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Abstract. The active mode-locking process of the multimode laser with an external pump 
modulation is theoretically investigated in the frequency domain within the framework of the 
continuous-mode approximation. Intermode interaction and mode-coupling effects, including 
both AM and FM modulations, are naturally considered in a hierarchical equation of the mode 
components derived from the multimode Maxwell-Bloch equations. It is reduced to a continuous- 
mode equation that can be solved analytically in a stationary case, and used to discuss tile 
spectral line shape and the phase dynamics of mode-components as a function of modulation 
amplitude and detuning of the modulation frequency. We predict a novel oscillation existing 
below the threshold of the ordinary complete mode-locking: The intensity of the total electric 
field yields a stable pulse train but its phase varies irregularly in time. This semi-locked state is 
characterized by a nonlinear chirping, an asymmetric spectrum, and drifting phases of the field 
mode-components. 

PACS: 42.60.Fc, 42.60.Jf 

Active modulation of lasers with a high-Q resonator has 
attracted a great deal of interest in terms of application to 
optical communication and mode-locking. Many previ- 
ous studies have been devoted to the single-mode modu- 
lated lasers, e.g., semiconductor lasers with an injection 
current modulation, and have clarified their modulation 
characteristics [1]. On the other hand, a multimode laser 
with a modulated parameter has also been investigated 
from the practical viewpoint of mode-locking [2] to 
generate ultrashort optical pulses. In addition, mode- 
locking and phase-locking phenomena in a multimode 
laser are of interest from a fundamental point of view. The 
modulated multimode system is a good example of a 
nonautonomous dynamical system in terms of the non- 
equilibrium phase transition and the collective phenom- 
ena in dissipative systems. The dynamical response of a 
low-Q cavity laser to pump modulation has also become 
an interesting subject of study in terms of bifurcation 
sequences and optical chaos [3, 4]. 

In our previous papers [5, 6], we have carried out 
detailed numerical studies of the pump-modulated multi- 
mode laser in both the high-Q and the low-Q [7] cavity 
cases to clarify its dynamical response to the external 

* Present address: NTT Basic Research Laboratories, 3-9-11 
Midori-cho, Musashino-shi, Tokyo 180, Japan 

modulation. There it was pointed out that the route to the 
complete mode-locking as a function of modulation 
amplitude was unexpectedly complicated. The most strik- 
ing feature is the fact that a "semi-locked" oscillation 
exists as an intermediate state to the ordinary locking. 
This semi-locked state exhibits a nonlinear chirped pulse 
train. Reminiscent of critical phenomena near a nonequi- 
librium phase-transition (complete mode-locking point), 
the phase loses its stability and the system displays the 
semi-locked and the intermittent phenomena [5, 6]. 

An aim of this paper is to theoretically demonstrate 
the existence of this "semi-locked" state of oscillation and 
to clarify its characteristics and parameter-dependences. 
We are thus concerned with the active mode-locking 
process in a pump-modulated multimode laser. Our main 
interest lies in the spectral structure of the electric field in 
the active mode-locking process as a function of the 
modulation parameters, e.g., the modulation amplitude 
and the detuning of the modulation frequency. Therefore, 
we employ a model in the frequency domain where a 
sinusoidal modulation can be taken rigorously into 
account, while time domain theory 1 is suited to the 
synchronously pumped mode-locking [2,10]. Mode- 

1 This has usually been employed also in the study of passive mode- 
locking with saturable absorbers [8, 9] 
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locking with both AM and FM modulations is analyzed 
theoretically in the frequency domain, particularly for the 
case where mode-locking is induced by the external pump 
modulation, analyzed here for the first time. A coupled- 
mode equation is derived from the multimode Maxwell- 
Bloch equations with the adiabatic elimination proce- 
dures. It is transformed into a continuous-mode equation 
which is analytically solved in the stationary regime to 
give a "spectral function" and to clarify the phase 
dynamics of each mode-component as a function of the 
modulation parameters. Attention is drawn to the 
existence of an extra solution describing a novel oscill- 
ation just below the ordinary mode-locking threshold, in 
addition to the ordinary solution corresponding to the 
completely mode-locked oscillation. This extra state is 
characterized by an asymmetric spectrum and drifting 
phases of mode components, in contrast to the completely 
locked state with a symmetric Gaussian spectrum and 
fixed stable phases of modes. As a result, the total electric 
field yields a pulse train whose phase varies in time, being 
equivalent to the nonlinear phase-chirped pulse train. 
This "semi-locked" oscillation, which is a kind of critical 
phenomenon near the nonequilibrium phase transition, is 
extensively and theoretically investigated to clarify dif- 
ferences from the usual mode-locked state in the frequ- 
ency domain. Analytical solutions of the model permit 
more straightforward and broader comparison with 
experiments. 

Section 1 is devoted to the derivation of a relevant 
equation which describes the mode-locking in a pump- 
modulated laser with the use of the continuous-mode 
approximation. This is solved analytically in Sect.2 
allowing a discussion of the asymmetry of the spectrum 
and the time dependence of the phase. The novel semi- 
locked state is introduced here. In Sect. 3, we examine in a 
heuristic manner the modulation detuning effect on 
locking. The total field dynamics in the semi-locked 
oscillation is investigated in Sect. 4 to stress the nonlinear 
chirping of the stable pulses. The applicability of our 
model and some comments on the experiments are also 
discussed. 

1. Continuous-Mode Equation 

We start with coupled differential equations (multimode 
Maxwell-Bloch equations) describing the multimode in- 
teraction of electric field with a homogeneously broad- 
ened active material. The electric field, the atomic 
polarization, and the population difference are expanded 
into their cavity longitudinal mode or the corresponding 
Fourier components, e,(t)e-i"c°~"% p.(t)e-i"°'=% and 
d,(t)e- i,,o=% respectively for n = 0, _+ 1, + 2 ..... This proce- 
dure is found in [5, 6] and is justified by employing the 
"dressed-mode" transform [-6,11]. The normalized form 
of the equations in the uniform-field approximation [-6] is 
given as 

d 
e,(t) = - K e , -  inA me, + iKp, ,  (1 a) 
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d 
di p,(t) = - 7 ±P, + im°mP.-  iy ± ~k ekd"-k' (lb) 

d B 
d,(t) = -ylld,+incomd,+Yil(A + 1)a,,o +Yll ~- Aa,,1 

A_ 2 +iTII 2 k [ekp~-"--e~Pk+n]' (lc) 

d_.(t)=d*.(t), (ld) 

where K, 7±, and ;~11 are the effective field decay rate 
(including transmission losses through the cavity mir- 
rors), the transverse relaxation and the longitudinal 
relaxation constants, respectively. Pumping is determin- 
istically and sinusoidally modulated with frequency ~Om 
and a modulation amplitude B around the dc bias A + 1. 
The lasing threshold is at A = 0. Each variable e,, p,, and d. 
is normalized by its stationary value in the case of no 
modulation (B = 0). Detuning of the modulation frequ- 
ency co= from the cavity mode spacing AO is denoted as 
Am-A~?-Cnm and its absolute value is assumed to be 
small. In addition, we further assume for simplicity that 
the central mode (n = 0) is just resonant with the atomic 
transition frequency. The modulation efficiency coeffi- 
cient A is defined in [-6] as 

1 - R 2 exp (ico~A t) 
A = (2) 

2[lnRI + i (2~-  COmAt)' 

where R is the mirror reflectivity and A t is the delay time 
due to cavity round trip. This coefficient is almost real and 
unity, Re{A} ~ 1 and Im{A} 20, in the case of (i) the high 
mirror reflectivity (R~I),  (ii) short gain medium of 
length/) in comparison with the cavity length L (L > l), and 
(iii) [A m[ is small. A detailed derivation of(l) without using 
the uniform-field approximation was given in [5, 6] where 
the "dressed-mode" transform was also introduced. 

We confine ourselves to the good-cavity case (K ~ ~±, 
?11, R,-~I) where the uniform-field approximation is 
justified. The polarization p, can be adiabatically 
eliminated from the equations. Only nearest-neighbor 
couplings in the field-mode equation (la) are employed to 
proceed with the analytical discussion. This is valid in our 
active and sinusoidal modulation scheme because the side- 
band due to an external modulation is so strong that the 
higher-order population pulsation terms, d, (n= _+2, 
_+ 3,...), can be neglected. In the passive locking [-2, 8, 9] 
or in the sYnchronously pumped locking with sharp pump 
pulses [10], on the other hand, we can no longer employ 
this truncation and a great many modes should be taken 
into account. Therefore, the simpler time-domain model is 
often used in those cases. As a result, a relevant coupled- 
mode equation [12] is derived in a hierarchical form as 

d en(t) - K e . - i n A ~ e .  
dt 

+ K N  - n  [ d o e . + d l G - l  +d*e.+l] ,  (3) 
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with ~ ( x ) -  (1 + ix)- ~ and n = 0, ± 1, ± 2 ..... Here the 
main populations, do(t) and d,(t), obey 

d 
dt d°(t) = - 7 II do + Y II (A + 1) 

A ,ff F ~ e.e~du-~ 

A ( O ~ m ) ,  (4a) 

_ B_ 
d dl(t)= _7lid, +ico=d, +71tA 2 
dt 

- 711 2 ~ ~ ~ ( # -  1) ~ e.e*d*_~_x 

A ( - ( # + l ) ~ ) e * e , d , - ~ + l  --711 ~- ~ ~ o@ COrn .(4b) 

Summations are made with #, v =0, ± 1, ± 2 ..... With the 
aid of the adiabatic approximation for d, (which is also 
justified in the case of K ~ 7 II), we evaluate and find that do 
and d~ are proportional to the de pump bias A + 1 and the 
modulation amplitude B, respectively: 

d o ( t ) ~ ( A + l ) [ l + A ~ ( n ~ - ~ ) l e , ( t ) [ 2 1  -~ , (5a) 

A [ com 
d~(t)~ ~- B 1 - i  711 

~ _ _  iyXcom ] - 1 
+A ~ 7~ +(n2 1)co2m__2iTxco m [en(t)[ 2_j , (5b) 

where ~(x)_=(1 +xZ) - 1 is a Lorentzian function. Gain 
saturation and self-phase modulation effects can be taken 
into account through the denominators of (5a) and (5b). 
Both do and d, depend only on the summation ofle,] 2 with 
respect to n not on each %. Therefore, both are independ- 
ent of the mode index n. Moreover, they are assumed to be 
constants because we pay special attention to the station- 
ary case. A remarkable feature is the fact that both AM 
and FM modulations are induced under the pump 
modulation. That is, AM and FM terms of the right- 
hand-side of (3) are explicitly written down respectively 
as 

+n co_~_m (en+l_e ,_Oim{d l } l ,  for AM, (6a) 
71 A 

k 7 ± /  n-~-~(e,+l+e._l)Re{dl}  

- ( e . + , - e , _ O I m { d ~ } [ ,  for FM. (6b) 
_1 

Therefore, previous analyses [13, 14] confined only to 
either AM or FM mode-locking are no longer applicable 
to our problem. 

The complex mode field %(0 is now divided into its 
amplitude e,(t) and phase O.(t), i.e., e, =- e, exp(i0,). Accord- 
ing to our numerical results [5, 6] of (1), we confine our 
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discussion to the following situation: (A) de,(t)/dt = 0 for 
all n, and (B) A,(t) = O,(t)- 0,_ l(t) = const = A for all n. The 
former implies stationarity of the mode intensities of the 
electric field aside from their sinusoidal motion due to 
e-i.,Omt. The latter is a kind of phase locking of the relative 
phase difference, but each phase O,(t) can depend on time. 
The phase of the nth mode is then represented only by the 
zeroth phase, i.e., 

O,(t) = nA + Oo(t). (7) 

This situation described above is general and convenient 
for discussing the mode-locking process because it in- 
cludes both AM and FM lockings as special cases. 

Now let us anticipate that the pump modulation 
couples many modes together. We introduce the 
continuous-mode approximation [13], e(co, t)= e,(t), with 
a continuous variable co---- ncom/7±. The longitudinal mode 
spacing (nearly equal to the modulation frequency) 
should be much smaller than the power-broadened gain 
width. Therefore, co~/y± is smaller than unity. Hereafter 
e(co, t) is called the "spectral function" which represents the 
field amplitude at frequency co. This procedure is valid 
when a great many modes oscillate simultaneously and 
there is little difference between %(0 and e,+a(t). In this 
case, the spectral function e(co, t) satisfies a diffusion-type 
equation: 

&(co, t) 02~ & 
~t - c ~ ( c o ) ~  + c~(co)~ + Co(co)e, (8) 

where coefficients C~ are given by 

C0 = 2£a(co) Re {dl e-i~} + £a(co)do _ I,  (9a) 

C1 = 2 (coT-~) co£'~(co) Im {dl e-ia),  (9b) 

= (C°m']ZzP(co)Re{dle-iA}. (9c) c 2  

Here we consider the stationary case, 0/&=0; the 
spectral function ego) obeys a homogeneous equation, 

d2e(co) de(co) 
do) 2 +01co ~ -~-02(~3--CO2)~(co) = 0 ,  (10) 

where real coefficients ~1, ~)2, and ~3 are defined as 

01=2 7± Im{dle -ia} 
c%, Re{dle-iA} ' (lla) 

~2~" \('Ofn./ Re{dxe-ia}, ( l l b )  

03=do-1  +2 Re{d,e-ia}. (llc) 

An important fact here is that coefficients ~x, 02, and P3 are 
all independent of the frequency co but depend on A and 
pulse energy. 

2. The Spectral Function and Phase Dynamics 

Assuming the coefficients of (11) to be constants for a 
heuristic discussion, (10) is solved formally to yield an 



1( 1)1 
2~ ~ Q2e3-- ~ 51 2" 

analytic solution, 

1 

where 

+40zW 4, (13a) 
Da(x) = 2 x/2 + 1/4x- 1/2W~/2 + ~/4, - 1/4(x2/2), (13b) 

and W(z) is the Whittaker function. Equation (13b) is 
Weber's hyperbolic cylinder function and its index is 
determined as 

(14) 

. /  

This index plays a key role in distinguishing between the 
completely locked and the "semi-locked" states. Here we 
note that in the case of 2 = n = 0,1, 2, ..., 

D,(x)=exp ( -  ~ )  H,(x) 

=( -1)"exp  ( ~ ) d "  x 2 
d~-x, exp ( -  ~ - ) ,  (15) 

where H,(x) is the Hermite polynomial. The index 2 is a 
monotonically increasing function of the modulation 
amplitude B, and 2 goes to - o o  under weak or no 
modulation (B,-,0) where the continuous mode model 
may become invalid. 

The phase of each mode, O,(t), is, on the other hand, 
fully determined only by Oo(t ) which obeys the equation 
derived from (3): 

dOo(t)d___~ = _ 2K im {da e-iA} com?__~_ [le~o) d~(co)l~ ]o~=o 

=constant in time. (16) 

This shows that the phases of all modes drift linearly in 
time. The time derivative of the phase 0o gives a uniform 
frequency shift of each mode. We should notice that these 
drifting phases of mode components do not correspond to 
the usual frequency shift of the phase of the total field due 
to linear mode-pulling and -pushing mechanisms. In fact, 
a nonlinear chirping of the total field is induced, resulting 
from the asymmetric spectral function, as discussed later. 
In the case of the continuous mode regime, the imaginary 
part of dl almost vanishes while do and the real part of dl 
are given by 

d o = ( A + l ) [ l + A Y  ± ~ ~2(0)) ]--1 
co,, -~o f ~ J  dco , (17a) 

Re{dl}~ ~- B 1 +A corn -o0 ~ dco , (17b) 

Im{dl} ~0 .  (17c) 

Note here that the relative phase difference must satisfy 
]A] < zt/2 in order to yield a physical solution of (10) that 

satisfies the natural boundary condition, lim e(~o)=0. 
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FREQUENCY 

Fig. 1. Schematic plots of the spectral function, e(co), of the ordinary 
mode-locked state [dotted curve, corresponding to (18)"1 and the 
semi-locked state [full curve, corresponding to the 2 < 0 case of (12)]. 
The dash-dotted line indicates the gain center, co = 0 

2.1. Completely Mode-Locked Oscillation 

Ordinary mode-locking occurs when the modulation 
amplitude B (ocRe{dl}) is sufficiently large. In this case, 
the nonlinear intermode interaction plays a collective role 
to emit the maximum energy, which is realized in the A ~ 0 
case) As a result, the index 2 is locked to zero and the 
spectral function e(co) becomes Gaussian symmetric with 
respect to the center of gain profile co = 0, i.e., 

( 51 +~2 
4 coz). (18) g(co) = e x p  

\ 
Then (16) becomes zero, i.e., dOo(t)/dt- O. As a result of (7), 
the phases of all modes become constant in time 
resulting in no frequency shift of the modes, dO,(t)/dt--O. 
This is the ordinary complete mode-locking similar to the 
AM locking [13]. 

2.2. Incompletely Mode-Locked 
(Semi-Locked) Oscillation 

In contrast to the above, when Re {dl} is slightly smaller 
than the locking threshold (which will shortly be 
evaluated), there is another type of solution correspond- 
ing to the novel state of oscillation. When the intermode 
coupling is not strong enough for locking, the phase 
difference A becomes finite (A 4= 0). As a result, the index 2 
no longer vanishes and becomes negative; it is not locked 
to integer n = 0, 1, 2, .... The spectral function, e(co), then 
becomes asymmetric. This is a further solution of (10) in 
addition to the ordinary one (18). This asymmetry does not 
result from the linear mode-pulling and pushing in the 
usual mode-locking theory but is an essentially new result. 
Figure 1 illustrates the asymmetric spectral function in 
this state (solid curve) and the symmetric Gaussian 

2 The strict condition A = 0 is unnecessary for complete locking [61 
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spectrum in the ordinary state (dotted curve). According 
to 06), therefore, the frequency shift dOo(t)/dt becomes 
nonzero, that is, 

dO°(t~) - 2K corn im{dle_iA } _a2D~_I(0 ) 
dt 7± Dz(O) 

=nonzero constant in time, (19) 

and the phases of the modes, O,(t), drift linearly in time, 
keeping the relative phase difference constant. The peak 
(maximum) of the spectral function e(co) shifts to the low- 
energy side of the gain center and its shape is asymmetric 
with respect to its peak. This is a semi-locked oscillation. 
This results in the nonlinear chirped pulse train [-15] of the 
total electric field. 

3. Detuning Effect on Mode-Locking 

Modulation frequency detuning is equivalent to the cavity 
mismatch which has been studied by many authors in 
synchronously mode-locked dye lasers [16-20]. Here we 
seek in a simple manner a necessary condition on Am for 
the mode-locking: It must satisfy the following relation 
which is straightforwardly derived from (3): 

Am= K COrn ,.~(co)d ° 
71 

+ K  (com~ 3 ~q(co)Re{dae -in} (1  dZe~ 
\7± / \~ dco2,]1o~1~1 

-2KcoIm{dle-in}[~(co)(1-de--] 
\ e  d o ) / H  ~ 1 

This relation is valid in the region of small IcoI. Consider- 
ing the effective gain region near the atomic frequency 
(gain center), IcoI ~ 1, the last term of (20) is negligible, and 
we obtain an inequality for A m for Re{die -in} >0  using 
the convexity of e(co) at co ~ 0  for the mode-locked state as 

1 d2e 
corn fdo-Re{dle-ia} (com]2 (-~)-~o2)¢o~o 1 . Am~K ~ \~± ,/ 

(21) 

This is a necessary condition for the mode-locking. This 
derivation is fully qualitative but heuristic in discussing 
the asymmetry of the locking condition on Am. Convexity 
of the spectral function is satisfied within a region of 
IcoI < [2/(e~ + ~2)] ~n. The locking threshold is lower in the 
Am > 0 region than in the region Am < 0. This asymmetric 
character of the modulation frequency detuning coincides 
with the numerical calculations [5]. 

Using (21), we can evaluate the threshold for ordinary 
mode-locking: 

7_c d cosA (1 d2e~ [-1 (Re{dl})th ~- K 
corn o \7 d-J)o_ol 

2K y± do 
COrn (~1 "{-~X2) cOSA" (22) 
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That is, mode-locking occurs when Re {dl} > (Re {dl})t h. 
Here Re {dl } is proportional to the modulation amplitude 
B [see (17b)]. Therefore, the threshold value of the 
modulation amplitude can be determined from this 
relation. 

4. Discussion: Dynamics of the Total Electric Field 

The total (normalized) electric field Etot~l(t), which means 
the envelope function of the electric field of a pulse, is 
given by the inverse Fourier transform of the spectral 
function e(co) as 

Etotal(t)°cexp(iOot) 7 exp -4 co2 D~(~m) 
--00 

x exp ( -  icot) exp (izico)dco, (23) 

where 3=A~±/com. The phase of the total field, 
O(t) =- argEtotal(t) is 

Im {ei°°t ff ~(co)ei(~- ~')'dco} 

O(t) = arctan (24a) 
R e {  ei0°t -o~7 e(co)ei(~-'°)tdco} 

= Oo + 01t+ 02t 2 + Oat 3 + .... (24b) 

In the complete mode-locking [2 = 0, 0o = 0, A -~ 0, and 
e(co) = e(-co)I, the phase of the total field becomes con- 
stant by cancelling out the phase e - i~o, due to the symmetry 
of e(co) to show a coherent pulse train with a constant 
phase (co chirping), i.e., O, = 0 for n > 1. The asymmetric 
spectrum e(co) ~e e ( -  co) in the novel oscillation state (2 < 0), 
on the other hand, does not cancel the mode phases, 
resulting in a stable optical pulse train with time-varying 
phase (no chirping), i.e., O, = 0 for n > 1. The asymmetric 
This is a semi-locked oscillation. Qualitatively speaking, 
in our 2 < 0 case, the down-chirping is induced in the front 
part of the pulse and the lagging part is up-chirped [6]. 
Although the mode amplitude is constant in time (but 
asymmetric), i.e., de,/dt=O, the mode phases are not 
constant but their relative phase difference is identical and 
constant in time. This state may generally be observable in 
pump-modulated lasers by controlling the modulation 
strength in a careful manner. Note here that the "asymme- 
try" and the "peak shift" of the spectrum should be clearly 
distinguished. In fact, nonlinear frequency chirping results 
from the asymmetry of the mode spectrum not from the 
shift due to the usual mode-pulling and pushing. A general 
relation between the asymmetric spectral function (12) 
and the up-/down-chirping (linear chirping) of the total 
electric field (i.e., 0 2 > 0  or <0) will be discussed 
elsewhere. 

Attention should be paid in applying our results to the 
synchronously pumped mode-locked laser (SPML) where 
pump laser pulses are very narrow and 6-function-like in 
time [10]. In such a case, many modes couple with one 
another, and a theoretical treatment may become more 
difficult because the nearest-neighbor coupling [as used in 
(3)] is insufficient. A sinusoidal modulation scheme is 
suitable for the theoretical analysis. However, the qualita- 
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tive nature of SPML may be similar to that of the 
sinusoidally modulated system studied in this paper. The 
novel semi-locked oscillation, the asymmetric spectrum, 
and the frequency detuning effect are all universal features 
of the pump modulated multimode laser. 

An experimental study of this semi-locked oscillation 
is now in progress and will be reported in the near future. 
In a real experimental system, other nonlinear-dispersive 
dynamical effects, e.g., self-phase modulation (SPM), are 
often important  because they may prevent or mask the 
novel phase dynamics proposed in this paper [21]. 
However, the SPM effect become dominant only for very 
high light intensity (e.g., intense light pulses with a high 
peak value) operated far above the threshold to ordinary 
mode-locking, whereas the semi-locked state exists just 
below the locking threshold. Actually some experimental 
results suggesting the novel semi-locked dynamics have 
already been obtained. We hope that this novel operation 
can be realized and detected in a careful experiment. 

~When comparing with experimental results, one should 
nevertheless pay careful attention to the effects of SPM in 
the dye, the inhomogeneous broadening of the gain, and 
intracavity dispersive media on the (semi) mode-locked 
spectrum. 

In this paper, we have not discussed a supermode 
solution [13, 22, 23], which corresponds to the solution 
(12) with positive integers 2 = n =  1,2, 3 . . . . .  This is also 
characteristic feature of the multimode system but its 
applicability and origins are not yet clear. 

In the next step of this work, we will employ the self- 
consistent scheme in order to solve exactly the 
continuous-mode equation (10) including the SPM and 
the nonlinear gain saturation effects. Considering the 
coefficients Q~ as a function of the pulse energy, the 
problem becomes strongly nonlinear. The stability of 
these states [24] and a cooperative dynamical mechanism 
of intermode interaction [25] are beyond the scope of this 
paper and remain to be discussed. This paper presents a 
heuristic and qualitative study and makes predictions 
about the pump-modulated laser dynamics. The main 
results of this paper can be summarized as follows. 

(i) We present for the first time, for the case of pump 
modulation, a frequency domain model of the active 
mode-locking in the multimode laser which includes both 
AM and FM interactions between the mode-components. 

(ii) Applying the continuous-mode approximation to 
the model, the spectral function and the phase dynamics 
of the mode-components are analytically examined. A 
novel state of oscillation (called a semi-locked oscillation) 
is found to exist below the threshold of the modulation 
amplitude for ordinary mode-locking. This state is char- 

acterized by an asymmetric spectrum and by drifting 
phases of the mode-components. 

(iii) Although the total light intensity yields a stable 
pulse train, its phase shows nonlinear chirping in contrast 
to the chirpless pulse train of the completely locked 
oscillation. This novel semi-locked oscillation is a kind of 
critical phenomenon near the phase transition point. We 
hope that this phenomenon will provide further moti- 
vation for exploring a new operational regime of lasers. 
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