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Abstract. The synchronization of atomic quantum transitions with natural Raman 
oscillations by ultrashort light pulses has been investigated. This phenomenon may 
be observed if the duration of the perturbation pulse is less than the period of 
oscillations of the forbidden atomic transitions. The accuracy of the direct measure- 
ments of the quantum transition times for trapped particles can be of the same 
order as the ratio of the two-photon transition frequency to the homogeneous line 
width. 

PACS: 32.80.42,50, 42.65 

Frequency measurements in atoms and molecules 
are currently made with an accuracy 101°-1014 by 
using methods of super-high-resolution laser spec- 
troscopy such as saturated absorption, Doppler-free 
two-photon absorption and other techniques. The 
known methods are based on resonant interaction 
between particles and an optical field, hence a 
highly monochromatic laser radiation is essential in 
these methods. The observation of resonances is 
carried out for times which are much longer then 
the oscillation periods of the quantum transitions 
under investigation. 

A new spectroscopic method based on using pairs 
of pulses of radiation with a linewidth which is 
broader than the measured quantum-transition fre- 
quency interval, but with a stable interpulse time 
has been considered in [1]. The duration of the in- 
teraction between a particle and the single pulse is 
shorter than the oscillation period of the quantum 
transition. Hence, the result of the atomic interac- 
tion with two short pulses is defined by the phase 
of the free oscillations of a dipole moment at the 
time of arrival of the second pulse. In other words, 
the particle makes the transition from one energy 
level into the other one synchronously with the 
atomic oscillations. The synchronized quantum tran- 
sitions are very accurately determined in time, and 

may be applied to direct precision measurements of 
time and frequency. 

1. Qualitative Analysis 

The phenomenon of synchronization of quantum 
transitions is not critically dependent on the nature 
of the pulse's perturbation. Hence, we shall explain 
it by a simple example of an atom interacting with 
two DC pulses of an electric field. We write the 
latter in the form 

E(t) = Eg(t) + E 'g( t -T) ,  (l) 

where g(t) is the pulse shape, and T is the interpulse 
time. The field-induced dipole moment of a 2-level 
atom may be written in the form 

d(t) = a21d21exp(-lw21t) + c.c.,  (2) 

where a21 , d21 and o)21 are the probability ampli- 
tude, the dipole moment and the frequency of the 
transition 11)~12), respectively (the atom is con- 
sidered to be in the state [1) when t = -oo). Both 
d(t) and d21 are assumed to be projections onto the 
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field direction. According to [2] we have 
t g 

a21 = (i/h)d21 / dt'E(t')exp(iwga t ' ) .  
o / - O O  

If the 
single 

(3) 

duration r of  the atomic interaction with a 
pulse is much shorter than the period of 

atomic oscillations 2r/w21 , then the function g(t) in 
(1) and (3) may be replaced by rg(t), where 6(0 is 
Dirac's delta-function. It means that we probe the 
atomic dipole moment at times t = 0 and t = T. For 
t > T we find from (1-3) the dipole moment as the 
superposition of  dipole moments excited at t = 0 
and t = T 

• :# • 

d(t) = 1d21r1221exp(-aw21t) 

x[l + (E'/E)exp(iw2aT)] + c.c. , (4) 

where 1221 = Ed21/h , and the probability of  the 
transition / 1 )--+ 12) is 

I%112 = (rJ122al) 2 [1 + (E' /E) 2 + cosw~4T ] . (5) 

As we see from (4 and 5), both d(t) and [a21 [3 have 
maxima at times T that are integer multiples of the 
period 2~r/w21. Thus, when an atom interacts with 
two short pulses, the quantum transition I1) -, 12) 
may be synchronized with its natural oscillations. 
The effect  is also shown to be very distinctive with 
equal pulse amplitudes (E'=E). 

Instead of DC pulses of  electric or magnetic fields, 
ac pulses may be used as well. The case of  ac pulses 
is of  interest for optical transitions. It is clear that a 
carrier frequency of  ac pulses may take any value 
satisfying the inequality w >> r q ,  w21. There are 
only two pulse parameters of  principal importance, 
i.e. the duration of  a perturbation pulse, which 
should be shorter than an atomic-oscillation period, 
and the interpulse time, which should be stable and 
a multiple of  the period• 

The aim of the work is to consider the phenome- 
non of  synchronization of  quantum transitions by 
light pulses• At present, advanced methods of ul- 
trashort laser pulse generation provide the possibil- 
ity to obtain light pulses of  10-100 fs duraction [3]. 
This allows one to carry out experiments for syn- 
chronization of  IR and FIR quantum transitions and 
direct measurements of  time with an accuracy of  
the order 1012-1013. As the light frequency w >> 
w21, the excitation of  the quantum transition is re- 
alized by the two-photon Raman process. We start 
the consideration with an analysis of  the Raman in- 
teraction between an atom and a single light pulse 
of  any intensity• The analysis is of  interest in its 
own right. 

2. Interaction Between an Atom 
and Ultrashort Light Pulses 

Let I1) and 12) be the ground and metastable atomic 
states obeying the selection rules for two-photon 
transitions. We consider the interaction between the 
atom and the light pulse 

E(t) = Eg(t)exp(-iwt) + c .c . ,  

where 2E is the amplitude of the electromagnetic 
wave pulse. The frequency w is nonresonant with 
respect to the intermediate transitions l ) and 

The duration of the pulse is of the form 

oo 

r = f_oodtlg(t)l~" 

a n d  obeys W -1 << T < W21-1. We a s s u m e  tha t  t he  

light pulse is of  a symmetric shape g(-t) = g(t). 
The equations for density matrix elements which 

describe the stimulated Raman scattering in the 
field E(t) where reduced similarly to the equations 
for a two-level atom in an effective nonoscillating 
field [4] 

d + i[w21_lg(t)l 2 A] + r}p a 

= ½i12[g(t)[2(P11 - P22), (6) 

(d/dt  + 2F)p22 = - ½ i 121g(t)12p2x + c .c . ,  

P l l  + P22 = 1 , 

where 2r  is the spontaneous decay rate of  the upper 
state [2), A = E2(D22-Dl l )  is the difference of  the 
optical Stark shifts of  the levels 12) and l l), 12 = 
2E~'D21 is the effective (two-photon) Rabi fre-  
quency, Dik = Dik(W)+Dik (-W), Dik(W ) = 
~adiado&h-2(Wal-W) -1 is a two-photon matrix ele- 
ment. 

The following calculations will be carried out with 
A = 0 in (6) because the Stark light shift A is small 
in comparison with the effective Rabi  frequency 12 
(for close atomic levels 12) and II) D22-Dll  << 
D21). 

Before the interaction at time t -- 0 with the light 
pulse an atom was in the ground state II), hence 
using the initial condition plx(-oo) = 1 we find the 
coherence and the upper-level population probabil- 
ity 

P21 (t) = ½ iexp[-(F + iw21)t]sin20, (7) 

P22 (t) = exp(-2rt)sin 2 0 ,  (8) 
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where t >> r ,  

0 = -} f/G(w21 ) , 

+to  

G(x) = f_  2 t [  g(t)l 2 exp(ixt) . 

The parameter 0 determines the power of the pulse 
perturbation: the case of 0 << 1 (fl<<w21_<r-1) cor- 
responds to the weak perturbation and 0 = 1 (fl 
r-l>_w21 ) the strong one. The function G(co~.l) is the 
value of the Fourier transform of a light-pulse 
shape at the frequency w21. It determines the atom- 
field interaction efficiency. 

In the case of the Gaussian pulse Ig(t)l 2 = ~rq/2 
xexp(- t2 / r  2) we have G(w21 ) = rexp[-(w21r/2)2 ]. 
The atom-field interaction is shown to be efficient 
if  r < 2/w21. The increase of the pulse duration r 
leads to a vanishing of spectral components at 
a;+w21 in a light pulse, so that two-photon interac- 
tion becomes impossible. 

For the rectangular light-pulse shape we have 
G(w21 ) = sin(% 1 r/2)/(w21/2).  The efficiency is high 
for r = 7r(2n-1)/%l , with n being integer here and 
elsewhere in the paper. The result of the atomic in- 
teraction with the light pulse of duration r = r/w21 
(n=l)  is the same as in the case of a long pulse 
(n>> l). It means that only sharp fronts of the light 
pulse may give rise to the two-photon Raman pro- 
cess. The upper limit of r will be defined by an 
accuracy, which is required for time localization of 
the atomic transition 11)~[2}. 

In this analysis we have neglected the one-photon 
excitation of the intermediate levels I~), see Fig.1. 
This process reduces the number of atoms involved 
in the two-photon process. For 09al-W >> r -1 the 
a-level population is of the form 

p ~  = (a~1/2) %l r (%x-w)-2 ,  

where f]t~i and "/,-,i (i=1,2) are the one-photon Rabi 
frequency and the spontaneous decay rate of the 
transition In)--+ l i), respectively. The population P~.2 
induced by the two-photon process in a weak field 
is Pz2 --- 02, see (8). Thus, the inequality P22 >> 
E~p22, which corresponds to suppressing the one- 
photon process, is reduced to 

n~2 >> T"ia I O 2 (0)21) -- r,'Yc~l w21 , 

where a refers to the intermediate level which may 
be used to estimate the two-photon matrix element 
D21. 

/1> 

t.,a ¢.0 - t . , a 2 1  

$2> 
) 

Fig.1. Two-photon Raman interaction between an atom 
and single ultrashort light pulse. G(x) is the Fourier trans- 
form of the pulse shape Ig(t)l 2 , x is a frequency 

To conclude this discussion we note the following. 
First, the effect of the Stark light shift which we 
neglected above may be shown to be distinct in the 
strong field alone and lead to a decrease in the dyn-  
amical variation of the coherence amplitude IP2xl 
and the probability P22 in proportion to the ratios 
fl/fl 0 and (n/f l  0)2, respectively, with fl o = 
(f12+A2)l/2. Second, the formulas (7) and (8) may 
also be applied to the interaction between an atom 
and an ultrashort (r_<%1-1) dc pulse of an electric 
field (for forbidden transitions). To use them one 
should equate the frequency w in the two-photon 
matrix elements Dik (w) to zero. 

3. Interaction Between an Atom 
and Two Light Pulses 

Of the physical quantities that describe a light field, 
only the field power ~E21g(t)l 2 appears in (6). So 
the interaction between an atom and a pair of the 
time-separated pulses will depend on the time delay 
T but not on the difference of their optical phases. 

We have considered the excitation of an atomic 
natural oscillation with the frequency 609.1 by one 
ultrashort light pulse, see (7). Another light pulse 
delayed by the time T (terminating pulse) will in- 
teract with the atom, if the phase of the oscillations 
is equal to w21T. It is the phase that determines the 
result of the atomic interaction with the pair of 
ultrashort pulses. 
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Using (7) and (8) at time t = T as initial conditions 
for the interaction between the atom and the second 
light pulse we find from (6) the coherence and the 
upper-level population probability in the form 

P21 (t) = ½ isin20exp[-(I' + iw21)( t  - T)] 

x{1 + exp[-(r + ko21)T ] - 2sin~-0exp(-I'T) 

x[exp(-FT) + c o s w 2 1 T ] }  , (9) 

P23 (t) = sin ~" 0exp[-2r(t - T)] 

[1 + exp(-2rT)cos20 

+ (1 + cos20)exp(-rT)cosw~4T ] , (10) 

where t - T >> r. We see that the density-matrix 
variation for the small time r of the terminating- 
pulse duration is synchronous with the atomic oscil- 
lations at the frequency co21. This is referred to as a 
synchronized stimulated quantum transition. There 
is a peculiarity of the transitions induced by the 
weak and strong perturbations, hence we consider 
them separately. 

For the field which is weak to saturate the two- 
photon transition 11> 12> (O<<l), we see from (7) 
and (8) that the starting light pulse induces the 
atomic coherence P21 ~ E2r and probability P~2 = 
I =xl =. If the second pulse delayed in time arrives 
synchronously with the atomic oscillations (T = 
2~rn/co~l), then the amplitude of the previous ones is 
doubled (for rT<< 1) and the upper level population 
probability is quadrupled, see (9) and (10), due to 
the interference of the probability amplitudes. If 
the delay time is equal to a half-integral multiple of 
the atomic period (T = ~r(2n-1)/co21), the natural 
oscillations are annihilated and the atom returns into 
the ground state. The formulas (9, 10) for a weak 
field are similar to (4, 5). 

For the strong light field (fl~_'c4>w2t) we empha- 
size the case of a r/4-pulse (0=~r/4) which yields 
the maximum amplitude of the synchronized den- 

Forced-mode locked laser 

E, 
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Atomic system 

amplifier 

Pulse Forming 
RF generator 

device 

Fig.2. Interaction between an atom and two ultrashort light 
pulses (0=r/4) 

sity matrix variations. From (7 and 8) we see that 
the starting pulse induces the probability P22 = ½ 
and the atomic oscillations with the amplitude IP211 
= ½. The terminating pulse arriving synchronously 
with the atomic oscillations (T --- 2rn/~021) doubles 
the upper-level population probability and returns 
the atom into the ground state if T = ~2n-1)/co21, 
with the natural oscillations being annihilated in 
both cases (Fig.2). 

4. Atomic Ensemble. Rarefied Gas 

To find the upper-level population for an atomic 
ensemble we must take into account the atomic 
motion and average the population probability (P22) 
over coordinates and velocities. Atomic motion is 
accounted for by replacing the value T on the 
right-hand side of (10) by the interpulse time T a = 
T+c-l[z(Ta)-Zo] in the rest f rame'of  the moving 
atom, where z o and z(T~) are the atomic coordinates 
along the light wave propagation direction at the 
times of the starting and terminating ultrashort 
pulses respectively. The ensemble-averaging of the 
upper-level population probability (P22) is reduced 
to averaging the oscillating factor cosw21T a. 

For a free atom z(Ta)-z o ~- v,T, hence after the 
averaging over velocities v Z with the equilibrium 
distribution function we find 

(cosw21Ta) = cosw21Texp[-(T6/2) 2 ] ,  (11) 

where 6 = w21Vo/C is the Doppler shift at the 
Raman frequency, with v o being the thermal velo- 
city. We see that for rarefied gas the observation of 
the quantum transitions synchronized with the 
atomic oscillations at the frequency w21 is limited 
by the time interval T < 6 -1 which yields an accu- 
racy of time measurements of order (r6) -1 -~ c/v o. 

The influence of the Doppler effect may be de- 
creased by elastic collisions in a sufficiently dense 
gas [5]. In this case the diffusive distance which a 
particle covers during the interpulse time should be 
of the order of the wavelength associated with the 
atomic transition [ 1)~ 12). 

Note that in an atomic ensemble a spin-echo-like 
effect may be observed, i.e. the coherence p21(t) is 
seen to contain a term proportional to exp[-iw21(t- 
2T)]sin20sin20; see (9). 

5. Ensemble of  Trapped Atoms 

During the interval between the starting and termi- 
nating pulses, an atom trapped in a finite volume 
may be displaced not more than the macroscopic 
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oscillation amplitude V~.max /W ~ , where w,. is the fre- 
quency of atomic oscillations in a trap. Ensemble- 
averaging the factor cosw21T~, we see that the par- 
ameter # ; 6/~,. arises instead of T6 in (11). Furth- 
ermore, the Doppler effect does not limit the delay 
time T if the latter is a multiple of the macroscopic 
oscillation period. In this case the terminating pulse 
finds an atom at the same point as the starting one. 

Let an atomic ensemble be trapped in a harmonic 
potential, with the principal axis of trap symmetry 
coinciding with the light direction Z. The equation 
of motion of a single atom is of the form 

z(t) = z o cosoJ~ t + (%0/w,.) sin% t .  

Averaging over the initial coordinates z o and velo- 
cities Vzo we find 

(cos~o21 T a) = cosw21 Texp[-# 2 sin 2 (% T/2)]. 

This confirms our above statements. 

6. Laser Spectrometer Scheme 

In the method under consideration the light source 
has a very large linewidth (/Xw=l/r), and the value 
of its carrier frequency is unimportant. Only the 
stability of the pulse delay time is significant. There 
are at least two possibilities to realize the spectrom- 
eter. In the first case, an optical delay line may be 
used to form the terminating pulse. The delay time 
T = L/c (where L is the delay line length) may be 
changed continuously with a high accuracy. Unfor- 
tunatley, the absolute accuracy of the delay time 
measurement is limited here by the length measure- 
ment accuracy. If the transition frequency is 
known, then according to the new definition of the 
meter, the delay time T and the length L may be 
directly measured. The second possibility is given 
by the laser spectrometer scheme shown in Fig.3. 
This spectrometer allows one to measure the abso- 
lute values of both the delay time T and the transi- 
tion frequency w21. The spectrometer is based on 
the use of ultrashort pulses generated by the 
forced-mode-locked laser. The pulse repetition fre- 
quency is determined by the frequency u of the RF 
generator, which controls the intracavity amplitude 
modulator. The optical pulse amplifier locked to the 
rf generator allows one to form the time-separated 
pulses. Their delay time will be a multiple of the 
laser interpulse time, i.e. T = nu -1. Usually ~ N l0 s 
Hz. Time tuning may be realized by tuning the fre- 
quency u. Such a system may serve as a standard for 
time and frequency simultaneously. As the fre- 

Star t i r  Terminating 
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Fig.3. A possible spectrometer scheme for observing the 
synchronized quantum transitions 

quency w21 is stable, it is possible to stabilize the 
delay time T and consequently the rf generator fre- 
quency u. 

7. Conclusion 

We have shown that for a single atom or an atomic 
ensemble the dynamics of the natural Raman oscil- 
lations may be investigated by a synchronization of 
atomic quantum transitions with these oscillations. 
This synchronization may be realized, for example, 
by time-separated ultrashort light pulses. The pro- 
posed effect may be used in super-high precision 
frequency measurement, developing new founda- 
tions for time standards and magnetometers, the 
measurement of atomic spectroscopy constants, the 
selective excitation of atoms and molecules, etc. The 
possibility of utilizing this phenomenon to develop 
high-speed atomic memory systems is also of inter- 
est. 
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