 
interval of length T was first evaluated in a quantum 
mechanically consistent way by Glauber [20] and 
independently by Kelley and Kleiner [21] 

W(n, T)= l Tr {QT(rl i Tb +(t)b(t)dt)" 

x exp ( - r l  i ~b + (t)b(t)dt) } . (8) 

The intensity of the light is given by 7b+(t)b(t), where 
b(t) and b+(t) are the boson operators of the field. 
denotes the spontaneous emission rate of the consi- 
dered transition. We combine the quantum efficiency 
q, which is typically of the order 10 - s, with 7 to give the 
factor 2 = t/7. The trace over the statistical operator of 
the field Q corresponds to an averaging over the 
fluctuations of the field intensity in the classical case. 
Characteristic for the quantum mechanical nature of 
expression (8) is also the operator T,, which introduces 
an ordering of the non-commuting operators b(t) and 
b+(t), according to the following rules: 
- normal ordering of the operators b ÷ and b, 
- time ordering of the operators b(t) with time increas- 
ing to the left, 
- time ordering of the operators b+(t) with time 
increasing to the right. 

Normal ordering guarantees that the probability of 
detecting more photons than are contained in the field 
vanishes. The time ordering is a remnant of the 
perturbative origin of (8). 

Given W(n, T) we are in a position to determine all 
relevant statistical properties, like the mean value or 
the variance of the photon number. The mean number 
of photons counted during an interval T is related to 
the mean intensity 7 (b+b) by: 

T 
( n ) =  ~, nW(n, T)=2 ~ (b+(t)b(t))dt. (9) 

n=0 0 

Similarly, the variance of the photon number is related 
to the two-photon correlation function: 

<A2n) = <n2)- <n> 2 = (n ) - -  <n) z 
T t 

+222 1 dtl dt'(b+(t')b+(t)b(t)b(t')} . (10) 
o o 

The deviation of the statistics from that of a Poisson 
process is conveniently characterized by Mandel's 
Q-parameter: 

<~ 2n) - (n>  Q(T) = 

222 T , 
f dt  I dt'<b+(t')b+(t)b(t)b(t')> > - 1 

= - < ~ > + ( ~ > o  o = 
(11) 

,1 Y' 

- ~ y 2 

Fig. 1. Energy-level diagram considered in this paper. The 
ground level 13) is coupled coherently to level I1) that can decay 
either back to 13) by induced or spontaneous emission or to the 
metastable state 12) and from there on to 13). We will consider the 
case where y >> ~' 

A light field with a stable intensity displays only the 
Poissonian fluctuations of the measurement process 
and therefore Q = 0. Fluctuations of the light intensity, 
if they are of classical origin, are observed as an 
additional broadening above the Poisson limit i.e. 
Q>0.  Sub-Poissonian statistics with a variance less 
than that of a Poisson process, i.e. Q < 0, is a subtle 
quantum phenomenon, since it is not compatible with 
the laws of classical statistics. 

Under the assumption of stationarity, GI is time 
independent and G2(t, t') depends only on the time 
difference t -  t': 

Gl(t ) = (b +(t)b(t)) = GI(0 ), (12) 

G 2 ( t ,  t ' ) =  (b +(t')b+(t)b(t)b(t')} = G 2 ( [ t -  t '  D. (13) 

As a consequence, one of the integrals in (9) and (11) 
can be carried out explicitly and we obtain: 

(n) = 2G 1 T, (14) 

T G2(t ) 

In order to calculate the field correlation functions G1 
and G2 we have to relate the properties of the field to 
those of the atomic sources. We will consider here a 
three-level atom with an allowed and a forbidden 
transition, where the allowed one is driven resonantly 
by a laser field (Fig. 1). This is a level configuration 
which is known to display quantum jumps [5, 7, 12, 15, 
22]. In order to emphasize the typical traces left by the 
jumps in the photon statistics, we will compare the 
results for the three-level system with those derived for 
a two-level atom. 

The amplitude of the fluorescence field is deter- 
mined by the polarization of the atomic source and we 
find, apart from geometrical factors [23, 24]: 

G1 = ~)S~, (16) 

G2(t)=~SS h(t), (17) 

t 

22 ~ dr! dt'h(t') ss (18) Q(T)= T-o -2ql~T, 
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where h(t) is the probability of finding the system in the 
excited state of the fluorescent transition if it had been 
prepared in the ground state initially, h(t) is obtained as 
the solution of the corresponding Bloch equations. The 
stationary population of the excited state ss ~ 1 is the 
limit of h(t) for t ~  oo. Before presenting the details of 
the calculations in the next section, we first want to 
discuss some general properties and the limiting 
behaviour of Q(T). 

For small times T, Q(T) is obtained by Taylor series 
expansion of h(t) in (18): 

Q(T) = - 2e ss r +  ~/i(t = 0)T 2 . (19) 

It should be noticed that Q(T) always assumes negative 
values for small times, corresponding to sub- 
Poissonian statistics, irrespective of the specific process 
under consideration, h(t = 0) vanishes by definition and 
since h(t) is positive for all times, /~(t=0) must be 
positive as well. The sub-Poissonian character 
becomes most prominent for times of the order 
T=3oss/2h(t=O) where Q(T) has the value 
Q = - 32(¢ss)/4/~(t = 0). 

In the limit of long collection times T--. oo we find 

lira Q(T) = 22 lim Ozh(z), (20) 
T - + m  z 0 ~ Z  

where h(z) is the Laplace transform of h(t). h(z) is 
obtained directly from the Bloch equations and does 
not require their solution, as shown in more detail in 
Sect. 2. 

One might suspect naively that Q(T~ m) vanishes 
in general, since the photon statistics in (8) depends 
only on the time integral over the intensity. For times T 
large compared to the characteristic time scales of the 
intensity fluctuations, the time integral, apart from the 
norm, becomes identical to the time average. When we 
identify the time average for a moment with the 
ensemble average over the intensity, then the trace in 
(8) is to be taken only over the density operator ~ and 
the photon distribution obviously becomes Poissonian 
[19]. This intuitive line of reasoning, however, is not 
correct, certainly not for the quantum mechanical case, 
nor even for the classical one. Q(T= oo) vanishes only 
under rather special additional conditions, as can be 
seen from (20) or equivalently from: 

l im(i[Ga(t) -G~]dt)=O or ~[h(oo)-h(t)]dt=O. 
T-+ m 0 (21) 

We will demonstrate that for a two-level system these 
relations are asymptotically satisfied e.g. for strong 
coherent as well as incoherent pumping, while for a 
three-level system they have no solution for any 
relevant choice of parameters. 

1.2. Classical Photon Counting Statistics 
In order to separate the classical from the quantum 
behaviour, it is useful to summarize briefly the results 
obtained from a classical description. The term photon 
is used here only to indicate the discreteness of the 
photon counting events and does not relate to the 
quantized states of the field. It is in this sense that we 
use the term "classical photon statistics". While the 
limiting behaviour of Q(T) for small time intervals 
depends sensitively on the use of the classical or the 
quantum description, the deviation from the Poisson 
statistics for long times is observed in both cases. The 
basic equation (8) simplifies considerably for a classical 
light field, when we replace the field operator 7b + (t)b(t) 
by the classical intensity I(t) and T by unity 

W(n,T)=(~ . ( r l i l ( t )d t )"exp( - r l i I ( t )d t ) ) .  (22) 

The brackets denote the ensemble average over the 
field fluctuations, since I(t) has now the meaning of a 
classical stochastic variable. The main statistical pro- 
perties follow from the mean photon number and its 
variance, similarly to (9) and (10), 

T 

(n) = tl I (I(t) >dt, (23) 
0 

I dt ~ dt'(I(t)I(t')) - (I(t))dt 
Q(T)=t/o o (24) 

T 

i (I(t))dt 
0 

We assume that the intensity fluctuations can be 
characterized by a continuous Markov process de- 
scribed by a Fokker-Planck equation, quite similar to 
the traditional laser models. P(I, t)dI is the probability 
of finding the field intensity in the interval between I 
and I + dI at a time t. P(I, t) is obtained as the solution 
of an appropriate Fokker-Planck equation: 

gP 
St -- L(I, g/8I)P(I, t), (25) 

where L is the Fokker-Planck operator for the fluo- 
rescence process. We denote the eigenfunction of the 
Fokker-Planck equation (25),by Pn(I) and the eigen- 
values by 2 n, which have the meaning of relaxation 
rates, 2, > 0. Then the transient solution of the Fokker- 
Planck equation can be written in the form: 

P(I, t) = ~ c,P,(I) exp(-- 2,t), (26) 
n = 0  

where cn is determined by the initial condition. Since 
we have made use of the Markov assumption, the joint 
stationary probability density is given by: 

P(I1, tl, 12, t2) = ~ Pn(I1)P,(I2) exp [ -  2,(tl - t2)]. (27) 
11=0 
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With these definitions it is straightforward to express 
the moments and variances of the photon counting 
statistics in terms of the eigenvalue solutions. We find 

Gl(t) = GI(0) = I41o, (28) 

G2(t )=Wg+ ~ WEe -z"t (29) 
n = l  

and 

Q(T)=W~oTon~l~[1-~--~(1-e-)'"T)], (30) 

where we used the following definition: 

IV, = ~ xP,,(x)dx n = 0, 1, 2 . . . . .  (31) 
0 

Now it is possible to discuss the properties of Q(T) and 
its asymptotic behaviour for an arbitrary classical 
process. The only restriction is that the intensity 
fluctuations are assumed to be Markovian. We find in 
the long time limit: 

2t/ w. 
lim Q(T)= T-~ ~ Woo. =1 ~ - .  > 0, (32) 

and for small times T 

Q(T) = (33/ 

When comparing the classical results here with the 
quantum mechanical expressions above we find the 
following significant differences: 
- Q > 0 for all T, i.e. a classical process never exhibits 
sub-Poissonian statistics. 
- For small times Q(T) also approaches zero linearly, 
bflt with a positive slope in contrast to the quantum 
mechanical result. 
- For  large times Q(T) assumes a finite positive value 
and there is no general reason why this asympfotic 
value should vanish. In certain limiting cases it might 
be numerically small but still non-zero. Obviously for 
low quantum efficiencies t /~ 1 the Poisson statistics of 
the measurement process dominates and leaves one 
with a small value for Q. Also when all relaxation rates 
2, tend to diverge, the deviation from a Poisson process 
can become negligible. In general, however, the 
behaviour for large times still depends on the details of 
the process and no universal behaviour is obtained in 
this limit. The intuitive picture that the intensity 
fluctuations are averaged out by the time integration in 
(22), leaving us qualitative with the result of a coherent 
field, is not correct, not even in the classical limit. It is 
the short time regime where quantum effects are to be 
seen, while the long time behaviour is of more classical 
nature. As we will see below, the occurrence of 
quantum jumps is indicated by a large positive value of 
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Q(T) for long times this follows from the quantum, as 
well as the classical description. 

2. Mandel's Q-Parameter 
for Two- and Three-Level Systems 

With the general formulas derived in the previous 
section, we are now in a position to calculate the 
Q-parameter explicitly for an externally driven three- 
level system that exhibits quantum jumps. The key to 
these results is the solution of the atomic dynamics 
under the influence of coherent driving fields, i.e. the 
three-level Bloch equations. In limiting cases the 
solutions can be obtained in analytical form, while for 
the general case one has to resort to numerical 
methods. If coherence effects do not play an essential 
role, one may simplify the calculation by making use of 
the rate equation approximation. The Q-parameter, 
which provides only an estimate for the noisiness of the 
field, nevertheless allows one to distinguish normal 
Poissonian fluorescence from the occurrence of quan- 
tum jumps. The typical traces of intermittent flu- 
orescence are easily recognized when we compare the 
three-level system where the jumps occur, with a driven 
two-level system. Since the latter results have been 
derived previously [25], we only summarize them here 
in the present notation. 

2.1. Two-Level System 

Rate Equations. We assume a two-level atom which is 
driven coherently with a rate R. The excited level I1) 
decays spontaneously with a rate 7 into the ground 
state 10). The population of state I1) changes in time 
according to 

h(t) = ~ss(1 - e-(2R + 7)t), (34) 

when it was initially prepared in the ground state, oss is 
the stationary population of state I1): 

R 
~a1=/2 , ._  h(t)_ 2R + 7 . (35) 

Q(T) can be calculated according to (18) with the help 
of (34) and (35): 

2R2 1 
Q(T) = - 

(2R + ~)2 T(2R + ~) 

[e -(2R + ~)r _ 1 + (2R + V) T].  (36) 

Obviously, Q(T) is negative for all times T. Thus even 
the simplest description of a two-level system by the 
"classical" rate equations already shows non-classical 
behaviour - namely sub-Poisson statistics - for the 
photon counting events. This is due to the non- 
classical way of calculating the ensemble averages 
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above, where time and normal ordering must be taken 
into account. 

In this approximation, the time derivative of Q(T) 
is also negative and so Q(T) is a monotonically 
decreasing function. For small times T we find: 

while for large times, Q approaches the asymptotic 
value: 

2R2 
Q°°=r-+o01im Q(T)= (2R+7) 2. (38) 

This example, in agreement with the general ex- 
pressions above, shows a linear decrease for small 
times and a non-vanishing asymptotic value for large 
times. In the limit of strong saturation Q--+0 and the 
fluorescence signal becomes Poissonian for all times. 
The dynamics becomes less trivial when we allow for 
coherence effects and discuss the statistics in terms of 
the Bloch dynamics. 

Bloch Equations. The two-level Bloch equations can be 
solved by Laplace transformation and we obtain 

2){2(z -t- 1/T2) 
h(z) = z[4){z(z + 1/7,2 ) + (z + 1/T 0 (A 2 + (z + 1 /T2)2 ) ]  ' 

(39) 
where T 1 and T2 are the longitudinal and transverse 
relaxation times and A is the detuning parameter. The 
Rabi frequency ){ is proportional to the electric dipole 
moment # and the electric field strength E 

#E 
){ = ~ - .  (40) 

The calculations can be simplified for resonant exci- 
tation A = 0  and for the case where spontaneous 
emission is the only decay mechanism; then 1/T1 =7 
and 1/T= =7/2. In this case h(z) simplifies: 

2){2 (41) 
h(z) = z[4z 2 + (z + 7) (z + 7/2)3" 

In order to invert the Laplace transformation, only a 
quadratic eigenvalue equation has to be solved. 

The stationary solution can be determined from 
h(z) by taking the limit: 

0 ss = lim zh(z) = 2){z (42) 
=-+o 4){ 2 + 72/2 " 

Equations (41) and (42) are inserted into (18) and we 
obtain 

[ ( - - e  cos~T 4){ 2-¼72 1 - ,~r  
Q(T)=Qoo 1 + 4z2+72/2 -~yT 

3 4Z2--72/4 e_{,r  sin(T'~],, 
(43) 

2 4 ) { 2 - b  2 {T JJ 

where oscillations occur for ){>7/8 with a frequency: 

= [//4Z 2 - 72/16. (44) 

An asymptotic nonvanishing value is obtained for 
T ~  oo 

627){ 2 
Qoo = (4z 2 + 72/2)2. (45) 

Only under the additional assumption of saturation i.e. 
){ >> 7 is the Poisson property recovered in the long time 
limit. 

For small times T the signal again shows sub- 
Poissonian behaviour and decreases linearly starting 
from Q(T= 0) = 0 

22){2 2){2 T 3 . (46) 
Q(T)= 4){2_1_72/2 T-t- ~ -  

As a general result for the two-level system, we notice 
that Q(T) < 0 for all T, and only Poisson or sub-Poisson 
statistics is observed. This holds for the rate equations 
as well as for the coherent dynamics and agrees 
qualitatively with experimental results [26,27]. In 
contrast to this behaviour we expect that the enormous 
fluctuations of an intermittent signal must lead to an 
enhancement of noise in the long time limit and 
therefore Q should assume large positive values. 

2.2. Three-Level System 

Rate Equations. A resonantly driven three-level system 
can be described approximately by rate equations, 
which give a first insight into its dynamic behaviour. 
Since they are much easier to handle than the more 
appropriate Bloch equations, we will start with this 
simplified case first. The rate equations for the popu- 
lations of the three atomic levels (Fig. 1) read 

~11 = - - (712  "t-713 +R)o1 ~ + R 0 3 3 ,  

~22 = 712011 - -  723022 , (47) 

033 = (R + 713)011 + 723~zz -- RQ3, 

where R is the laser-induced transition rate into the 
state [1) and the spontaneous emission rates are 712, 
713, and 723- For simplification we assume that 
71z = 723 and abbreviate: 

7=713, 7'=712 =723. (48) 

In all other limiting cases the population is either stuck 
in level 12) or does not stay there long enough to 
efficiently quench the fluorescence from the allowed 
transition and quantum jumps disappear. 

The probability h(t) of finding the system in the 
upper level I1 ), if it has been in the ground state 13) at 
t = 0, can be found by solving the set of differential 
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equations (47) through Laplace transformation 

1 R(z+7'  ) 
h(z) = - . (49) 

z R T ' + ( z + y ' ) ( z + 2 R + ? + 7 '  ) 

The steady state population may then be obtained 
from h(z) as 

R 
#ss = lira ¢ 11(0 = lim zh(z) = (50) 

t . . . .  o 3 R + 7 + 7 "  

To invert the Laplace transformation the poles of h(z) 
are needed 

Z o = O  ~ 

Zl,2 = ½ [ - ( 2 R + ?  +27 ' ) 

_+ ~/(2R + 7 + 27') 2 - 47'(3R + 7 + 7')] 

(51) 

and the transient evolution of Q(T) is governed by the 
time scales set by those poles: 

I t Z 
22R 7 '+z l  (eZlT l _ z l T )  

Q(T)= T(z l_z2)  z~ " 

7 % 2 (eZ2r_l _ _ z 2 T  ) . (52) 

From this general result we directly obtain all the 
desired limiting cases. For small times T we find: 

Q(T)= - 2 T ( o S S -  ~ - ) .  (53) 

Q(T) decreases again linearly similar to the two-level 
result, but here the absolute value of the slope is 
smaller because the population is shared by three 
levels. 

For  large times T we find 

C 
Q(T)=Qoo T '  (54) 

where 

22R R -  7' 
Q~ - ? ~ (3R + ? + 7') 2'  (55) 

C = 22R[R(2R + 7) + ?'(3R - 7')] 
(56) 7'2( 3 R  q- 7 q- 7t) 3 

B o t h  parameters C and Qoo are positive for R > 7' and 
7>7'. This means that Q is no longer decreasing 
monotonically, and there is a change of sign in Q(T). 
The sub-Poissonian behaviour displayed for small 
times turns into super-Poissonian fluctuations for 
large times. The variance of the photon number 
increases dramatically when T is increased beyond 
7'-1, because the number of photons counted over 
such a time interval can differ widely from shot to shot. 
While during an uninterrupted fluorescence period up 

to 10 s photons/s are counted, it is also possible that 
during the entire measurement interval not a single 
event is observed because the electron was shelved in 
the metastable state. 

Bloch Equations. The Bloch equations for a three-level 
system driven by a coherent field in resonance with the 
strong transition [ 1) - [3) are of the form: 

/'/23 = - -  ~V12, 

/)23 ~ - - Z U l 2  ~ 

U12 = Zo23,  

t)12 ~ )~u23 , 

u 1 3 = 0 ,  

1) 13 = - 2XWa 3, (57a-i) 

W12 = ~1)13 , 

W13 = 2ZV13 , 

W23 ~- ~/')13 

where uij, 1)i j, and wq are related to the density matrix 
elements for i,j = I, 2, 3 by 
1Aij = O(j 71- O j i ,  

1)U = - -  i (Qu  - -  O j i )  , (58a-c) 

W i j  = Oil - -  O j j "  

The Rabi frequency is defined as in (40), where/~ is now 
the electric dipole moment of the strong transition. In 
(57a-i) the damping terms have not yet been included. 
Since we are primarily interested in the dynamics of the 
diagonal matrix element 01 l(t) and since the equations 
(57a-e) decouple from the others, it is sufficient to 
consider only (57f-i). We assume that the electron does 
not decay out of the three levels: 

011 -~ 022 "-~ 033 = 1 ,  (59a) 
so that we are finally left with only three equations for 
the variables 011, 033, and 1)13 

/ ~ 1 3 = - - 2 ~ ( 0 1 1 - - 0 3 3 ) - -  1)13 
T2' 

~11 = Z1)13 - -  (712 -[- 713)011,  (59b~1)  

~33 = --Z1)I 3 "[- 713011 "[- 723( 1 - -  011 - -  033) ; 

T 2 is the transverse relaxation time between the states 
11) and [3). Again for simplification we choose: 

7 = 7 1 3 '  ~3' = 7 1 2  = 7 2 3 "  (60) 

h(z) is obtained again by solving (59b-d) through 
Laplace transformation: 

1 2Z2( z q- 7') 
h(z) = - 

z 2Z2? '+(z+? ') [4Z 2 + ( z + 7 + ? ' ) ( z +  TS1)] " 

(61) 
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The steady state population follows from h(z) as in (50) 

SS 2Z 2 (62) 
Oll = 6Z2 +(7  +7,)Tz- 1 • 

The results from the rate equation approximation are 
also included here and can be reproduced from this 
more general treatment by taking the limit T2~0, 
while keeping the transition rate 2z2T2=R constant. 
Henceforth we shall assume that spontaneous emis- 
sion is the only decay channel and take 1/T2 = 7/2. 

The nonvanishing eigenvalues follow from the 
solution of a cubic equation representing the denomi- 
nator ofzh(z). In terms of these poles, Q(T) can formally 
be written as: 

42Z 2 
Q ( T / =  Qo~ - C + (z~ - z 2 ) ( z ~  - ~ ) ( z 2  - ~) 

+7') e (z -zOIz2+¢l 
x [_ z~ z lT  + z~ 

e ~ r  (Z 1 --Z2)(Za +7') e ~ r ]  
x z-~ -~ z 2 z - ~ [ '  (63) 

where Qoo and C are already determined without 
explicit knowledge of the poles z~: 

42zzE2z 2 - Y'(b + 7')] 
Qoo = 7,[6z2 +2&y(7 + 7t)]  2 , (64) 

c = 4ax2 [8z4 + z2(72 + 777' + 107 '2)-  7'~(b 2 +~7 '  + 7'2)] 
7 '216Z 2 + 2JY(Y + 7')] 3 

In the limit of long counting intervals Q(T) approaches 

C 
Q(T)=Qoo T' (66) 

while for short intervals we find the following 
dependence 

2Z 2 3 
Q(T) = - 20Sl s T+ -~-  T . (67) 

The results simplify considerably when the sponta- 
neous transition rates become substantially different 
7' ~ 7, X, which is actually the physically most interest- 
ing case: 

Q(T) =4~,Z 2 ~- , 
2Z 2 Z 2 ( 8 ~ 2  -~- 7 2 ) 

(7 (6Z ~ +-?2/2) z Y'2(6zz + ])2/2) a 

1 - - e  z l T  e -k '~T 

T T(4Z 2 + 72/2) 3 

x [97(X2~y2/16) sin~ T 

+ (4Z2-  772) cos~Tl} , (68) 

, , , , , t b , ¼  ' ' ' ' J J " l  i , l l , J  I , , , b J l , , ]  

I 
L O U 2 .  

/ 

/ 

- -  i 

r , i t l , i , ]  i i i l T i r l  t i i t , i l l [  F i F i ] p l i  ? 
10 -4 10-~ 1 0 - z  1 0 - I  10 ° 

TIME (r) 

Fig. 2. The deviation from Poissonian statistics Q(T) for time 
intervals T smaller than the lifetime of the metastable state y ' -  1 
for Z=5 and y'=10 -4 in units where ~=2=1.  The quantum 
mechanical result (solid curve) shows the typical sub-Poissonian 
behaviour. The swerve is a relic of the RaN oscillations that are 
straightened out almost entirely by the sharp increase of the 
fluctuations. The dashed curve represents the classical result for 
Q(T) (Sect. 2.3 of text) 

where 

12~ 2 + 7 2 
Z1 = --  7' 8Z 2 --[- 7 2 ' 

 =1/4z2-72/16. 

(69) 

(70) 

(65) 

Very compact results are obtained when we further 
assume that the allowed transition is strongly satu- 
rated Z >> 7, Y': 

22 e - i r r -  1 + ~ ' T  
Q(T) = 

97' ~ ' T  

)~e--,l-zr [" ~ z S i n 2 z T ) . .  + 4 ~ - ~ -  ~cos2zT+ 97 (71) 

The asymptotic value Q(T= oo) in this case is: 

22 
Q(T= oo)= , (72) 

97' 

which, in contrast to the two-level case, does not vanish 
for Z~oo but is quite large when quantum jumps, i.e. 
7 >> 7', occur. In this final form the Q-parameter dis- 
plays the initial sub-Poisson statistics, quite similar to 
the results obtained for the two-level system; see Fig. 2. 
Then for longer times a sharp increase occurs, indicat- 
ing a violently fluctuating signal. The coherent oscil- 
lations, which are quite visible for the two-level case, are 
barely to be seen here, since they are ironed out by the 
steep increase of the Q-function; see Fig. 3. 
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TIME (T) 

Fig. 3. Q(T) as in Fig. 2 including also large time intervals. Notice 
that the Q-axis is compressed by a factor 104 compared to Fig. 2. 
The negative values for small time intervals are therefore invisible 
on this scale. Classical (dashed curve) and quantum mechanical 
(solid curve) results agree for time intervals of order 7'-1 and 
more 

2.3. The Random Telegraph Process 

Calculations for a classical process in Sect. 1.2 showed 
that Q(T= 0) vanishes and Q(T) increases monotoni- 
cally. By taking into account the fact that the flu- 
orescence signal consists of bright periods with weak 
Poissonian noise alternating with periods of darkness, 
it seems natural to simulate such a process by a 
random telegraph signal in an entirely classical way. 
This allows us to specify Q(T) for a classical process 
further and to compare the results with those of the 
quantum mechanical calculation. In this model the 
intensity of the fluorescence signal is assumed to realize 
only two different values I=I+ or I = 0  and a single 
trajectory jumps randomly between these two states. 
The probability per unit time for switching from I+ to 
I = 0  is taken to be the rate )[1, while )[2 characterizes 
the inverse transition. The time evolution of the 
conditional probabilities P(I+, t) and P(0, t) is then 
governed by two elementary rate equations 

0 
P(I +, t) = -- )[1P(][ + ,  t) +)[2P(O, t), (73) 

8 
P(0, t) = 21P(I +, t) - )[2P(0, t), (74) 

which preserve normalization: 

P(I +, t)+ P(O, t )= I.  (75) 

The system of differential equations (73) and (74) is 
easily solved for an arbitrary initial condition: for t = 0 
let I = I o where I o is either I + or 0: 

[ )[2 • )[1 6 7 
P(I,t)= [ 2 1 ~  ~ ,+ . r+ 2 ~  o.,J 

x [1 --e -tzl + ~2)'] + 6t.Xo e-t~1 + ~)'. (76) 

The stationary solution is obtained for t--,oo 

~2 ~ 21 
Ps(I) = 21~-22 I + , I  "Af- ~ ( ~ 0 , I "  (77) 

Actually P(I, t)= P(I, trio, 0) is the conditional proba- 
bility for observing the value 1=1+ or 0 at a time t 
provided that the signal had a value Io at the earlier 
time t =0. The stationary and the conditional prob- 
ability allow us to calculate the moments and corre- 
lation functions in explicit form. For the Q parameter 
we find for arbitrary T: 

221 { 1 +  e-(~l+~2)r- 1 )  
Q(T) = t/I + (2 a + )[2) 2 \ (21 + 22)T . (78) 

By expanding the exponential function for small times 
T(21+22)~1 we find: 

) [ 1 [  1 + ) [ ~  ] 
Q(T)=t/I+ )[1 T 1 -  5(21 +)[2)T , (79) 

a result which is again positive, in contrast to what is 
found from a quantum mechanical calculation. 
In the opposite limit T()[1 +)[2) >> 1 we obtain 

1 
Q(T)=Q~(I  ()[1+-22)T), (80) 

with the asymptotic value 

221 (81) 
Q~ =t / l+ ()[1 "~-)[2) 2" 

In order to compare the classical results here with the 
previous quantum mechanical expressions, we have to 
relate the coefficients )[1, )[2, and I+ to the spontaneous 
emission rates 7 and 7'- For simplicity we consider here 
only the case of saturation. In this limit the average 
intensity during fluorescence is given by I + = ~ ,  which 
should not be confused with the ensemble average of 
I(t) which is (I> =½7. The transition probabilities )[1 
and )[2 should be identified with the inverse of the mean 
duration of the bright (oc2/?') and the dark periods 
(oc1/7'). With this replacement we find: 

( ) 22 e - 1  
Q ( T ) =  1 + . (82) 

This model was merely designed to simulate the 
intermittent behaviour of the quantum jump signal in 
an intuitive classical way. Therefore it is not surprising 
that it agrees quite well with the correct quantum 
mechanical description in the long time limit; see Fig. 3 
and (71). However, since it is based on an entirely 
classical approach, the quantum features of the short 
time regime are not reproduced correctly by the 
somewhat naive assumption of a telegraph signal; see 
Fig. 2. The purpose of this undertaking was to confirm 
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from a different point of view our previous interpre- 
tation of Q(T), i.e. that the sharp increase of Q(T) for 
long times is an indication of the onset of random 
intermittencies. 

3. Conclusions 

We now return to our initial question: Is it possible to 
characterize the statistical behaviour of fluorescence 
from a driven three-level system in a simple way? 
While the most  complete description of the photon 
statistics is provided by the counting probabili ty 
W(n, T), it is in general a formidable task to calculate 
W(n, T) in analytical form. In a perturbative way, 
however, this can be done in various limits 1-22] but it is 
still an involved treatment. In order to decide whether 
quantum jumps occur or not, and to determine their 
characteristic properties, it is entirely sufficient to use 
averages over the counting distribution. As demon- 
strated at the beginning, for calculating low order 
moments  or variances, it is not necessary to be in 
possession of the entire probabili ty distribution. By 
comparing the results for two-level systems with the 
corresponding ones for three levels, we have identified 
the typical signatures of quantum jumps,  i.e. the sharp 
increase in the fluctuations occurring when the experi- 
mental collection time is of the order of the lifetime of 
the metastable state or longer. Whereas the long time 
behaviour of Q differentiates between the continuous 
and the intermittent fluorescence, the short time 
behaviour is quite analogous for two- and three-level 
systems. This indicates quite clearly that during the 
emission phase, where the electron undergoes rapid 
transitions along the allowed path, the presence of the 
metastable state is of little influence. In this sense, the 
Q-parameter,  being only a qualitative measure for the 
random fluctuations of the field, nevertheless contains 
enough quantitative information to distinguish be- 
tween continuous emission and the occurrence of 
quantum jumps. 
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