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Abstract. We present here a theoretical study of the nonlinear effect arising from one- and two- 
photon absorption-induced self defocusing in liquids. Experimental results demonstrate power 
limiting of 10ns, 532nm laser pulses by linear and two-photon absorption in concentrated 
solutions of platinum poly-ynes. 

PACS: 42.65 

The large electron delocalizations in the molecular struc- 
tures of organic compounds and polymers are com- 
monly exploited to obtain materials with large third- 
order optical nonlinearities. In our previous work [1, 2] 
we showed that platinum poly-ynes constitute a class of 
organometallic polymers with high values of nonlinear- 
ity, as well as broadband transparency in the visible and 
the near IR. Using picosecond Nd :YAG laser pulses, we 
determined that two-photon absorption is the dominant 
nonlinearity for wavelengths in the 500 to 750 nm range 
- the imaginary part of the third order susceptibility, )~3, 
which gives rise to two-photon absorption, is generally 
larger than the real part of Z 3 by an order of magnitude 
or more in the visible wavelengths. Thus, nonlinear ab- 
sorption is expected to be much stronger than nonlinear 
refraction. However, our power-limiting measurements 
with nanosecond laser pulses on concentrated solutions 
of the platinum poly-ynes also indicated nonlinear refrac- 
tion of the laser beam, which we attribute to the thermal 
lensing effect created by both the linear and the nonlinear 
absorption of the laser beam in the solution. 

In the work reported here, we develop a theoretical 
descripXion of this complicated nonlinear response. This 
nonlinearity cannot simply be characterized by a refrac- 
tive index change n2I proportional to the laser intensity I 
because the order of the effective susceptibility is higher 
than 3. The effect is similar to that in semiconductors 
such as GaAs, ZnSe, or HgCdTe, in which the dominant 
bound electronic nonlinearity is absorptive, but the lin- 
ear and nonlinear absorption-induced free carriers cause 
large refractive nonlinear effects as well [3]. We start our 
theoretical discussion with a series of equations which 
describe the phase change of a laser beam arising from 

the linear and the nonlinear absorption-induced thermal- 
lensing effects. We then determine the effect of this phase 
change on the subsequent free-space propagation of the 
laser beam by calculating the near field, on-axis, laser 
beam intensity transmitted through the polymer solution 
as a function of the incident energy. Finally, these theoret- 
ical results are compared with experimental observations 
on a platinum poly-yne solution. 

1 Theory 

1.1 Nonlinear Changes in Intensity and Phase 

The intensity (I) of a laser beam propagating in the z 
direction through a thin nonlinear medium with linear 
absorption coefficient ~ and two-photon absorption co- 
efficient/~ is given by the equation 

dI 
- ca  - 8 1 2 .  (1) 

dz 

If the spatial and temporal profile of the incident laser 
beam is nonuniform - say, Gaussian - its absorption 
causes nonuniform heating of the medium. The result 
is a nonuniform change in the temperature distribution 
(A T), which in turn, gives rise to a nonuniform change 
in the refractive index (An): 

dn 
An = y - ~  A 7", (2) 

where dn/dT denotes the temperature gradient of the 
refractive index of the medium. The phase change (AqS) 
arising from this An is given by the equation: 

d(A(a) 2re dn 
AT.  (3) 

dz 2 dT 
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The temperature change A T due to heating by the cylin- 
drically symmetric laser beam is obtained from the heat 
diffusion equation: 

d A T  
cQ - ~  = Q ÷ kV2(AT) ,  (4) 

where c denotes the specific heat of the medium, 0 is its 
density, and Q is the amount of heat generated per unit 
length per unit time by the absorbed laser beam, given 
by 

1 dI  
O -  J dz" (5) 
The solution to (4) gives the temperature distribution at 
a point with cylindrical coordinates (ra, z) at a time t for 
the distributed source Q in terms of the Green's function 
G(rl, r~, t) [4]" 

t co 

A r ( r b z ,  t) = dt drl2rCrlQ (rl, t',z)G(rl, 'ri, t'). (6) 

--co 0 

The expression for the appropriate Green's function in 
this case is given by Carslaw and Jaeger [5]' 

1 2 12 , (rlr ) 
G(rb r 1, t') -- 4xkt'  exp L 4~ct' j I0 \ 2~ct' J ' (7) 

where k is the termal conductivity of the medium and tc 
is the thermal diffusivity. 

If l denotes the thickness of the medium, then the 
phase change A q5 at the beam exit of the medium is 
obtained from (3), (5), and (6): 

t co 

A~(rl, l,t)-- 4~2 dn f f , ,  , ,  2J d T  dt' drlr lG(rbrl ,  t ) 
--co 0 

x [I(r'l, t', l) -- I(r'l, t', 0)1. " (8) 

The intensity I(r, t, z) is easily obtained from (1): 

I(r, t, z) = I(r, t, 0) exp(-~z) 
1 + flI(r, t, 0)zA= ' (9) 

where Az = [(1 --exp(--c~z)]/(ez). If we assume the laser 
beam to be focused at the entrance plane of the nonlinear 
medium (i.e., at z = 0), we can write the incident intensity 
in terms of the peak intensity Ip" 

I(r, t, 0) = Ip exp r 2 )5 • (10) 

Then, by defining the dimensionless parameters 
/ I rll = rl/ro,  rll = rl /ro,  

' = t ' / T  l l  = I / z o ,  t l  -= t / '~  , t 1 , 

where z0 = 2nr2/2, and substituting (7), (9), and (10) in 
(8), we can express the phase change A~b as 

t l  CO 

Zlc~(r l l ,  l l , t l )  = A ~ o  / d t ]  / (11) 

-oo o 
Here 

Ad?o = rcAl(dn/d T)Ipr 2 
2kJ (12) 

and 

f ( r l l , r ~ l , t ~ )  = 

Pl (r21 + rl] ] 
exp 2t~ 

io (p lr lCr~l~  
tl \ 71 / 

cd + b l f  l 
x f l  1 + Alb l f l  ' (13) 

where 

Pl = r2/(2~cz), AI = [1 - exp(-e l )] /cd ,  

fl Eol 
bl = fllpl = ~v~ro2z, Is = exp[-(r~ 2 + t~21], 

and Eo denotes the total amount of incident laser energy. 
As shown below, we use Ip, al, and fil as parameters to 
determine the dependence of the nonlinear phase change 
A~b, and later the transmitted beam intensity, on the 
incident energy and the linear and nonlinear absorption. 

1.2 Beam Propagation Equations 

The nonlinearity in the phase of the laser beam due to its 
propagation through the nonlinear medium can be eval- 
uated from the dependence of various beam parameters 
(such as the on-axis intensity measured at a nearfield posi- 
tion) on the incident intensity. To determine theoretically 
the intensity of a beam transmitted through a nonliner 
medium and then propagated through free space, we used 
the usual Fresnel approximation and the hypothetical op- 
tical arrangement shown in Fig. 1, where z denotes the 
distance between the exit plane of the nonlinear medium 
and the plane of a detector. 

Denoting the radial coordinate at this plane by r2, and 
using the dimensionless notation 

r21 = r2/ro, Zll = (Z -~- l ) / z  0 . 

we can write the electric field E(r2b Zll, q) at the detector 
plane in terms of the field E(ral, ll ,tl) at the exit plane 
[6]:  co 

exp(i~r21/2Zll) 
/ E ( r l l ,  ll, t l)  E(r2bz11,tl) = izll 
J 

o 

x exp(ir21/2zll)Jo(rllr2~/Zll)rlldr11. (14) 

The field at the exit plane is expressed in terms of the 
beam intensity and the phase: 

E ( r l l ,  I1, t l )  ~ 4 2 I ( r 1 1 ,  ll, t l ) / c e o  e i¢(r11,ll'q) . (15) 

Nonlinear Pinhole 

Le r I I _l_7 ~ eclor 

0 ,~. Detector 
plane 

Fig. 1. A schematic of the optical arrangement assumed for the 
theoretical study 
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If  the phase change arising from the nonlinearity of 
the sample is denoted by A ¢, 

¢(rm ll, t) = ¢(rlb0, tl) + A¢ + constant. (16) 

Inserting (9) and (11) into (15) and (16) then gives the 
intensity distribution at the detector plane, which can be 
written in terms of the peak incident intensity tp: 

1(r21, Zll, tl) ---- Ip exp(-cd) lSI 2 , (17) 

where 

2 [i ( r~l S =  
\2Zll 

0 

× Jo ( r l I r 2 1 ~  r l l d r l l  • (18) 
\ Zll / 

The integrals in (11) and (18) are evaluated numeri- 
cally, as discussed below. 

2 Resu l t s  

Here, f n  = exp[-(r~l + t]2)]. Using (9.8.2) in [7], we can 
finally write the expression for the phase change as 

tl 

A+ : llffOoo / dtIlfo ( @ ~ f ll °~l t- blf ll 
t s } 1 +Albsf l l  " 

- - 0 0  

Here 

A¢oo - 
v ~ A ¢ o  

Pl 

2~x/~K~Al(dn/dT)Ip 
£Jk 

and 

fo(y)=O.39894228+O.O498222/y+O.O31685484/y 2 

-O.083090918/y3+l.811981469/y 4 

- 15.25947748/y s + 73.29202549/y 6 

-171.8222318/yT+153.4453331/y 8 . 

(23) 

2.1 The Phase Change A¢ 

In calculating the amount of phase change A¢ for usual 
experimental conditions from (11), we can make a few 
simplifying approximations that reduce the number of 
numerical integrations. For the usual liquid solvents, we 
can assume a value for x of about 10 -3 cm2/s; then the 
parameter Pl for a 10 ns laser pulse (i.e., for • = 10 .8 s) 
is equal to 500r02, where r0 is expressed in microns. For 
visible laser wavelengths, r0 is usually 1 or higher, which 
makes pl more than 500. Because the temporal pulse 
shape is assumed to be Gaussian, the maximum value of 
t' 1 in (13) can be taken as about 10, making the parameter 
pl/2t] always bigger than 25. For the experimental case 
described in the next section, r0 is about 100 pro, so that 
pl/2t] is more than 25 × 104. If  we rewrite (13) as 

F(r11,r'11, t]) = B1 exp ( Plrllr~lt] Io \{ plrllr]l 1 

el + blfl  
x f l  1 + Alblf l  ' (19) 

where 

B1 = , (20) 
tl 

then, for large pl/2{1, B1 can be replaced by 

c](rll - -  r~l ) . (21) 

When rll =fi 0, the delta function can be inserted in (13) 
and the r' integration in (11) is easily performed to give 

Ac~(rll,lbq) = A¢o 2re dt] - ~ _ _ ~ 1 r l l  e e~ 

x Io ( plr21 ~ f l l  cd + blfl~ (22) 
k, t' 1 ,] 1 + Albl f  ll " 

A¢ 10 
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0.1 
0.1 
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I i i I , , , , I  
0.2 0.5 1 

]p (GW/cm 2 ) 

100 

a¢ 
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!(b) od = 0.5 j 3 1 ( c m 2 / G W ) l  

I i i I l i i i I 
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(c) al = 1.0 /3/(cm~/GW) 
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0.1 0.2 0.5 1 2 

Ip (GW/crn 2) 

Fig. 2a-c. Beam phase change (A(b) vs peak beam intensity (Ip) for 
different values of linear absorption (el) and two-photon absorption 
(ill). a el = 0.1, El = 0, 0.1, 0.5, 1.0cm2/GW; bcd = 0.5, fll = 0, 
0.1, 0.5, 1.0cm2/GW; e el = 1.0,/~l = 0, 0.1, 0.5, 1.0cm2/GW 
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Fig. 3. Beam phase change (A~b) vs linear absorption (el) for 
different values of 131pl 
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Fig. 4a-c. The nonlinear transmission T = IS] 2 vs peak intensity 
(Ip) for different values of linear absorption (el) and two-photon 
absorption (/~l). a /31 = 0, el = 0.1, 0.25, 0.5, 0.75, 1.0; b el = 0.1, 
/~l = 0.1, 1.0, 1.5cm2/GW; e el = 0.5, ¢/I = 0.1, 1.0, 1.5cm2/GW 
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For r l l  ~ 0 

tl if2 
_ A~b00 f e_tf el + bl e-1 A~b dt] 

J 1 + Albl e -t'? " 
- - 0 0  

(24) 

2.2 AO vs Ip for Different Values of  el and fll 

With ~ = 10-3cm2/s, r = 10-Sns, dn /dT  = 10-4K -1, 
2 = 0.532 x 10 .4 cm, J = 4.2J/cal, and k = 10 -3 ca l /K /  
s/cm, A~b00 --- 28&Ip, where Ip is expressed in GW/cm 2. 
Figure2 shows a plot of A~b at rl1 = 0 as a function 
of Ip for different values of el and /~l. For /31 = 0, the 
slope of the curve in log-log scale is 1, showing that the 
nonlinearity in this case is of the "n2 type." For/~l 7~ 0, 
not only is the slope of the log-log plot for small Ip larger 
than 1, but the curve is not linear for higher values of 
Ip. In other words, the order of  the effective nonlinearity 
is higher than 3 for low intensities, and the nonlinearity 
does not obey a power law at higher intensities. We also 
note from Fig. 2 that the contribution of the nonlinear 
absorption to the phase change is substantial only at 
small values of linear absorption. 

Figure 3 shows that the peak (i.e., at the time tt = 0) 
on-axis phase change values for even widely different ~Ipl 
are close to each other for el > 0.4. 

2.3 Transmitted Intensity as a Function of  Ip, el and fll 

The nonlinear phase change imparted to the laser beam 
by its passage through the medium is manifested by a 
nonlinear change in the beam intensity measured outside 
the medium. We consider here the transmitted intensity 
measured at a distance Zl~ = 0.5. Figure4 displays plots 
of the value of the quantity ISI 2 obtained from (18) vs 
peak intensity; the phase change A~b was calculated from 
(11). As expected, the nonlinear absorption lowers the 
value of the incident intensity at which the transmission 
starts to drop. For small linear absorpUon (el = 0.1), the 
presence of the nonlinear absorption /?l causes a large 
change in the transmitted intensity; for larger el, the 
effect of/~l is not appreciable. This result is summarized 
in Fig. 5, where T1/2, the value of lp  at which IS[ 2 drops to 
half of its value at low intensity, is plotted as a function 
of el for different values of/~l. For el > 0.4, T1/2 becomes 
independent of/~l and depends only on the value of el. 

The theoretical plots in Fig. 6 correspond to experi- 
mental curves presented later. Here, the transmission T 
is plotted as a function of the incident intensity Ip for 
el = 0.2; fll = 0 for Fig. 6a and fll = 2cm2/GW for 
Fig. 6b and c. However, for Fig. 6b the contribution of 
the nonlinear absorption to A ~b is zero. The drop in trans- 
mission for this plot arises from self defocusing due to 
linear absorption, and from the reduction of the transmit- 
ted beam energy due to nonlinear absorption. The close 
match between the curves of Figs. 6a and 6b and the 
large disparity between those of Fig. 6b and c show that 
the effect of the nonlinear absorption-induced thermal 
defocusing is very significant and cannot be ignored. 
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Fig. 6. The nonlinear transmission T = ISl 2 vs peak intensity (Ip) 
for linear absorption (el = 0.2). a two-photon absorption (jSl) = 0; 
b and c /?l = 2cm2/GW. In b the contribution of the nonlinear 
absorption to the phase change is ignored 

3 Experimental Results 

To verify our theoretical results, we performed experi- 
ments using a power-limiting configuration similar to that 
shown schematically in Fig. 1 and a 10 ns, 532 nm wave- 
length doubled Nd :YAG laser beam focused to a spot 
size of  100 gm (HWe-IM).  The nonlinear medium was a 
solution of platinum poly-yne or iodine in tetrahydrofu- 
ran (THF) in 2 mm-pathlength cells. The concentrations 

of  the two solutions were adjusted to equalize their linear 
absorptions (for both solutions c~l was 0.2). The iodine 
solution exhibited no nonlinear absorption, and the plat- 
inum polymer solution showed both linear and nonlinear 
absorption. The transmitted intensity was monitored by 
a detector at a normalized distance zll = 0.5, both with 
and without a small pinhole placed in front of  it. Without 
the pinhole, the area of  the detector was large enough to 
intercept the entire transmitted beam at both high- and 
at low-incident intensities. 

Nonlinear absorption was manifested by a nonlinear 
dependence of the transmitted intensity in the absence 
of the pinhole. As seen in Fig. 7a, the transmission of  
the iodine solution with no pinhole present is indepen- 
dent of  the incident intensity - i.e., there is no nonlinear 
absorption. With the pinhole in front of  the detector, 
the transmission of the iodine solution drops (Fig. 7b), 
demonstrating the effect of  thermal defocusing. 

The transmission of the platinum poly-yne solution in 
the absence of the pinhole (Fig. 7c) indicates the presence 
of nonlinear absorption, specifically two-photon absorp- 
tion. Because the absorption coefficients of  the iodine 
and the polymer solutions were chosen to be the same, 
the difference in transmission between Fig. 7b and c cor- 
responds to the difference between Fig. 6a and b. As was 
expected from our theoretical analysis, the transmission 
difference between Fig. 7b and c is small. With the pinhole 
in front of  the detector (Fig. 7d), the transmitted inten- 
sity drop is much more significant, as was expected from 
the theoretical behavior shown in Fig. 6c. This decrease 
in transmission is thus most likely due to the nonlinear 
absorption-induced thermal lensing. The change in the 
transmitted intensity at a given incident intensity, both 
with and without the pinhole, qualitatively confirms that 
the nonlinear absorption leads to an increased amount  
of defocusing in the transmitted beam; more quantiative 
proof  of  this effect will be reported in future. 

4 Summary 

Both linear and two-photon absorption in a liquid cause 
a nonlinear change in the phase of  a laser beam prop- 
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Fig. 7. Experimentally obtained near field non- 
linear transmissions vs incident peak inten- 
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fore the detector; c platinum poly-yne solution 
with no pinhole before the detector, d Poly-yne 
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agating through it. In addition, two-photon absorption 
changes the intensity of  the transmitted laser beam. We 
determined the intensity dependence of  the on-axis phase 
change of a transmitted beam for different values of  lin- 
ear and nonlinear absorption coefficients. We also eval- 
uated the value of the transmitted on-axis intensity at a 
nearfield point as a function of the incident intensity. 

Our results show that two-photon absorption effects 
cause substantial changes in the transmitted intensity 
only for low values of  the linear absorption. This finding 
has implications for the use of  the nonlinear absorption 
effect in the fabrication of nonlinear devices, such as 
optical switches or power limiters. A partial experimental 
confirmation of  the theory is also presented here. 
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