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1. Introduction 

During the eighteenth century, mathematics  in Great Britain was quiescent. 
Cambridge University, home of one of the founders of calculus, ISAAC NEWTON, 
had sunk so low that,  as CARL BOYER has stated, "Cambridge University in the 
earliest years of the nineteenth century was scarcely the place to which one would 
have looked for new developments in mathematics.  ' u  One of the probable causes 
of this condition was the isolation of the English mathematicians from their 
fellow workers on the Continent. While modern calculus was being created by  the 
BERNOULLIS, EULER, LAGRANGE and LAPLACE, the NEWTONIAN school clung t o  a 

clumsy notation and, perhaps even more important,  to a reliance on geometric 
methods out of a misguided belief that  these represented the spirit of NEWTON. 
They remained unaware that  the true heirs of NEWTON were those who took the 
differential notation and methods of LEIBNIZ and applied them to the NEWTONIAN 
cosmology. The separation was not complete, but  unfortunately when the English 
used Continental writings, they combined the worst of each system. For instance, 
the text  by GUILLAUME DE L'HosPITAL, Analyse des in[iniments petits (t696) 
was translated into English in 1730 by  EDMUND STONE and in 180t a translation 
by  JOHN COLSON of the Istituzioni analitiche ad uso della giovent¢~ Italiana (t 748) 
by MARIA AGNESI appeared. In both works the notation of fluxions is grafted 
onto the infinitesimals of LEIBNIZ. The result is a mixture of English symbols 
and phraseology with Continental concepts, which forms, as trLORIAN CAJORI 
has said, "a  system, destitute of scientific interest." ~ 

The isolation is usually at tr ibuted to the bitterness engendered by  the NEWTON- 
LEIBNIZ priority controversy, which left the English with the conviction that  

1 CARL B. BOYER, A History o/ Mathematics. New York, t968: 620-621. 
2 FLORIAN CAJORI, A History o/ the Conceptions o[ Limits and Fluxions [rom 

Newton to Woodhouse. Chicago, t919: 254. 

t I Arch. Hist. Exact Sci., Vol. 8 
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to abandon the notation and methods of NEWTON would be an insult to his 
memory. As DIRK STRUIK has asserted, " U n t i l  well into the nineteenth century, 
the Cambridge and Oxford dons regarded any at tempt at improvement in the 
theory of fluxions as an impious revolt against the sacred memory of NEWTON." 3 
STRUIK suggests an additional reason for the insularity of the English. During 
much of the eighteenth century, England was at war with France, and her victories 
in war and in trade, as well as the admiration of Continental philosophers for 
her political system, fostered an intellectual arrogance which made the English 
blind to the possibility of learning anything from abroad. I t  should also be noted, 
in partial defense of the English, that  due to the wars, foreign books were difficult 
to procure and very expensive when available. On the other hand, the isolation 
was peculiarly English. The Scottish Universities remained in contact with 
scientific developments on the Continent. And the only British mathematician 
of note to use analytic methods during the eighteenth century was Sir JAMES 
IVORY, a Scotsman. 

Whatever the reason, isolation is the most conspicuous feature of the English 
school of mathematics during the eighteenth century. Change occurred at the 
beginning of the nineteenth century through the efforts of ROBERT WOODHOUSE, 
GEORGE PEACOCK, CHARLES BABBAGE and JOHN HERSCHEL. These men were all 
connected with Cambridge University, and aimed their efforts primarily at the 
reform of the method of teaching mathematics at that school. By t830 they had 
succeeded in securing the adoption of the differential notation and analytic 
methods. As the reformers had hoped, there followed a remarkable renaissance 
in English mathematics. The 1830's through the 1860% not only saw the emergence 
of a new concept of algebra in the works of GEORGE PEACOCK, DUNCAN GREGORY, 
AUGUSTUS DEMORGAN and GEORGE BOULE, but  also the appearance of a brilliant 
school of mathematical physicists, including GEORGE GREEN, G. G. STOKES, 
Lord KELVIN and JAMES CLERK MAXWELL. 

The interest in this paper is in the first group. For it seems curious that  
following the introduction of the differential notation the first important English 
contributions to mathematics were made in algebra rather than in analysis. I t  is 
my claim that  this was not merely a coincidence, but  that  the work in algebra 
was a direct response of the English to a specific aspect of the work of Continental 
analysts which became accessible to them. This subject came to be called, by 
the English, the calculus of operations. I t  was related to the analogy between 
repeated operations and the law of exponents: that  is, the equations 

d- / a,+ u (1.1) 
d x  ~ \ d x  *~ ] - -  d x , + ~  , 

The symbols of operation are then manipulated, often apart from the symbols 
they operate on, as if they were magnitudes, with multiplication replaced by 
iteration. For example, based on the similarity between the two expansions 

1 i h3( u/3 

- - h  d u  1 -8 d2u 1 3 d3u 
A u = u ( x + h ) - - u ( x ) - -  d x  + Y : 7  ~ ~ + ~ m 2 " 3  h ~ + " "  

a DIRK STRUIK, A Concise His tory  o /Mathemat ics .  3 ~d. ed., rev. New York, 1967:168. 
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it was concluded that 

and finally that  

/lu:(e h d~--l)u (1.3) 

z~ n U ~ (e h d (1.4) 

the latter expression being expanded by the binomial theorem, with multiplication 
replaced by iteration. 

I might point out that  this result can be stated in fluxional notation, and 
did in fact first appear in English literature in that  guise. But in that  form it is 
exceedingly cumbersome, and the calculus of operations leans heavily on notation 
for its plausibility and usefulness. The formula (4) appeared first in the writings 
of JOSEPH LAGRANGE, and was discussed at length by SIMON LAPLACE. In fact, 
the English found not only the tools for the calculus of operations, but  many of 
the basic theorems and even the basis of the theoretical explanation in the writings 
of such men as Louis ARBOGAST, B. BRISSON, J. F. FRAN~AIS, AUGUSTIN CAUCHY, 
ANTON-MARIO LORGNA and F. J. SERVOIS. The French themselves, however, 
never really trusted the method, and certainly they did not relate it to a theory 
of algebra. 

The British, on the other hand, not only used the method extensively; they 
considered the concept of operation to be a unifying theme in mathematics, and 
one of the utmost interest. The writings of BABBAGE, HERSCHEL, and to a some- 
what lesser extent, PEACOCK all testify to their high regard for the importance 
of the calculus of operations. GREGORY, I)EMORGAN, BOOLE and HAMILTON all 
did research in the subject. Furthermore, especially in the case of GREGORY and 
BOOLE, the relationship between these efforts and their innovations in algebra 
and logic is clear. For in their attempts to put the calculus of operations on a 
firm logical basis the English mathematicians were led to the notion that  it was 
not the nature of the objects under consideration which was most significant, 
but  rather the laws of combination of their symbols. They were then led to s tudy 
abstract systems which could be interpreted either as magnitudes, or as symbols 
of operation, or, in the case of BOOLE, of logic. Clearly this represents a step 
towards an abstract approach to mathematics. This interpretation yields a much 
more unified picture of the developments in Britain during the first part of the 
nineteenth century. For we now see the work of the Continental analysts acting 
not simply as a catalyst through the introduction of the differential notation 
and analytic methods into England but also as a point of departure for the 
foundation of an abstract algebra. I t  also shows that  BABBAGE and HERSCHEL 
were not simply the vehicles for that  introduction, but  that  in their own mathe- 
matical research they anticipated much of what their followers were to find 
important. 

2. Origins of the Calculus of Operations 

The calculus of operations can be traced to the analogy between the raising 
of a sum to a power and the differential of a product. In a letter to JOHANN 
BERNOULLI, dated t 695, LEIBmZ noted the analogy be tween"  numeros potestatum 
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a binomio, et differtiarum rectanular . . . .  ,,, 4 that  is, using his notation, between 

IJ]x + y = l x  + l y = i x l y °  + tx°yl  d x y = l  y d x  + l x d y = l d l x d ° y  + ld°xdly; 

] 2 _ l x + y = t x x + 2 x y + t y y  # x y = t y d d x + 2 d y a x + l x d d y  

where, he noted that  the analogy becomes clearer if we realize that  xx  and y ddx 
can be written as yO xx  and d°y ddx, respectively. LEIBNIZ then went on to 
state what is now known as LEIBNIZ' Rule: to obtain the expression for d" xy, 
consider the binomial expansion (x +y)~  and change x"y ~ into d" xd ~ y. Further- 
more, he added, this result holds if n is negative, using d -1 = f ,  and for trinomials. 
LEIBNIZ published his observation in a memoir entitled "Symbolismus memorablis 
calculi algebraici et infinitesimalis in comparatione potentiarum et differtiarum, 
et de lege homogeneorum transcendentali," which appeared in 1710. In this work 
the analogy is made striking by  LEIBNIZ' use of the notation p~x and p~ (x + y )  
for x e and (x +y)~.5 In a letter written to JoI~N WALLIS in t697, LEIBNIZ used 
as an argument for the advantage of his method over that  of Newton the fact 
that  it brought tha t  analogy into prominence. 6 JOHANN BERNOULLI made use 
of it in order to express an integral as an infinite series7 In  a letter to LEIBNIZ 
he noted that  if we assume that  f n  dz should be the mean proportional between 
d°(n dz) and d(n dz), then we have 

don dz (2.t)  
f n  dz -- dOnd dz + dn dz 

and hence, by  dividing 

f n  dz =dOn d°z - -dn  d-lz + # n  d-2z--dSn d-~z etc. 
(2.2) 

= n z - - d n f z + d ~ n r ' z - - d b n p z  etc. 

One outgrowth of this formal aspect of LEIBNIZ' work was the combinatorial 
analysis of C. F. HINDENBURG. This concerns itself with methods of computing 
the coefficients in various types of expansions. But  the type of formalism which 
led to the calculus of operations, though it too is concerned with that  question, 
is slightly different. And this is found next  in a paper, dated 1772, by  JOSEPH 
LAGRANGE, entitled " S u r  une nouvelle esp~ce de calcul relatff ~t la diff6rentiation 
et ~ l 'int6gration des quantit6s variables." LAGRANGE referred to LEIBNIZ and 
BERNOULLI as the sources of his ideas. In this memoir he was concerned with the 
problem of expressing a finite difference as a series of terms involving differentials. 
That  is, letting u be a function of x, y, z, t . . . .  LAGRANGE studied the expansion of 

A u = u ( x  +2, y +~, z +$, t +O . . . .  ) --u(x,  y, z, t . . . .  ) (2.3) 

in powers of 2, ~o, $, 0 . . . .  where these are given constants. First he noted that  the 
expansion of u (x + 8 ,  Y +~0, z +$ ,  t + 0 . . . .  ) in powers of 2, ~o, $, 0 . . . .  is given by 

M ~v ~ $~ 0e... • d~+~+o+e+"" (2.4) 
I .2- 3-....(V + v  + ~  + e)... dx~dyVdz~°dte... 

4 GOTTFRIEDWILHELM LEIBNIZ, Mathematische Schri/ten. ed. C . I .  GERHARDT. 
7vols.  t849--1863. Reprint .  Hildesheim, 1962: vol. 3/1, 175. 

5 Ibid., vol. 5, 377-382. 
e Ibid., vol. 4, 25. 

Ibid., voh 3/1, t99. 
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where M is the coefficient of the term x ~ y" z * t Q ... in the polynomial 

(x + y  + z  + t  +. . . )~+~+~+°+'".  

Thus, LAGRANGE said, in order to find the desired expansion it suffices to consider 
the series 

( x + y + z + t + . . . p  ( x + y + a + t + . . . )  ~ ( x + y + z + t + ' " )  3 
t -J- 1"2 -[- t " 2 " 3  - } -  • • • ( 2 . 5 )  

and after developing it change x into ~ ,  y into , z into , t into ~ [  . . . .  

and then multiply each term by dau where 2 is the sum of the powers. And he 
continued, this expression can be simplified still further by  noting that  the series (5) 
is equal to 

e *+y+z+t+ ' ' ' -  t .  (2.6) 

From this remark, LAGRANGE derived one of the basic theorems in the calculus 
of operations. He wrote s 

De 1~ il est facile de conclure que si l 'on consid~re l 'expression 

d~ du du 
e d}-* ~+ ~-y ~+ ~7 ¢ + ' ' ' -  t 

et qu'aprfis l 'avoir d6velopp6e suivant les puissances de du ,  on applique les 
exposans de ces puissances ~ la caract&istique d pour indiquer des diff6renees 
du mSme ordre que les puissances, e'est/~ dire qu'on change d u  ~ e n d  ~ u, on 
aura l 'accroissement cherch6 de la fonction u lorsque x, y, z . . . .  y deviennent 
x + ~ , y + % z + ~ . . .  

Or, 
du du du 

A u  = e  d~-~ ~+ ~-y ~+ dT¢+''' - - 1 .  (2.7) 

And by  repeating this process 

du du dz ),~ 
A ~ u =  edT*+~y  ~ + ~ + " "  t , (2.8) 

where the terms are computed by  the convention given above if 2 is a positive 
integer and where 

d - x =  f , d-~ = f~ . . . A - I =  X ,  A -2 = ~ .  . . (2.9) 

if ~ is negative. By studying the expansion of (e ~ --1) ~, where o~ is any quant i ty  
and using the notion of switching from powers to iterates, LAGRANGE obtained 
several theorems of the same type. LAGRANGE realized that  he had not proved 
his results. But, he said, the analogy between powers and indices of differentiation 
had led him to discover many  new theorems which would have been " t r ~ s  difficile 

8 JOSEPH LAGRANGE, " S u r  une nouvelle esp~ce de calcul relatif g la diff6rentiation 
et g l'int6gration des quantit6s variables," 1772, Oeuvres: vol. 3, 441. 
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de parvenir par  d 'autres voies. ''9 And, he added, it was in all cases possible to 
supply proofs of the theorems, though he gave no details. 

The first published proofs o f  LAGRANGE'S theorems were given by  PIERRE 
SIMON LAPLACE in 1776. He considered the case of a single variable and based 
his proof on the observation that  in the development 

d~u .~ dX+lu + A "  d~+~u 
Aau  = ~ t ~  + A '  d~-+i dx~+~ + " "  (2.10) 

the coefficients A',  A " , . . .  are independent of the function u and depend only 
on ~. Thus they can be determined by  choosing a particular function u; and letting 
u----e', he said, one obtains the result of LAGRANGE. 1° LAPLACE returned to this 
question in 1780, giving another proof and deriving several corollaries. In  this 
paper which dealt with the theory of generating functions, LAPLACE freely used 
the idea of switching from powers to indices of differentiation. 11 

The next step towards a calculus of operations is found in the work of ANTON- 
MARIO LORGNA. In  a memoir "Th6orie d 'une nouvelle esp~ce de calcul fini et 
infinit6simal," published in 1787, LORGNA, who was professor of mathematics  at 
Verona and a correspondent of LAGRANGE, at tempted  to justify and extend 
theorems based on the analogy between exponentiation and iteration. He asserted 
that  what was involved was the consideration of symbols of operation as if they 
were algebraic quantities. That  is, he wrote, I~ 

La nouvelle esp&ce de calcul dont il est question dans cette M6moire, exige que 
les caract6ristiques A, d, 27, f dont on se sert dans les calculs ordinaires 
fini & infinit6simal soient consider6es sous deux diff6rents aspects, c'est ~ dire, 
tant6t  commes les signes repr6sentatif destin6s ~ marquer les 6tats vari6s des 
grandeurs avec lesquelles ils se trouvent pr6fig6s, tant6t  comme des quantit6s 
alg6briques. 

That  is, LORGNA asserted, if y is a function and y '  is a "successivement vari6es," 
that  is, a difference or differential, one could treat  repeated variations, which 
he denoted by  yZ' as if the indices were ordinary integers, and then apply the 
primes, i. e., in any true statement one could go through and replace (y~,)n by y(~)', 
and the result would be a true statement.  The central tenet of his calculus was 
thus expressed as 13 

if faut faire abstraction, pour le moment  de l'op6ration, de tous signes de 
variation, & regarder les nombres symboliques comme des hombres absolus. 

Although LORGNA stated clearly what was to be a basic idea in the calculus 
of operations, namely the t reatment  of symbols of operation as if they were 

9 Ibid., 442. 
10 PIERRE SIMON LAPLACE, "M6moire sur l'illclinasion moyenne des orbites des 

com~tes, sur la figure de la terre et sur les formtions," 1776, Oeuvres: vol. 8, 314-321. 
n PIERRE SIMON LAPLACE, "M6moire sur l'usage du calcul aux diff6rences partielles 

dans la th~orie des suites," 1780, Oeuvres: vol. 9, 3t 3-380. 
12 ANTON-MARIO LORGNA, Th6orie d'une nouvelle esp~ee de calcul fini et infinit6si- 

mal," Mdm. de l'Acad Roy. de Turin, 1786-1787, 8: 4tl .  
1s Ibid., 418. 
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algebraic entities, his own applications of the idea are obscure. And he gave no 
rules as to when this might be done nor why it was possible. Furthermore, 
LORGNA'S work does not seem to have become widely known, either on the 
Continent or in England and is rarely mentioned in later works in the field. 

A full scale development of the calculus of operations did not occur until 
Louis  FRANCOIS ARBOGAST introduced the idea of the separation of symbols. 
ARBOGAST, professor of mathematics at Strasbourg, published a book Du calcul 

des derivations in t800. In this work ARBOGAST set out to furnish a new type of 
calculus which would contain as a special case the differential calculus. I t  is 
essentially a method for determining the coefficient of x n in the expansion of 
9 (a + b x + c x ~ + . . . )  for any function 9. In this respect it is highly combinatorial 
and recalls the work of the German school. But the work also contains two major 
contributions to the calculus of operations. First of all, he emphasized the concept 
of operation--a concept he felt was fundamental to all of mathematics. His work, 
ARBOGAST wrote, was based on a general way of considering quantities as being 
derived from one another. And, he added, anticipating an att i tude we will find 
important to the English algebraists: 14 

les deriv~es que je consid+re sont moins des deriv6es de quantit6s que des 
deriv6es d'op6rations, eomme l'Alg~bre est moins un calcul de quantit6s que 
d'op6rations arithm6tiques ou g6om6triques a ex6cuter sur les quantit6s. 

In addition to these general considerations, ARBOGAST made an important 
specific advance towards the calculus of operations in the form of the method 
of the separation of symbols, or, as he termed it, the "m6thode de s@aration 
des 6chelle d'op6rations." In this method the symbols of operation, combined 
with constants, are treated as single entities and as they would be if they were 
symbols of quantity. The resulting expression is then applied to the original 
function. As ARBOGAST described it :15 

cette m6thode consiste ~ d6tacher de la fonction des variables, lorsque cela 
est possible, les signes d'op6ration qui affectent cette fonction, et /t traiter 
l 'exwession form6e de ces signes m616s avec des quantit6s quelconques, ex- 
pression que j'ai nomm6e 6chelle d'op6rations /t la traiter, dis-je, tout de 
m~me que si les signes d'op6rations qui y entrent 6toient des qnantit6s; puis 

multiplier le r6sultat par la fonction. 

As an example of his work, consider ARBOGAST'S treatment of LAGRANGE'S 
theorem (8) for functions of a single variable. ARBOGAST expressed this theorem 
in the following form: 

--t I (2.11) 

du where it is necessary to expand the left hand side in ascending powers of ~ 

and then change (du) ~ into d'u. The statement of this theorem and its proof, 

14 Lovls FRANCOIS ARBOGAST, Du Calcul des Ddvivations. Strasbourg. 1800: i. 
15 Ibid., vii-ix. 
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ARBOGAST continued, can be simplified considerably by avoiding the necessity 
du 

of having to change from du ~ to d*u. This he achieved by writing ~u = ~ -  and 
"d6tachant l'6chelle de la fonction." Thus he wrote 

I ~ 2  ~ 3 ~ + . . . ) x u  
(1 +A) u =  (i + ~ + q ~ - 2  + 1.2-3 

(1 + A ) u  = ~  x u  (2.t2) 
A u = ( d ~ - - t )  x u  

A ~ u = (e * ~ -  ~)~ x u .  

And, he noted "il n'y a rien ~ changer apr~s le d6veloppement. ''IG 

The essence of his method is contained in the fact that he also expressed the 
second equation in the form 

I + A  = e  *6 (2.t3) 
and then concluded that 

F( t  +A) xu  ~-F(e ¢~) xu (2.t4) 

for any function F, where F applies only to the operations3 e Here the function F 
was to be expanded in a power series. Clearly, by his consideration of the symbols 
of operation apart from the subjects on which they operate, manipulating them 
as if they were algebraic quantities, ARBOGAST was working in the calculus of 
operations. Furthermore, he applied his theory to the solution of differential 
equations. In this he had many followers, some building on his work, while others 
came to the same general method independently. 

One of the first who did so, apparently without knowledge of ARBOGAST'S 
work, was BARNABX BRISSOX. BRISSOX, a graduate of the Ecole Polytechnique, 
developed a method, published in 1808, of solving linear partial differential 
equations with constant coefficients which was based on the observation that 
if A and B are constants, then 

d~ z / 

A dn Bdx ndym] - - A B  dx'~dn+mgdy 'n ' (2.15) 

a result which is also obtained if the indices denote powers and the terms are 
multiplied. This result t3RISSON said, generalizes to any expression containing 
differentials. He applied this observation to equations of the form 

dz c d z  _ # z  d~z -d~z 
A z + B ~ +  dy  + " ' + G ~  + H  d x d y  + ~ +  . . . .  0, (2.16) 

which he denoted by Vz=0.  Writing V ' z=0  for the corresponding algebraic 
d ~ z 

equation in which iteration is replaced by multiplication, i.e., dy dz is replaced 
dz dz 

by dy dx '  he factored this, and from V'z=6o~5~...6'~_lz he obtained 

Vz=~o ~1 .-. 6~-x z, where 6 i is obtained from 6~ by replacing the powers by 

18 Ibid., 350. 
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iterations. BRISSON then solved his equation by noting that  since the terms 
~o, 61, .-. 6~-1 can be written in any order $ ~ z = 0  implies V z = 0 .  He went on 
to show that  ~ z = 0 could generally be solved when the 6i are linear. 17 BRISSON 
anticipated many later attacks on the same problem, but  his work relied on 
switching back and forth between powers and indices of operation which made 
it awkward and imprecise. BRISSO~ carried many of his ideas further, but  his 
later memoirs were not published. However, they were used as a starting point 
by CAUC~Y for his own work in this area and will be considered later. 

JACQUES-F~DERIC FRANgAIS spoke admiringly of BRISSON'S work, though 
he criticized it for lack of rigor. In a paper published in the 1812-13 volume of 
the Annales de mathdmatiques FRANgAIS included among those who had made 
use of the analogy between powers and indices of operation LAGRANGE and 
BRISSON. However, he most admired the work of ARBOGAST, who, he claimed, 
had first stated the proper way in which the analogy should be used. Thus, 
FRAN~AIS wrote, TM 

Arbogast est le premier qui se soit propos@ de d@barrasser cette methode des 
inconv6niens qu'entralne le passage alternatif des indices aux exposans, et 
des exposans aux indices. L'idde heureuse qu'il a eu de d6tacher les carac- 
t@ristiques ou dchelles d'opdrations des fonctions qu'elles affectent, pour les 
traiter comme des symboles de quantit6s, remplit parfaitement le but  qu'il 
s'est propos6. 

FRAN~AIS used the method to solve linear differential equations with constant 
coefficients and he also considered finite difference and partial differential 
equations. His early work on this subject was criticized as being not rigorous, 
and FRANQAIS admitted, was reiected by the Institute (as the Academy was 
known at that  time) on that  ground. The following example giving the way in 
which he solved the first degree linear equation shows why. Following ARBOGAST, 

d9 
he wrote 6~ for ~ -  and E 9 for ~(x +1) .  Then from 

Eg(x )~ -9 (x  + t)=q~x +69(x)  + ~7 ~- 9 ( x ) + - . .  
(2.17) 

by "d@tachant les 6chelles" FRAN~AIS concluded 

E = e  ~. (2.18) 

Expressing his equation in the form 

(~ - -a )  ~ (x) = 0  (2A9) 

IT BARNAB•BRISSON, "M6moire sur l'int6gration des ~quations diff6rentielles 
partielles," J. de l'Ecole Poly., 1808, 7: 191-26t. 

IS JACQUES-FRI~DERIC FRAN~AIS, "M6moire rendant k d6montrer la 16gitimit6 de 
la s6paration des 6chelles de diff6rentiation et d'int6gration des fonctions qu'elles 
affectent; avec des applications ~ l'int6gratioa d'une classe nombreuse d'6quations," 
Ann. des Math. pures et app., t812-18t3, 3: 244. 
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and again "d6tachant  les 6che l les , "  FRANQAIS obtained 

- - a  ----0 

-~a (2.20) 

g6 ~ ga. 

But  then by  (] 8) and (20) 
e = e "  

E k = e  ak (2.2t) 

t = e "~ E -~  

for any k. Multiplying by  9 (x), and then letting x = k 

~0 (x) = e "k E -k 9 (x) = e ~k 9 (x - -  k) 

9 (k) = e °k ~0 (0) = C e ~k. (2 .22)  

Hence, again letting x = k, one can write the general solution 

9 (x) = C e'*. (2.23) 

As FRANqAIS was aware, this result can be found by  other methods. However 
he felt that  his approach was best. He also applied similar methods to equations 
of higher degree using the same basic idea found in BRISSON and ARBOGAST. Thus, 
given tile equation 

a'* q~(x) + a  1 ~,~-1 q~(x) + . . .  + a  n ~ ( x )  = 0  (2.24) 

he said that  if al, ~2 . . . . .  ~ are the roots of the corresponding algebraic equation, 
this can be written (separating the symbols) 

(a -~1)(~ -~2) ... (a - ~ )  = 0  (2 .25)  

and hence (25) is satisfied if 

6 - - ~ 1 = 0 ,  ~ - - ~ 2 = 0  . . . .  , b - - a ~ = 0 .  (2.26) 

But  then, by  (23) 

qJ (x) ---- C 1 e =,*, cp (x) = C~ e =, *, . . . .  9 (x) = C n e ~" * (2.27) 

each furnish a solution of the original equation (24). And since the equation 
is linear, their sum is a solution, which if the c~ are distinct, is the complete 
integral. In  the case of multiple roots this is not the case, but  FRANqAIS showed 
that  the method of separation of symbols could still be applied to obtain the 
complete integral. As we shall see, FRANqAIS' methods were very similar to those 
which became popular in England during the late 1830's. 

J.  B. JosEPH FOURIER, in his Thdorie  de la chaleur,  a work known and admired 
in Great Britain, used the calculus of operations though in a somewhat different 
way from the authors considered earlier. That  is, he did not use it to solve equations, 
but rather to express and verify solutions of various partial differential equations 
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found by other means. For example, he wrote the solution of the fundamental 
equation 

dv  d ~ v 
d t  - -  dx  2 

in the form 

(2.28) 

(2.29) v = e  tD' 9 ( x ) ,  9 ( x )  arbitrary. 

The meaning of this expression he explained as followsg" 
d i 

On d6velopper l'exponentielle, selon des puissances de D, et l'on 6crira d x ~  

au lieu de D ~, en considerant i comme indice de diff6rentiation. On aura ainsi 

d 2 t2 d ~ t 3 d 6 
v = ~ (x) + t ~ T  ~ (x) + t ' 2  dx ~ q~ (x) + 1"2.3 dx 6 ~ (x) + e t c .  

And to verify the above solution, he differentiated both sides of (29) with respect 
to t, which gives 

dv = D 2 etD~ d 2 v 
d t  9 (x) = D  ~ v - -  dx~ " (2.3~) 

FOURIER'S work also contains a notational innovation that is characteristic of 
the calculus of operations. This was the use of a single symbol, in his case D, 
for a compound operation. Thus, in considering the equation ~° 

d 2 v d ~ v d ~ v 
dr2 - -  dx~ + dy~ (2.31) 

FOURIER wrote 
d 2 v d ~ v 
~ + d y ~  = D r ,  (2.32) 

and he expressed the equation and the solution symbolically as 

d ~ v 
dt  ~ = D r ,  

(2.33) 
v = cos (t V~DD) ~ (x, y ) ,  

where cos (t V -  D) is to be expanded in powers of t D ,  and D i replaced by 

Another writer whose work in the calculus of operations was well known to 
the English mathematicians was AUGIJSTIN CAUCrtY. In his Exerc ices  de mathd-  

mat iques ,  Seconde annde,  published in t827, CAucrtY included three lengthy 
articles on the calculus of operations. 21 These contain many general theorems 
as well as methods of solution of various types of equations. CAUCrtY referred to 
two papers by BRISSON as the main source of his material. These memoirs, dated 
182t and 1823, he said, had unfortunately never been published. However CAUCHY 

19 J E A N - B A P T I S T E  JosEPH FOURIER,  Thdorie Analyt ique de la Chaleur. P a r i s ,  1 8 2 2 :  

517. 
2o Ibid. ,  519-520. 
2~ AUGUSTIN CAUCHY, " S u r  l'analogie des puissances et des diff6rences; Addition 

l'article pr6e6dent," and "Sur la transformation des functions q71i repr6sentent 
les int6grales g6n6rales des 6quations diff6rentielles lin6aires," Oeuvre ~: ser. 2, vol. 7, 
198-235, 235-254 and 255-266. 
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gave a broad outline of their contents and he acknowledged BRISSON'S priority 
in some specific results. But the articles are characterized by the rigor and elegance 
one expects to find in a work by CAUCHY and his own contribution is clearly a 
major one. 

CAUCHY began by noting that  the analogy between powers and indices of 
differentiation leads easily to the idea of representing a linear expression involving 
the function u of the variables x, y, z . . . .  and its successive differentials in the 
form 

r . . . .  ) u (2 .33)  

](~,/5, 7 . . . .  ) denoting a polynomial of degree m. Now BRISSON, said CAUCHY, 
had generalized this by allowing m to become infinite, attaching a meaning to 
the expression (33) for any function ] that  could be developed in positive integral 
powers of the variable. Actually, a similar idea is found in ARBOGAST'S work. 
BRISSO~, said CAucI~Y, used the expression (33) to formulate the solution of 
both the homogeneous and non-homogeneous linear partial differential equations 
with constant coefficients. He also considered equation (33) when the function ] 
could be developed in a series in descending powers of the variable only and applied 
these results to find the solution of certain partial differential equations in symbolic 
form. But CAUCHY said, despite the fact that  with the extended meaning equation 
(33) sometimes led to correct results, if the work is to be rigorous, it is necessary 
to restrict attention to the case in which the function ] is either a polynomial 
or a rational function. 2. 

CAUCI-IY began his own discussion by defining the expressions 

F(D),  F ( 3 ) ,  F(D,  3)  (2.34) 

dy A (x +A x) - - y  (x). where F (x) and F(~,/5) are polynomials and D y = ~ - ,  y = y  

They denoted, he said, the linear function of y, Dy,  A y, etc., which arise when 
the expressions (34) are developed in terms of the form A D ~ A'~y. CAUCHY then 
obtained the following important results in the calculus of operations: for any 
polynomial F 33 

F (D) [e"t(  x)] =dX F (r + D) ](x) 

F (2.35) 

F (D, A)[e"J(x)] =e'* F (r + D, dh(t + A ) - - t )  ](x). 

CAUCHY used these equations to obtain solutions to non-homogeneous linear 
equations with constant coefficients. Thus, the first equation in (35) shows that  if 

(D--r) y = / (x ) ,  (2.36) 
then 

y = re- '* / (x)  dx. (2.3 7) 

This result CAOCHY attributed to BRISSON. He then went on to consider higher 
degree equations by factoring them. That is, he said that  if r 1, r 2 . . . .  r, are the 

82 Ibid., 198-199. 
33 Ibid., 200-2ol. 
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roots (real or imaginary) of the equation a 0 r n + a 1 r n-1 + . . .  + an_ 1 r + a~ = 0, 
then we can write 

a s  

d n y d n -  1 y dy 
ao ~ -  + al d ~ : i -  + " "  +an-1 ~- +an =/(X) 

(D - -  rl) (D - -  r~) . . .  (D - -  r,) y - -  I (x) 
aO 

and to integrate, let 
1(~) 

(D --rl) Y.-1 -- ao 

(D --r2) Yn-~ :Yn--1 

( D - -  r ,_ l )  Y l  = Y ~  

(D --rn) y =Yl.  

Then, using (37) repeatedly, we obtain 

(2.38) 

(2.39) 

(2.40) 

This method works equally well for distinct or multiple roots. CAUCHY also 
considered difference equations, using the second equation in (35). Furthermore 
he obtained analogous formulas in the case of polynomials in several variables 
and applied them to linear partial differential equations. 

CAUCHY'S work represents the highest degree of development of the calculus 
of operations on the Continent during the first half of the nineteenth century. 
I t  contained many results which were to be used by English mathematicians as their 
starting point. But CAUCHY did not trust the method, and he neither carried it 
further nor did he give a justification of its basic principles, preferring to gain 
rigor by careful specifications of the functions and operations which he dealt 
with. 

For the next few decades England was clearly the center for research in the 
calculus of operations, considered here to be defined as calculation in which symbols 
of operation are manipulated as if they were algebraic symbols. Except for a 
short paper by BARNABA TORTOLINI published in 1853, in which he used what 

dy 

he called the symbolic form of TAYLOR'S Theorem, i.e., A ----e h ~ 7 _  I, in order 
to integrate finite difference equations, there seems to have been nothing published 
on the Continent in this vein until the latter part of the cen tury)  4 

The analogy between powers and indices of differentiation suggests not only 
applications like those given above but  also the possibility of extending the 
analogy to define symbols of operation with non-integral indices. This topic was 
discussed by many of the mathematicians considered in this paper and was 
related by some of them to the calculus of operations. 

24 ~BARNABA TORTOLINI, " "  Sopra gli integrali a differenze finite espressi per integrali 
definiti," Ann .  di sci. mat. e / i s . ,  1853, 4: 209-231. 
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The extension to non-integral exponents had occurred to LEIB•IZ, who wrote 
in t695 to GUILLAUME I'HosPITAL, that  from the analogy between powers of 
(x + y )  and the differentials of (xy): "on  peut exprimer par une serie infinie une 
grandeur comme # ( x y )  . . . .  " He added, these considerations seemed to give 
paradoxical results, but  he said, it is worth studying since " i l  n 'y  a gueres de 
paradoxes sans utilitY." 25 LEONHARD EULER considered the question in t 73 t in a 
way which anticipated the methods of many  of the nineteenth century analysts 
who worked in this area. 2~ The general problem, EULER said, was to determine 
the ratio of d" p to dx where n is a fraction and p a function of x. This, he added, 
is in general very difficult, and can be done only in certain special cases. Thus, 
for example, since for integers e and n, 

I • 2 . 3  . . .  e = f d x ( - - l x ) "  

dn a _=Ze_n " f d x ( - -  lx) e 
d z n f dx (--  l x) e-n 

d ½z = V z  f d x ( - - l x )  e 
dz dx ~ -- lx 

(2.42) 

gives, he said, 
OO OO 

d'l/*,d., -- 2=' (2.46) 
- - o o  - - O o  

and we can allow i to be any number whatever. 29 

25 LEIBNIZ, VO1. 2, 301--302. 
2~ LEONHARD E~ILER, " D e  Progress ionibus  T ranscenden t ibus  seu q u a r u m  daf t  

nequent," t730-173t, Opera Omnia: ser. t, vol. 14, 22-24. 
2~ ARBOGAST, 351. 
2s PIERRE SIMON LAPLACE, Thdorie analytique des probabilitds. 3 rd. ed. rev. Paris,  

t820: 85. 
29 FOURIER, 56t--562. 

where I x is the natural  logarithm of x. 

There are passing references to the possibility of fractional indices of operation 
in the work of ARBOGAST, LAPLACE and FOURIER. ARBOGAST claimed that  n could 
be fractional, or even irrational, in the expression 

A n u = (e~--  1) ~ x u  (2.43) 

since the right hand side could always be expanded in integral powersY LAPLACE, 

in his Thdorie analytique des probabilitds, after deriving the formula 

b v,y.=fTat ,-*(a+ T +.  (2.44) 

for integral values of i s tated tha t  this could be considered as defining the meaning 
of W when i was a fraction. 2s FOURIER'S remark was in a similar vein. The theorem 

o o  o o  

f l ( x )  = ~ -  d~ /(oO dp c o s ( p x - - p o  0 (2.45) 
- - 0 0  - - 0 0  
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But the first at tempt to create a coherent theory of fractional indices did 
not appear until t832. I t  is found in a work of JOSEPH LIOUVlLLE, professor at 
the Coll~ge de France in Paris: Mdmoire  sur quelques questions de gdomdtrie et de 

mdcanique, et sur un  nouveau genre de calcul pour rdsoudre ces questions. He based 
his definition on the assumption that every function y of x can be written in 
the form 

y = 27 Am e m~ (2.47) 

where 27 might also denote f .  And he defined 

d~ y =z~, A m e ~* m ~, (2.48) 
dxt* 

where/,  was any number, a° Several points that, as we shall see, were to be crucial 
in discussions of fractional indices first appeared in LIOUVlLLE'S work on this 
topic. For example, he obtained 

1 

x~ ( - I)~/" (n +/,) (2.49) 
dxt* - -  F(n)  x"+~ 

where 
oo 

F(n)  = f  e - °  0 "-~ dO. (2.50) 
0 

T h e / '  function, which had been introduced by EULER played an important role 
in many theories of fractional exponents. In particular the thorny question of 
its value for negative arguments led to difficulties. Thus, in his first memoir 
LIOUVlLLE had put no restrictions on n or #, but in a later work he noted that  
since the / "  function was infinite for negative values, his formula (49) was indeter- 
minate if both n and n + #  were negative. He got around this by altering the 
definition of t h e / '  function for negative arguments, al In another memoir, the 
fact that  the results of differentiation with fractional exponents are not unique 
was discussed by him. LIOUVlLLE attempted to get around this by introducing 
what he called complementary functions which he defined as a= 

certaines quantit6s qu'il est souvent n6cessaire d'ajouter aux valeurs de 
diffgrentielles, pour les rendre compl&tes, et lent donner route la g~n&alit4 
dont elles sont snsceptibles. 

d" y 
He found that for ~ the complementary function was of the form 

C O -[-C 1 x + . . .  q-Ca_ 1 x "-1, (2.5t) 

C o, C 1 . . . . .  C~_ x constants, where if u is a positive integer, all the C i are 0, if u is 
a negative integer, there are n = - -  u terms, while for other values of u the number 
of terms is finite but indeterminate. 

a0 JOSEPH LIouVILLE, "M6moire sur quelqnes questions de g6om6trie et de 
m6canique et sur un nouveau genre de caleul pour r6soudre ces questions," J. de 
l'Ecole Poly., 1832, 13: 3. 

m JosePH LIOUVlLLE, "Mdmoire sur le thdor~me des fonctions colnpl6mentaires," 
J.  /i~r die reine und angew. Math., 1834, I1: 4-8. 

a2 JosEP~I LIOUVlLLe, "M6moire snr le calcul des dfff6rentielles g indices quel- 
conques," J.  de l'Ecole Poly., t832, 13: 94. 
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LIOUVlLLE did not use the analogy between repeated operations and the law 
of exponents as the starting point in his theory, but  he did consider it to be 
important.  He noted that  his definition "cont ient  la clef v6ritable de ce qu'on 
a nomm6 l'analogie des puissances et des di//drences . . . "  and he proved that, using 
his definition 

k dx ~ ] d~+aF(x) 
dx" - -  dx,+ ~ (2.52) 

for any values of # and ~.33 This remark, as we shall see was taken as a starting 
point for the s tudy of the theory of fractional exponents in the work of some of 
the English mathematicians. 

LIOUVILLE applied his theory to various problems in analysis both in the 
papers already cited and in others, g* Furthermore, it is correct, provided one 
properly restricts the class of functions which can be "differentiated." Despite 
this it does not seem to have aroused much interest on the Continent. SIMON 
SPITZER, in a short paper which appeared in t 859, accepted LIOUVlLLE'S definition 
and studied the question of finding the successive derivatives and differences of 
the function /(x) defined as the x th derivative of 9 (r) evaluated at 2, ~0 (r) being 
a known function. ~5 

BERNHARD RIEMANN, in a paper dating from his student days, took a totally 
different approach to the problem: he defined the v th derivative of z (x) as the 
coefficient of h'  times a constant in a series expansion of z (x +h) ,  i.e., by  the 
equation 

v=+oo 

z (x+h)  = k,  z(x)h (2.53) 
v =  - - o o  

where k, depends only on v. 3~ If  the exponents are positive integers, this gives 
LAGtlANGE'S definition of the derivative. However, RIEMANN never published his 
paper. I t  appeared only in the posthumous collection of his papers. And, as with 
other topics in the calculus of operations, the center of research in the theory 
of fractional indices of differentiation was in England during the middle par t  
of the nineteenth century. 

Another subject which was, in its early history, considered to be part  of the 
calculus of operations was the s tudy of functional equations. This was because 
/(x) was interpreted as the operation / acting on x. D'ALEMBERT, LAGRANGE 
and EULER had all studied certain specific equations. But  the subject seems to 
have come into prominence at the end of the eighteenth century in connection 

3a Ibid., t14. 
34 JOSEPH LIOUVlLLE, "M6moire sur l'int6gration de l'6quation 

d 2 y dy 
(rex ~ + n x  +p) ~ + ( q x  +r) dxx + s y  = 0  

l'aide des diff6rentielles ~ indices quelconques," J. de l'Ecole Poly., t 832, 13:163-186 
and "M6Inoire sur une formule d'analyse," J. liar die reine und angew. Math., t834, 12: 
273-287. 

35 SIMON SPITZER, "Note tiber Differenz- und Differential-quotienten von allge- 
meiner Ordnungszahl," Arch. der math. und phys., 1859, 33 : 116-118. 

3s BERNHARD RIEMANN, "Versuch einer allgemeinen Auffassung der Integration 
und Differentiation," Gesammelte Werke, Dover ed. : 354. 
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with the determination of the arbitrary functions which enter into the solution 
of partial differential equations. Pioneering work was done on this subject by 
GASPARD MONGE and LAPLACE in the 1770% Both men reduced their problem 
to that of solving a finite difference equation. 37 

The subject was put on a new plane by CAUCHY, who published in 182t an 
important paper in which he studied in great detail, and quite rigorously, the 
solution of the important functional equations 

9 (x + y )  = ~o (x) + 9) (y) 

~0 (x + y )  = 9 (x) • 9 (y) 

cp (xy )  = qJ (x) + ~ (y) 
(2.54) 

q) (xy )  = 9 (x) . q) (y) 

both in the case of real and complex valued functions. ~s I t  should be noted that  
LEGENDRE had studied the first equation earlier. 39 Although CAUCHY'S work is 
very significant, he did not develop general methods, nor did he at tempt to 
relate his work to any general considerations on the nature of algebra. Here 
again, the interest in this subject is found not on the Continent, but in England. 
In t821 JOSEPH GERGONNE published a translation of a work by BABBAGE. 
GERGONNE, in an introduction to the translation, emphasized the importance of 
the study of functional equations, and expressed regret that  it was "encore peu 
connu et peu cultiv6 en France ...-.4o 

The fact that  the techniques of the calculus of operations led to correct results 
certainly calls for an explanation, and this was apparent to its early users. Thus, 
JOHANN BERNOULLI wrote to LEIBNIZ 41 

Nihil elegantis est, quam consensus quem observasti inter numeros potestatum 
a binomio et differentiarum rectangulo; haud aliquid arcani subest. 

He went on to say that it seemed to be a matter of considering d, d 2, d 3 . . . .  as if 
they were algebraic quantities, but  gave no indication of why this was legitimate. 
LAGRANGE stated explicitly that he did not understand the underlying principles 

87 GASPARD MONGE, "M6moire sur la construction des fonctions arbitraires qui 
entrent dans les int6grales des 6quations aux diff6rences partielles," Mdm. de math. 
et de phys.,  t 776, 7: 267-300; "M6moire sur la d6termination des fonctions arbitraires 
qui entrent dans les int6grales des ~quations aux diff6renees partielles," Ibid., 305-327 
and PIERRE SIMON LAPLACE, "Recherches sur l'int6gration des 6quations diff6rentielles 
au diff6rences finies et sur leur usage dans la th6orie des hasards," 1776, Oeuvres: vol. 8, 
103-t08. 

38 AUGUSTIN CAUCI-IY, Cours d'Ancdyse de l'Ecole Royale Polytechnique, Premiere 
Partie, 1821, Oeuvres: ser. 2, vot. 3. The real ease is considered on 98-t12 and the 
complex case on 220-229. 

39 ADRIEN-MARIELEGENDRE, Eldments de Gdomdtrie. 14 th ed. Brussells, t832: 
186-187. 

,0 CHARLES BABBAGE, "Des 6quations fonctionelles," trans. J. Gergonne. Ann.  
des ~Vlath. pures et app., 182t--1822, 12: t02. 

41 LEIBNIZ, VO1. 3/1, 1 79. 

12 Arch. Hist. Exact Sci., Vol. 8 
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of his results in the calculus of operations, though he was sure that they were 
correct. 42 

LAPLACE as we have seen claimed that the fact that  the coefficients of q, q', ... 
in the expansion 

A n n dn  n Ctn+ 1 d n + l  u OCn+ 2 d n +  ~ u 
u = ~  ~ -  + q  dx~+~ + q '  d ~ + ~  4 (2.55) 

where z] u = u (x + ~) --  u (x) are independent of ~ furnishes the explanation. 43 

Both ARBOGAST and FOURIER seemed to regard the method of using symbols 
of operation as if they were symbols of quanti ty as an elegant way of discovering, 
expressing, or verifying theorems, rather than as a valid method of proof. Thus 
we find in ARBOGAST 44 

Cette s6paration de l'6chelle met plus de facilit6 dans les calcus et fair en 
outre arriver facilement ~ des th6or~mes bien plus 6tendus. 

And FOURIER remarked on his own use of the calculus of operations 45 

Ces notations abr6g6s et connues d6rivent des analogies qui subsistent entre 
les int6grales et les puissances. Quant k l'usage que nous en faisons ici, il a 
pour objet d'exprimer les s6ries, et de verifier sans aucune d6veloppement. 

CAUCHY did not have a theoretical basis for his own work in the calculus of 
operations and for this reason was wary of its use. As he wrote of his own work 46 

Toutefois, ces formules, ainsi d6duite d'une 6quation symbolique, ne pourrait 
encore 8tre consid6r6es comme rigoureusement 6tablies, la methode qui les 
aura d6couvrir n'6tant en r~alit6 qu'une m6thode d'une induction. . .  

He continued by observing that it did not specify when the series solutions 
converged or under what conditions the methods could be applied. CAUCHY 
considered these questions in a later paper, but  his results express explicit condi- 
tions on the functions and series involved rather than a general explanation of 
why one should ever be able to derive valid results from the analogyY 

LORGNA and FRAN~AIS did attempt to state general principles which would 
justify the methods of the calculus of operations. Both had the general idea that 
the reason one could treat the symbols of operation of calculus like symbols of 
quanti ty was because the two sets obey the same laws of combination. Thus 
LORGNA considered powers y~ and indices of variation y~/ where ~/ indicated 
that a certain operation had been performed ~ times on y. One could then, in 

42 LAGRANGE, 441--442. 
*3 LAPLACE, " S u r  l'inclinasion," 314. 
44 ARBOGAST, 350. 
45 FOURIER, 518. 
46 AUGUSTIN CAUCHY, " N o t e  sur des th6or~mes nouveaux et de nouvelles formules 

qui se deduisent de quelques 6quations sylnboliques," t 843, Oeuvres: ser. 2, vol. 8, 27. 
a7 AUOUSTIN CAUCHY, "M6inoire sur l'emploi des 6quations symboliques dans le 

calcul infinit6simal et darts le calcul aux diff6rences fillies," ~843, Oeuvres: ser. 2, 
vol. 8, 28-38. 



Calculus of Operations and Abstract Algebra 173 

certain circumstances, go from one to the other, treating the 2/ as if they were 
powers because, said LORGNA, the index of variation ,t/expresses only ~ 

les nombres de traits destinrs ~t reprrsenter les 6tats consrcutivement varirs 
des fonctions ou les ordres de diff&ences & des intrgrales, si l'on suppose que 
a, b soient les diviseurs du nombre absolu 2, on peut mettre a la place du 2/ 
les produits de ses diviseurs en appliquent l'accent ~ tel d'eux qu'on voudra. 

That is, if 2 = a b, 2 /=  a b/, 2 = b a/, where y,b/ signifies the fact that  the operation 
performed to get yb/is repeated a times. LORGNA felt that this observation provided 
an adequate proof of LAGRANGE'S result (8). He wrote 49 

on ne saurait disconvenir, ~a me semble, apr&s ce qu'on vient d'exposer, que 
ce n'est pas simple analogie entre les puissances positives, & les diffrrentiations. 
C'est une ]Jason intime & nrcessaire qu'elles ont ensemble, dont cette analogie 
n'est qu'une suite tenant ~t des principes qu'il fallait developper ... 

Although LORGVIA was correct in so far as he went, restricting the analogy 
to powers, his principle was not sufficient to explain the method of the separation 
of symbols in which the symbols of operation are not combined merely by 
iteration but also by addition and multiplication by constants. 

FRAN~AIS attempted to give an d priori demonstration of the legitimacy of 
these procedures. He did this by comparing the series of equations 5° 

F (x, y) = 0 (2.56) 

aF(x, y) +bF(x ,  y) +cF(x ,  y) + . . . .  0 
(2.52) 

/,(a, b, c, ...) F(x,  y) +/2(a, b, c . . . .  ) F(x,  y) + . . . .  0 

with the series 

(a +b +c +. . . )  F(x,  y) = 0  

(Ix(a, b, c . . . .  )+/2(a, b, c . . . .  ) + . . . )  F(x,  y ) = 0  

aF(x, y) = 0  AF(x ,  y) = 0  

a2F(x, y) = 0  A=F(x, y) = 0  

a'F(x,  y) = 0 A~F (x, y) = 0 

(2.58) 

(2.59) 

OaF(x, y) +a~-XF (x, y) +b~'-2F (x, y) +.. .  + k F (x, y) = 0  

~ F(x, y) +aA 3"-iF(x, y) +bA23~-2F(x, y) +.. .  +kA 'F(x ,  y) = 0 .  
(2.60) 

Now, FRANQAIS said, equations (57) and (58) say nothing more nor less than (56) 
(clearly this is so only if they hold identically); and the same is true of (59) and 
(60). But this means, he continued 51 

48 LORGNA, 41 3. 
49 Ib id . ,  430. 
5o FRAlqQAIS, 245. 
51 Ib id . ,  246. 

12" 
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les dchelles ou signes de diffrrentes esp~ces de diffrrentiation se comportent 
donc de la mrme mani~re a l 'rgard de l 'rquation propos4e qu'elles effectent, 
que les constantes des 4quations [58]. On peut donc considdrer ces constantes 
comme des dchelles; el rdciproquement on peut trailer des &helles comme des 
quantilds constanles ... 

and hence, equations (60) can be written as 

(~  +~ ~ - l  +b ~-~  +. . .  +k) F(x, y) = 0  
(2.6t) 

(a" +aA a'-~ +bA a'-~ + . . . + k A ~ )  F(x, y) =0.  

I~'RANqAIS was groping towards the idea that  it was because the symbols of 
operation and of quanti ty obey the same laws of combination that  they can be 
treated in a similar manner. However, he did not state this clearly, nor did he 
isolate the laws. This step was taken by FRANCOIS-JosEPH SERVOIS in two papers 
published in the Annales de mathdmaliques. SEgVOlS' work was directed primarily 
towards the establishment of a firm theoretical basis for the calculus. The work 
was written in part as a polemic against some recently published works by the 
Pole Ho~I~E WRONSKI, his Rd/ulation de ta lhdorie des /onctions analytiques de 
Lagr ange (Paris, 18t2) and the earlier Inlroduclion a la philosophie des mathdmatiques 
(Paris, 1811). SEI~VOIS accepted WRoNsI~I'S criticism of LAGRANGE'S theory, but  
he did not accept WRONSKI'S sweeping philosophical claims for his own solution 
to the problem, s~ (WnOxSKI claimed that  all of modern mathematics was based 
on one supreme law, which was not mathematically derived but  given by  tran- 
scendental philosophy.) SE~vols, on the other hand, felt that  no single theory 
could claim necessarily to represent the true foundations of that  science, but  
that  each method had its own advantages. And two of the advantages of his own 
approach, he claimed, were that it served "lier solidement le calcul diffrrentiel 
avec l'analyse algrbrique ordinaire" and that  it furnished an adequate explanation 
of ARBOGAST'S method of separation of symbols. 5a SERVOIS' theory was based 
on the consideration of functions which were, in terms introduced by him, 
"distributif" and "commutatif entre elles." 54 That  is, functions which satisfied 
respectively 

~0 (x + y  + - . . )  = ~0 (x) + ~ (y) + . . .  (2.62) 
and 

I F (x) = F  / (x). (2.63) 

He proved that  i f / a n d  F are distributive, so is F / ;  that  if F (z) = / (z)  + / '  (z) + . . . ,  
where / , / ' , . . .  are distributive and pairwise commutative, then F and F" are 
distributive for any integer n. Furthermore, he declared, F"  can be found by 
applying ordinary algebraic laws to (/(z) +]' (z) +...)~. SERVOIS applied this to 
the differential calculus by noting first that  if A 9 (x) -= 9 (x +A x) -- 9 (x), then A 

52 FRANgOIS_JOSEPH S~;RVOIS, "Rrflexions sur les divers syst~mes d'exposition 
des principes du calcul diffrrentiel, et ell particulier, sur la doctrine des infiniment 
petits," Ann. des Math. pures et app., 1814-t815, 5: t41-170. 

~a Ibid., t41 and 152. 
54 FRANQOIS-JosEPH SERVOIS, "Essai sur un nouveau mode d'exposition des 

principes du calcul diffrrentiel," Ann. des Math. pures el app., 18t4-1815, 5: 98. 
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is distributive and commutes with constant factors. He then defined the differential 
dz by 

d z = A z _ { A ~ z  1 3 + ~ A z . . . .  . (2.64) 

By his general theory, it then followed that  d is also distributive and commutes 
with constants. And it was here that  he related his work to ARBOGAST'S method 
of the separation of symbols. These two properties, he said show clearly why 
one can treat symbols like A and d as if they were symbols of quantity. He wrote 55 

Chemin faisant, d'autres rapports entre la diff6rentielle, la diff6rence, l '~tat 
vari6 et les nombres, se sont manifestes; il a fallu en rechercher la cause, et 
tout  est expliqu6 fort heureusement, quand apr~s d@ouill6, par une s6v~re 
abstraction, ces fonctions de leurs qualit~s sp~cifiques, on a eu simplement a 
consid6rer les deux propri6t6s qu'elles possedent en commun, d'6tre distributives 
et commutatives entre dies. 

The relationship between these notions and the calculus of operations was then 
made explicit by SERVOIS who noted that  the analogy between the expansions 
involving exponentiation and indices of differentiation is easily explained by 
his theory. He quoted an evaluation of his work by LEGENDRE and SYLVESTRE- 
FRAI~OIS LACROIX to that  effect. They had written, ss 

En montrant  que s'est k leur nature distributives et commutatives entre elles 
et avec les facteurs constants, que les 6tats vari6s, les diff6rences et les diff6ren- 
tielles doivent leurs propri6t6s et les analogies de leur d6veloppements avec 
ceux des puissances (l'auteur) en donne la vdritable origine et 61oigne cette 
id6e de s@aration des dchelles qu'Arbogast avait imagin6e d'apr&s Lorgna 
pour expliquer le mSme circomstances, et qui a paru un peu hasard6e. 

But neither SERVOIS, nor any of his Continental contemporaries, seemed to 
be interested in developing the calculus of operations or its implications for the 
logical foundations of mathematics further. Thus, in t819 LACROlX summarized 
the history of the method which he described as one in which "les caract6ristiques 
d'op6rations paraissent se comporter comme des symboles de quantit6s," and he 
concluded that  although it had been considered by several mathematicians, it 
had not been widely adoptedY This, he added, may have resulted from the fact 
that  when it was first introduced the logical foundation was wanting. But, he 
noted, SERVOlS had now supplied the deficiency. However, the method still did 
not become popular on the Continent. As we shall see, it was the English who 
developed this work in the calculus of operations both in extending the scope 
of its applications and in relating it to a theory of abstract algebra. 

3. Introduction of Continental Ideas Into England 

The acceptance of the methods and notation of the Continental analysts by 
the English mathematical world was surprisingly quick, considering the length 

s5 SERVOIS, "R6flexions," t42.  
~o Ibid., 152. 
~7 SYLV~ESTRE FRAN~OISLACROIX, Traitd du Calcul Di][drentiel et du Calcul 

Intdgral. 2 ha. ed., rev. 3 vols. Paris, 1810-t819: vol. 3, 726. 
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of time that  the isolation had been maintained. The first polemical work directed 
towards this aim, ROBERT WOODHOOSE'S Principles o/ Analytical Calculation, 
appeared in 1803, and by t830 the fluxionary notation and the emphasis on 
geometric arguments in the calculus had virtually disappeared. WOODHOUSE is 
generally given credit for being the first to at tempt the reform, while its achieve- 
ment is attributed to CHARLES •ABBAGE, JOHN HERSCHEL and GEORGE PEACOCK. 
But the work of these men in the cause of reform is usually treated as a catalyst 
which had no causal relation to the subsequent development of mathematics in 
Great Britain. As I shall show, this is not the case: in their "crusading" writings 
these men emphasized certain critical ideas they found in the French works 
connected with the calculus of operations. And these ideas were to be important 
in the thinking of those later mathematicians who were to be concerned with 
the problem of the nature of mathematics. 

ROBERT WOODHOUSE spent his entire working life at Cambridge University 
as student, fellow and finally professor. His first book on the subject of the reform 
of mathematics in England was the Analytical Calculation mentioned above. In 
it he addressed himself primarily to the question of the foundations of the calculus. 
He reviewed the theories known to him, including those of NEWTON, LEIBNIZ, 
D'ALEMBERT, LANDEN, LAGRANGE and ARBOGAST. I t  was the latter two authors 
whose views came closest to satisfying him, because they linked the calculus to 
algebra. He wrote " the  differential calculus. . ,  is to be considered as a branch 
of common Algebra, or rather as a part of the common symbolical language in 
which quanti ty is treated of. ' ' ~  None of the theories which he reviewed were 
found totally satisfying by  WOODHOUSE. In particular, he criticized LAGRANGE 
for assuming that  any function can be expanded in a power series. His own 
treatment is one which, while not directly tied to the calculus of operations or 
abstract algebra is not wholly unconnected with them either. WOODHOUSE took 
what can be described as a strictly formal view of series. That  is, he claimed that  
one could give an extended meaning to the symbol of equality, so that  in the 
theory of series it does not denote numerical equality but  rather the result of an 
operation; thus in analysis the convergence or divergence of a series is irrelevant. 
He justified this by his overall view on the nature of mathematics which he 
described as follows: 59 

The axioms or self-evident principles, such as, when equal quantities are 
added to, or subtracted from equal quantities, the sums, or remainders are 
equal, etc. being true in all sciences form in part the base of Analytical 
Calculation; from these the process of deduction begins, and is expressed by 
arbitrary characters and their combinations, the meaning of which is to be 
fixed by definition and convention. 

And he continued, the meaning of the symbol " = "  should not be taken to mean 
numerical equality when used between a function and its series expansion. 
Rather, he said, in such a situation = is used 6° 

58 ROBERT WOODHOUSE, The Principles o/ Analytical Calculation. Cambridge 
t803: 212. 

5~ Ibid., 1. 
so Ibid., t4-t5. 
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to denote the expansion, or the result of any operation, whether it be of 
multiplication, of division, of involution, or of evolution: and assuming this 
signification of the sign = ,  when an arithmetical equality results between 
the function and its expansion, such an equality results not necessarily but  
cont ingent ly ; . . ,  in the process of analytical deduction, however, it is the 
law of the expansion, the connexion of the coefficients of its terms, which it 
is useful to consider and the convergency or divergency of the series is then a 
useless consideration. 

t 
The following example illustrates WOODI~OUSE'S point of view. If, he wrote, t + x 
is the symbol of the series which results from dividing I by  i + x, then 

1 
~+ x --1 + x + x~ + x3 + . . . .  (3.1) 

1 
If  ~ is the symbol of the series which results from dividing t by  x + 1, then 

I 1 1 t 
x + l  - -  x x 2 + ~  . . . .  " (3"2) 

But  then, WOODI~OUSE concluded, "wi th  reference to their expansions it cannot 
1 1 

be affirmed that  1 + x  - -  x +  t .-61 Many earlier mathematicians had gotten 
t 1 

into trouble by  assuming that  since 1 + x  - -  x +  1 ' series (t) was equal to 

series (2). This is avoided by WOODHOUSE. He also showed great insight in his 
realization tha t  equality in mathematics  need not denote numerical equality. 

Returning to the question of the introduction of the notation in use on the 
Continent into England, WOODI~OUSE'S approach was extremely critical. He 
discussed at length the importance of a good notation. But, WOODI~OUSE realized, 
the choice is in a sense aesthetic. After comparing various expressions written 
in the fluxional and differential notation, he admit ted that  if the advantage of 
the latter does not strike the eye of the reader, he can offer no verbal arguments 
for it. The notation he finally accepted as best was that  introduced by  ARBOGAST, 
because of its usefulness in expressing the TAYLOR series expansion of a function. 
Thus he compared 

• oo 

xm xm i2 ( x + i ) ~ = x ~ + ~ - i + ~  +... 

( x + i ) m ~ x ,  ~ + 1 . _ c 5 ~ ,  . t.2dx~d~(~) i n + . . .  (3.3) 

D ~ ~ .~ 
(x +i) '~=xm + D x ' ~ . i  + ~ 7 ~ - z  + . . . .  

The first, he said, is very awkward; the second is bet ter  but  still requires the 
differential coefficient to be expressed as a fraction. The third avoids this, and 
can be improved still further by another innovation due to ARBOGAST, namely 

D~V DaV 
. . .  _ _  . . . .  6,. In the text  he used this notation writing ~)~ V, ~)3 V, for 4.2 ' 1.2- 3 

~x Ibid., 57. 
~2 Ibid., xxvii-xxix. 
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while he is establishing the theoretical foundation, but  in all his calculations he 
used the differential notation. 

The book does not seem to have made much impression on the Cambridge 
scene. In  an article on the introduction of the differential notation into Great 
Britain, J. M. DUBBEY denies that  it played any role at all. 63 However, it seems 
that,  contrary to DUBBEY'S statement,  CHARLES BABBAGE, who was to play a 
key role, actually learned the differential notation from it. Not only does BABBAGE 
describe the work as that  " from which I learned the notation of Leibniz," but  
the other books which he lists as those he knew when he entered Cambridge 
bears this out. The only foreign works he lists are AGNESI'S Analytical Institutions, 
which, as noted earlier, appeared in England in fluxional garb, and LAGRANGE'S 
Calcul des [onctions. 64 

The Analytical Calculation was not WOODHOUSE'S only a t tempt  to institute 
changes in the English approach to mathematics.  In a paper of t802 "On the 
independence of the analytical and geometrical methods of investigation and on 
the advantages to be derived from their separation," he at tacked the reliance 
on geometric methods which probably was, even more than a poor notation, the 
cause of the lack of progress in English mathematics.  WOODHOUSE argued that  
the introduction of geometric methods into analytical investigations was always 
unnecessary, owing to the nature of algebra which as a universal language 
" . . .  must  be sufficient to express all the conditions belonging to any subject of 
investigation. ''65 And he used his theory of series to solve analytically problems 
which had been generally assumed to require a geometric approach. 

But  WOODHOUSE'S most influential work was his textbook Plane and Spherical 
Trigonometry, first published in t809. I t  is much less polemical in tone than his 
earlier work, and he uses the differential notation throughout, without comment, 
simply restating each problem in the fluxionary notation in a footnote. He defined 
the trigonometric functions by  their series expansions and derived from these 
a large number of formulas. These he applied to problems of physical astronomy 
which would have been extremely difficult to solve geometrically. Tha t  this was 
par t  of a conscious campaign seem clear from the following quote from that  
work: 66 

The student, perhaps, may  now be inclined to believe tha t  the formulae 
demonstrated in the preceding pages, are not entirely without their use, nor 
invented and shewn as mere specimens of analytical dexterity. 

According to GEORGE PEACOCK, a student of WOODHOUSE who was himself 
to play a major  role in the revitalization of mathematics  at Cambridge and in 

6a j .  M. DUBBXY, " T h e  introduction of the differential notation to Great Britain," 
Ann. o] Sci., 1963, 19: 39-40. 

64 Charles Babbage and his Calculating Machines. Selected Writings by Charles 
Babbage and Others. ed. PHILIP MORISON ~¢ EMILY MORISON. New York, 1961 : 22. 

65 ~:{OBERTWOODttOUSE, "On the independence of analytical and geometrical 
iuvestigation and on the advantages to be derived from their separation," Phil. Trans., 
1802, 92: 86-87. 

66 ROBERT ~¢VooDHOUSE, zJ Treatise on Plane and Spherical Trigonometry. 3 rd. ed. 
rev. Cambridge, 1 8t 9: 1 1 6. 
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the development of a new concept of algebra, this book aroused a great deal of 
opposition from the Cambridge dons. I t  was criticized, he said, because it tended 67 

to produce a dangerous innovation in the course of academical studies, and 
to subvert the prevalent taste for the geometrical form of conducting investiga- 
tions and of exhibiting results which had been adopted by  Newton in the 
greatest of his works, and which it became us, therefore, from a regard to the 
national honour and our own, to retain unaltered. 

However, PEACOCK continued, the opposition, violent as it was, did not persist, 
and the book came to be universally adopted. In fact, he characterized this work 
as that  which "more  than any other work contributed to revolutionize tile 
mathematical  studies of this country. ''6s 

Most writers on English mathematics  do not rate WOODI~OUSE'S contribution 
to the cause of reform so highly, and it is probably true tha t  without the efforts 
of BABBAGE, HERSCHEL and PEACOCK he would not have succeeded. But  it 
should also be noted that  these men were influenced by  WOODHOUSE. He was 
their teacher, and PEACOCK'S views on algebra were closely related to those of 
WOODHOUSE. 

Another name always cited in accounts of the reform is that  of the Analytical 
Society. A full account of its founding can be found in CHARLES BABBAGE'S 
autobiography. 69 Composed of several young men who were dissatisfied with the 
quality of mathematical  instruction at Cambridge, the group met  regularly to 
discuss the work of Continental analysts. The most active members of the organ- 
ization were GEORGE PEACOCK, JoI~N HERSCI=IEL and CHARLES BABBAGE. The 
lives of these men were very different. Each of them achieved renown, but  in 
very disparate fields: PEACOCK as Dean of Ely and biographer of THOMAS YOIJ?CG, 
HERSCHEL as an astronomer, and BABBAGE for his computing machines. All 
three shared a lifetime devotion to the cause of improving the quality of science 
in England. 

Their earliest contribution was their attack, while they were still undergraduates 
at Cambridge, on the provincialism of that  school. They wished to replace the 
fluxional notation and geometric methods in vogue there by  those used in 
Continental writings, thus making these works accessible to their fellow students. 
Towards this end they published several works dating from t8t3 to t820. These 
included a translation of LACROlX'S elementary treatise on differential and 
integral calculus, prepared by all three; A Collection o/Examples o] the Di//erential 
and Integral Calculus by PEACOCK and A Collection o/Examples of the Applications 
of the Calculus o/Finite Differences by HERSCHEL. The latter work contained an 
appendLx on the solution of functional equations by  BABBAGE. Perhaps even 
more important,  PEACOCK served for several years as examiner for the Tripos 
examination, and was a lecturer at Trinity College from t815 to t823 and a 
tutor  from t823 to t839. In all of these positions he used his influence both on 

0"/ GEORGE PEACOCK, "Report on the recent progress and present s~cate of certain 
branches of analysis," Brit. Ass. t?@., 1833: 296. 

6s Ibid., 295. 
69 BABBAGE, 23--24. 
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students and on his colleagues to further the cause of reform. By 1820 the fluxionary 
notation had disappeared from the Tripos examination. Works by other authors, 
also using the differential notation began to appear and by 1830 the analytical 
methods and differential notation had replaced their geometrical and fluxional 
counterparts not only at Cambridge but  throughout England. 

The contributions of the three men were not limited to educational reform 
alone, a fact generally acknowledged in the case of PEACOCK but not for the 
other two. As we will see, all three emphasized the relationship between calculus 
and algebra, and they felt that  the French work in the calculus of operations 
particularly well illustrated the superiority of the Continental approach. 

We can see this clearly in their treatment of the LACROIX translation. This 
work, entitled An Elementary Treatise on the Dilferential and Integral Calculus 
was published in t8t6.  The section on the differential calculus was translated 
by  BABBAGE, the integral calculus by PEACOCK and HERSCHEL with the addition 
of a series of notes by PEACOCK and an original treatise on finite difference 
equations by HERSCHEL. Although the work is essentially a condensation of 
LACROIX'S classic three volume treatise on the calculus, it differed from that  
book in that  LACROIX had used LAGRANGE'S theory of functions as the foundation 
in the original work while in the shortened version he used the theory of limits. 
This change did not meet the approval of the translators, who wrote about the 
work: T0 

It  may be considered as an abridgement of his great work on the Dilferential 
and Integral Calculus, although in the demonstration of the First Principles, 
he has substituted the method of limits of D'Alembert ill the place of the 
more correct and natural method of Lagrange which was adopted in the former. 

As PEACOCK explained it, the theory of limits was not acceptable because it 
leads t o "  a tendency to separate the principles and departments of the Differential 
Calculus from those of Common Algebra . . . .  -71 A similar note is found in the 
discussion of the method of fluxions, which is criticized by PEACOCK for introducing 
extraneous ideas (geometrical and mechanical) into the study of purely algebraic 
problems. A further reason given for preferring the differential to the fluxional 
notation is directly related to the calculus of operations. The differential notation, 
PEACOCK wrote, is to be preferred because it is "equally convenient for represent- 
ing both operation and quantity. ''7. 

Throughout the text,  whenever there is all argument based on the theory of 
limits, PEACOCK supplies a note deriving that  result from LAGRANGE'S theory. 
Though the text  was probably more influential in bringing the new notation and 
methods into wider use in England, it was not the first publication of the reformers. 
In t 813 there appeared the first (and only) volume of the Memoirs o[ the Analytical 
Society. I t  was published anonymously, but  according to BABBAGE the preface 

70 SYLVESTRE FRANqOIS LACROIX, A n  Elementary Treatise on the Di/]erential and 
Integral Calculus. trans. CHARLES BABBAGE, JOHN HERSCHEL and GEORGE PEACOCK. 
Cambridge, 1816 : iii. 

71 Ibid., 612. 
~2 Ibid., 620. 
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is by  himself and HERSCHEL; the first paper is also his, and the remaining two 
are by HERSCHEL. 73 The authors comment on their anonymity illustrates the 
zeal which they brought to the task of mathematical reform and is a fitting 
introduction to their work. They commented 74 

But some account will naturally be expected of the source itself, from which 
this work emantes. Of this however, very little need be said, but, that  it 
consists of a few individuals, perhaps too sanguine in their hopes of promoting 
their favorite science, and of adding at least some trifling aid to that  spirit 
of enquiry, which seems lately to have been awakened in the minds of our 
country-men, and which will no longer suffer them to receive discoveries in 
science at second hand or to be thrown behind in that  career, whose first 
impulse they so eminently partook. 

In the preface BABBAGE and HERSCHEL emphasized: (t) the relationship 
between algebra and calculus, exemplified by their preference for the approach 
of LAGRANGE and ARBOGAST to the foundations of the differential calculus; (2) 
the impotance of the functional notation and its relationship to a functional 
calculus; (3) the analogy between repeated operations in the calculus and ex- 
ponentiation; and (4) the method of the separation of symbols. They praised the 
analytic method because of the simplicity of its language and conciseness of its 
notation. Despite these advantages, they went on, symbolic reasoning was not 
immediately successful, primarily because at the start  its resources were poor 
and it was not well used. But  they continued 7~ 

to employ as many symbols of operation and as few of quanti ty as possible, 
is a precept which is now found invariably to ensure elegance and brevity. 

The example they chose was the use of an abstract symbol to denote a function. 
Thus, they wrote, a good notation can serve to advance science and that  76 

no single instance of the improvement or extension of notation, better illustrates 
this opinion, than the happy idea of defining the result of every operation 
that  can be performed on quantity, by the general term of function, and 
expressing this generalization by a single letter. 

The result of this, they went on, was a calculus more general than any known, 
which they called the calculus of functions. This dealt in fact with the solution 
of functional equations, and ]3ABBAGE wrote extensively on the subject. 

The range of references quoted shows that  the authors were very well acquaint- 
ed with foreign literature. In discussing the origins of the calculus they stated 
that  it was discovered by FERMAT, made analytical by  NEWTON and enriched 
with a powerful and comprehensive notation by LEIBNIZ. 77 And, they went on, 
the proper foundation of the theory is found in TAYLOR'S theorem, as first 

73 BABBAGE, 373. 
74 [CHARLES BABBAGE ~; JOHN HERSCHEL], "Preface ,"  Mere. Anal.  Soc., t813, 

1 : xxi. 
~6 I b id . ,  i. 
76 I b id . ,  xvi. 
77 I b id . ,  iv. 
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reeognized by LAGRANGE and ARBOGAST, who " inven ted  it anew, and established 
it as the true basis of the differential calculus." 78 This also formed the basis of 
the theory of finite differences, they added, as is obvious if one makes use of the 
analogy between repeated operations and exponentiation. In this regard, they 
mention with great admiration the theorems of LAGRANGE and single out for 
special praise the work of ARBOGAST, who, they declare/9 

by a peculiarly elegant mode of separating the symbols of operation from 
those of quantity, and operating upon them as upon analytical symbols; 
... derives not only these, but  many other much more general theorems with 
unparalleled conciseness. 

The influence of these ideas on the Memoirs is apparent. BABBAGE'S paper 
"On continued products" concerns the solution of functional equations. In it 
he reduces the solution of 

~Px" g x = z x  (3.4) 

to a problem depending on successive orders of a single funct ion/ .  He uses the 
notation ]" for the n-fold iteration of / and of course notes the analogy between 
this operation and exponentiation, s° 

HERSCHEL, in his paper " O n  trigonometrical series" also considered this 
question, and letting n = -  m, he used the equation 

1" I '~ (x) = I "+  '~ (~) (3.5) 

to define ]-~ (x). He went on to investigate fl(x), when z was not an integer. 
He concluded that  this could be defined in terms of z and x, provided one could 
find a formula for fl (x), when z was integral. Thus, for example, if 

ctx a z 
l ( x ) -  b+cx, l ' ( x ) -  ~,-b, (3.6) 

b * + c x  a - - b  

makes sense even when z is not integral. And he said, if z is fractional or imaginary 
" the  only meaning we can assign to fl (x) is, that  it is that  function of z and x 
which is here connected to it by the sign of equality. ''81 HERSCHEL'S main mathe- 
matical interest was in the solution of finite difference equations. This gave rise 
to the investigation of fractional indices of differentiation, for, as he pointed out, 
in solving equations of mixed differences formulas occur in which the index of 
differentiation is variable. His technique here was similar to that  used above for 
functions. Thus he concluded that  the problem was solvable for a given function ] 
provided that  we Call find a function 9 such that  

D '~ / (x) = q~ (n, x) (3.7) 

vs Ib id . ,  iv-v. 
~9 Ib id . ,  xi. 
80 [CHARLES ]~ABBAGE], " O1"1 continued products," Mere .  A n a l .  Soc.,  18t 3, 1: 1-3t.  
sl [JOHN HERSCHEL], " O n  trigonometric series; particularly those whose terms 

are multiplied by tangents, co-tangents, secants, etc. of quantities in arithmetic 
progression; together with some singular transformations," Mere .  A n a l .  So t . ,  18t  3, 
1: 48. 
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for positive integers n. We can then look on this equation as the definition of D ~ for 
other values of n. 

In the last paper in the volume HERSCHEL considered BABBAGE'S favorite 
topic--functional equations. Like MONGE and LAPLACE, he solved various equations 
by reducing them to finite difference equations, s~ 

BABBAGE'S later work in pure mathematics was concentrated on the solution 
of functional equations. In one of his earliest works on that subject "An  Essay 
towards the calculus of functions, 18t5"  he gave a definition of function which 
bears out the contention that this subject belongs to a history of the calculus of 
operations. He wrote s3 

the term function has long been introduced into analysis with great advantage, 
for the purpose of designating the result of every operation that can be per- 
formed on quantity. 

In a later paper, "Observations on the analogy which subsists between the 
calculus of functions and other branches of analysis," BABBAGE referred not only 
to the obvious one between powers and repeated operations but also to those 
concerned with the solutions of specific functional equations. Thus, he compared 
the relations which hold among the n *h roots of unity to those among the solutions 
of the equation ~v ~ x = x. And, he noted, many of the methods for solving functional 
equations which he gives were derived from the corresponding integral problems 
by analogy. 

To BABBAGE, the importance of the concept of function was not only that it 
supplied a unifying theme in mathematics but also that its suggestive notation 
helped lead to future investigations. As an example, he cited the ramifications 
of equation (5). Like HERSCHEL, he used this equation as a starting point for a 
discussion of the meaning of ]~ where ~ was not a positive integer. His solution, 
too, was similar to that of HERSCHEL, in that he used an established equation 
to define the further meaning of the symbol. Thus, the index n was now to indicate 
"such a modification of the function to which it is attached that that  equation 
shall be verified. TM Thus, ]*~x=]° f '~x  gives f 0 y - - y ;  and letting m = - - t ,  
n ~ ~, []-1 x = x, or f-1 is the function of x such that if you perform ] on it the 
result is x. The fact that  such a function is not necessarily unique was noted by 
BABBAGE, but did not appear to him to present a problem. He merely mentioned 
the fact, and added that  among all such functions there was only one which 
also satisfied ]-1 f x = x. 

BABBAGE'S general philosophy of mathematics is found in one of his last 
papers on pure mathematics, "On the influence of signs in mathematical reasoning." 
His approach was that of a formalist and is similar to that of WOODHOI:SE and 
ARBOGAST. He also anticipated later views when he wrote s~ 

82 ~JoHN HERSCHEL,, "On equations of differences and their applications to the 
determination of functions from given conditions," Mere. 2t hal. Soc., t 813, 1:65-114. 

83 CHARLES BABBAGE, "An essay towards the calculus of functions," Phil. Trans., 
1815, 105: 389. 

s4 CHARLES BABBAGE, "Observations on the notation employed in the calculus 
of functions," Trans. Camb. Phil. Soc., t8t9-1821, 1: 64-65. 

85 CHARLES BABBAGE, "On the influence of signs in mathematical reasoning," 
Trans. Camb. Phil. Soc., 1822-t826, 2: 326-327. 
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The nature of the quantities with which the mathematical sciences are 
conversant, is undoubtedly one of the first causes for the certainty of its 
conclusions; in Geometry it has been well remarked that  its foundations rest 
on definitions, and if this do not altogether hold in algebraical enquiries, at 
least the meaning of the symbols employed must be regulated by definition; ... 

In the calculus of functions, as with so much that  BABBAGE was to do in his 
life, after a very promising beginning he dropped the subject, leaving, in the end, 
only an interesting fragment. This does not diminish his real contributions. He 
attacked and solved some important equations and introduced the method of 
determining the general solution from a particular one in certain cases. Furthermore 
he was one of the prime movers of tile mathematical reform, and we find in his 
arguments for the importance of a good notation and the analytic method; in 
his emphasis on the relationship between common algebra and analysis; and 
in his attempts to develop a calculus of functions many of the ideas that  were 
to influence the subsequent development of British mathematics. 

The same is true of his fellow worker JOHN HERSCHEL. HERSCHEL, well 
known for his work in astronomy and chemistry was also a first rate mathematician. 
His primary field of interest was, as has already been noted, the solution of 
finite difference equations. He was the first Englishman to write on the application 
of ARBOGAST'S method of separation of symbols to the solution of these and other 
equations. In his paper "Consideration of various points of analysis, 1814" he 
explained the basis of the method and its importance: s6 

In the following pages I have uniformly made use of the functional or charac- 
teristic notation, together with the method of separating (where it could 
conveniently be done) the symbols of operation from those of quantity. This 
method, I have, perhaps, extended and carried somewhat farther than has 
hitherto been customary; but, I trust, without losing sight of its grand and 
ultimate object, the union of extreme generality with conciseness of ex- 
pression. 

HERSCHEL made several remarks which indicate one of the ways in which these 
developments were to broaden the concept of algebra by  giving rise to an 
algebra in which the objects of calculation were symbols of operation rather than 
of quantity. He noted that  if any number of functions of x be combined algebrai- 
cally, the resulting function was to be denoted by the same combination of their 
characteristics; that is 9 .~o (x) was defined to be 9 (x) .~0 (x). He used the symbol 
D, due, as he noted, to ARBOGAST, for the sign of derivation. And, HERSCHEL 
pointed out, it denoted an operation performed not on quantity, but  on the 
functional characteristic which follows it. He wrote 8~ 

I t  is properly speaking the sign of an operation performed, not on quantity, 
but  on the characteristic which it immediately precedes; by which the operation 
denoted by that  characteristic is altered. 

s~ JOHN HERSCHEL, "Considerations of various points of analysis," Phi l .  T rans . ,  
t814, 114: 441. 

87 Ib id . ,  443. 
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The idea that  what  is involved in the calculus of operations was that  the symbols 
of operation behave like those of quanti ty also appears in this paper. HERSCHEL 
wrote "eve ry  functional characteristic is affected by  all the characters preceding 
it, in the same manner as if it were a symbol of quantity."ss 

In the body of the paper, HERSCHEL applied the method to the s tudy of 
generating functions, a theory due to LAPLACE, solving in certain cases both the 
problem of finding the general term in an expansion and the converse problem 
of summing a series. He also considered the solution of the linear differential 
equation which he denoted 

0 = u + 1A D u + ~A D~u + . . .  + "A D~u.  (3.8) 

And he solved it in much the same way as ARBOGAST, CAUCHY and FRANQAIS. 
That  is, he divided by  "A and factored the corresponding algebraic equation and 
reduced (8) to the form 0 = (D- -p )  (D--q)  ... ;u ,  which, he said, could easily 
be solved. 89 

HERSCHEL also considered LAGRANGE'S theorem, which he wrote as 

/ I n u ~  e ~ - - t  u ,  

and which he described as 9° 

The beautiful theorem of Lagrange which affords us an opportunity to develop 
the principles of a method of notation which seems to unite in the most perfect 
manner the properties of conciseness, simplicity and elegance, and appears 
peculiarly well adapted to open new and enlarged views of the extent and 
meaning of analytical operations. 

What  HERSCHEL is referring to is essentially the method of the separation of 
symbols. Thus he proved LAGRANGE'S theorem as follows: writing TAYLOR'S 
theorem as 

d 1 d ~ 
A = 2 x  + 1 .2  dx~ -~ (3.9) 

he noted that  9x 

I t  is of no consequence to our present purpose in what light we regard the 
symbol A whether as a quantity,  or merely as an intrument  by  means of 
which . . . . .  we are enabled to produce the numerical coefficients of the series 
affected with their proper powers of the same. 

Here we see an approach similar to that  of WOODHOUSE. HERSCHEL then expanded {'/  e ~ - t  in powers of d ~-x and comparing coefficients, concluded that  the 

series of operations so denoted is equivalent to zl. Thus, HERSCHEL asserted, the 

operation A repeated n times is clearly equivalent to e 2~ --1 which is the 
theorem to be proved. However, he went on to say 9~ 

s s  Ibid. 
s9 Ibid., 467-468. 
90 LACROIX, Elementary Treatise, 478. 
~1 Ibid., 479. 
~2 Ibid., 487. 
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The discovery of this theorem and its consequences have formed in some 
respects an epoch in mathematical  literature, and as it seems in general to be 
regarded as involving a certain degree of obscurity, we shall proceed to a 
more particular demonstration of it. 

The proof he gives is due to Dr. JOHN BRINKLEY, at that  t ime Andrews 
Professor of Astronomy at Trini ty College, Dublin. BRINKLEY'S work on this 
subject appeared in the t807 volume of the Philosophical Transactions. I t  is of 
interest because it shows that  while it is not impossible to t reat  theorems of 
this sort in the fluxional notation, it is certainly a disadvantage in terms of 
clarity and conciseness. BRINKLEY'S statement of his result illustrates this: zJ~u 
and S~u denoting the first terms of the n th order differences and the series of 
which the first term of the n th order is u respectively 93 

1. Anu = ( e ; / ; - - t )  ~ and 2. S~u----(e~/~--l) -~ provided that  in the expansion 
8 

42 , ~ ,  etc. be substituted for , etc. and provided 

that  in the expansion of (e;/ '~- t) -'~ fl. '~ u~ '~, fl. '~-1 u:~ ~-1 be substituted for 
2 3 

(~;)-,~ (~)-,~+1 a n d ~  u (I;)~ (~.')3 ~ , etc. , ~ etc. be substituted for ~- , etc. 

The problem then is to determine the coefficients in the series expansion on the 
right hand side of the equation. I t  is interesting to note that  BRINKLEY'S argument, 
which is a combinatorial one, is related, as he points out, to that  of ARBOGAST. 

HERSCHEL and BRINKLEY both discussed generalizations of LAGRANGE'S 
theorem, which they attr ibute to ARBOGAST. In a later paper on this topic HERSCHEL 
expressed the basic result as: 94 for any algebraic function / 

/(1 +A) u. =l(e ~x,D) ux. (3.t0) 

He used this result to find various series expansions, many  of which had also 
been obtained by  BRINKLEY. The formulas given by the two men, although they 
give the same numerical answers are quite different in form. HERSCHEL'S deep 
interest in this subject is shown by  the fact he returned to it in t860, long after 
he had obtained renown in other fields. In this work HERSCHEL makes use of the 
calculus of operations in order to show that  his own result can be derived from 
that  of BRINKLEY. 95 

HERSCHEL did not often express general views on the nature of mathematics.  
One of his few pronouncements is found in a work which is of some interest in 
its own right. This was the Mathematical Essays by WILLIAM SPENCE, which 
was published posthumously, and edited by  HERSCHEL. SPENCE, a Scotsman, 
was a self-taught mathematician. His work was primarily devoted to problems 

9a JOHN BRINKLEY, "An investigation of the general term of an important series 
in the method of finite differences," Phil. Trans., t807, 97: t t4-115. 

9~ JOHN HERSCHEL, "OIl  the development of exponential functions; together with 
several new theorems relating to finite differences," Phil. Trans., 1816, 116: 26. 

93 JOHN HERSCHEL, " O n  the formulae investigated by Dr. Brinkley for the general 
term in the development of Lagrange's expression for the summation of series and 
for successive integration," Phil. Trans., t860, 150: 3t9-32t. 
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of the series expansion of functions, both direct and inverse. I t  was thus in the 
combinatorial school and, as HERSCHEL pointed out, his approach was very 
similar to that  of ARBOGAST. The final essay in the volume, "Outline of a theory 
of algebraical equations," was left unfinished at the time of SPENCE'S death, 
and HERSCHEL supplied the final pages. He concluded on a note which emphasized 
one of the central points of view of the revivers of mathematics in England. 
The object of SPENCE'S paper, he noted, is to 96 

offer a satisfactory link of connexion between the ordinary algebra and the 
profounder theorems of the differential calculus--subjects which are too 
commonly, at least in this country, regarded as essentially disjoined and 
dependent on different principles. 

Thus, HERSCHEL'S mathematical work, which was concentrated on the 
solution of equations of finite differences and their applications to functional 
equations, freely used the method of the separation of symbols of operation from 
those of quantity, emphasized the relationship between the calculus and ordinary 
algebra and anticipated many of the themes which were to be current in English 
mathematics throughout the first half of the century. 

The other member of the Analytical Society who published noteworthy 
mathematical works is GEORGE PEACOCK. As we have seen, PEACOCK was, in his 
roles as examiner, lecturer and tutor, in many ways the man most responsible 
for the acceptance of Continental methods at Cambridge. He was also the only 
one among this group who formulated explicitly a theory of algebra, and probably 
for this reason he is--wrongly, in my view--the only one whose writings are 
generally considered in the history of algebra. His important works are his Treatise 
on Algebra, first printed in t830 and issued in revised form in t842, and his 
"Repor t  on the Recent Progress and Present State of Certain Branches of 
Analysis," delivered at the t833 meeting of the British Association for the 
Advancement of Science. The latter work, which amply exhibits the erudition 
of the reformers, is an invaluable source in the history of mathematics. Because 
of their nature and their date these works will be considered in later sections. 

The four men who labored to reform the study of mathematics at Cambridge 
achieved not only that  aim, but  also contributed, though each in a different 
way, to the shaping of a new view of algebra which was to be formulated in 
England following their work. WOODHOUSE and PEACOCK were specifically 
interested in such problems. But while BABBAGE and HERSCHEL did not suggest 
any formal philosophy of algebra, they did, in their work on the calculus of 
functions and in their use of the method of the separation of symbols, introduce 
concepts which were to be influential in the extension of the concept of algebra. 

4. Calculus of Operations in Great Britain 

During the t830's there occurred, as the reformers had hoped, a marked 
increase in mathematical research. Much of this was concerned with the application 
of the method of the separation of symbols, or, as it came to be termed, the calculus 

WILLIAM SPENCE, Mathematical Essays. ed .  JOHN HERSCHEL. L o n d o n ,  ~ 820:  295.  

13 Arch. Hist. Exact Sci., Vol. 8 
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of operations, to various problems in analysis. As E. T. BELL has pointed out 
the years 1835-1860 saw much exploitation of the method in England. BELL 
was hardly admiring of the use made by the British mathematicians of the calculus 
of operations, describing the period as a "somewhat shady episode of symbolic 
methods," which, he added "despite their u t i l i ty . . ,  were scarcely reputable 
mathematics, because no explicit formulation of the conditions under which 
they give correct results accompanied their use. ''g7 Although this charge is 
essentially true, it was not universally so, and, as I shall show, the main significance 
of the episode is not to be found in the methods themselves, but  rather in the 
attempts to extend them and to put  them on a firm logical basis. This served 
to focus attention on the laws of the combination of symbols without regard to 
specific operations, fostering an abstract view and clearly influencing many of 
the men who were to give, in the 1840's the beginnings of an abstract definition 
of algebra. 

The earliest work, following HERSCHEL, in which the symbolic method is 
used, appears to be a paper by S. S. C-REATHEED" "A new method of solving 
equations of partial differentials," published in the t83 7 Philosophical Magazine. 
GREATHEED was a Cambridge man and in fact came from Trinity College, 
the college of the reformers. In this memoir he began by noting 9s 

Separation of the symbols of operation from quanti ty has, so far as I know, 
been hitherto applied only to the calculus of finite differences, and to the 
differential calculus where both are involved. I t  appears to me that  if any 
much greated eminence than that  to which analysis has already been brought, 
remains to be attained by it, that  process is the most obvious and likely path. 

From this quote, it seems likely that GREATHEED'S knowledge of the method 
derived from HERSCHEL'S work. GREATHEED based his work on the assumption 
that  symbols of operation could be treated as if they were symbols of quanti ty 
in certain situations. He also used a theorem in the calculus of operations which 
we have encountered in several forms before. GREATHEED referred to it as the 
"symbolic form of Taylor's Theorem" and he wrote it as 

d 

l(x +h) = e ~  l(x). (4.1) 

He used this to help solve the partial differential equation 

dz dz 
a ~  +b dy=C, (4.2) 

where a, b and c are contents, in tile following manner. If, he noted, z were a 
function of x alone and n a constant, the ordinary differential equation 

dz 
a ~ + n b z = c  (4.3) 

9~ ERIC TEMPLE BELL, The Development o/Mathematics. 2 nd ed. New York, 1945 : 
413. 

9s S. S. GREATHEED, "A new method of solving equations of partial differentials," 
Phil. Mag., 1837, 11: 239-247. 
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has the solution 
~bz C 

z = ~ g + e  ~ C', (4.4) 

d 
C' an arbitrary constant. But then, if we replace n by ~ - ,  the result will be a 

solution of the given partial equation (2). Making the substitution, he obtained 

d 

Cb [ d~l-~ + e -b ~ a, ,,~ ! (ay) (4.5) z~- kdy] 

an arbitrary function / replacing the constant C'. But then, he continued, since 

~ represents integration with respect to y, applying (1) to the last term, 

GREATHEED got as the solution to his equation 

z =  ~ + f ( a y - - b x ) .  (4.6) 

GREATHEED'S approach is interesting because of the free use which he makes of 
treating the symbol of operation as if it were a symbol of quantity. But his only 
explanation of the method was a pragmatic one, that  is, that  it yielded a correct 
solution and it is clear why more rigorous generations of mathematicians shud- 
dered. 

The next mathematician whose work we shall consider did at tempt  to justify 
his methods. This was DUNCAN GREGORY. GREGORY, a Scotsman, descended 
from a family of scientists which included the mathematicians JAMES and I)AVID 
GREGORY. He attended the University of Edinburgh before entering Trinity 
College, Cambridge, in t833, where he remained until shortly before his untimely 
death at the age of 31. 

Most of GREGORY'S papers appeared in the Cambridge Mathematical Journal. 
This periodical was founded by GREGORY and ROBERT ELLIS, also from Trinity 
College, to provide a place for the publication of short research papers in mathe- 
matics, and hence encourage young researchers. AUGUSTUS I)EMORGAN, whose 
work we shall consider later, described the Journal and GREGORY'S contributions 
to it in a letter to JOHN HERSCHEL written in 1845:99 

You should not forget the Cambridge "Mathematical Journal." I t  is done 
by the younger men. Four octavo vols. are published. It  is full of very original 
communications. I t  is, as is natural in the doings of young mathematicians, 
very full of symbols. The late I). F. Gregory . . . .  - -gave  his extensions of the 
Calculus of Operations, what used to be the separation of the symbols of 
operation and (quantity) in it . . . .  

GREGORY'S first paper on the separation of symbols treated the linear dif- 
ferential equation with constant coefficients, in a manner very similar to that  of 

99 SOPHIA DE~V~ORGAN, Memoir o~ Augustus DeMorgan. London ,  t 882: t 50- t  51. 

13. 
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his predecessors. 1°° Thus he factored 

dnY 3-A dn-lY g ~ .  ~ + . . . + R ~ + S = X  

into the form 

(4.7) 

In order to solve the equation, GREGORY used the theorem 

which he proved by  expanding the left hand side by the binomial theorem, 

applying the usual convention to-~a~7 " . A solution of the equation was found by  

(5)1 multiplying both sides of the equation by  - - a  1 . The theorem (9), with 

n = - - t  and -d~ treated asfx, gives 

(-~X --a2)(d~ --aa) "'" (~y --an) y= (~-x --al) -1x = e ' * f e - ' *  X d ,  (4.1o) 
The general solution is obtained by  repeating this for i = 2, 3 . . . . .  n. The result, 

ea*xfe-a**Xdx ea'Xfe-a~xXdx e~"*fe-a~xXdx (4.11) 

is elegant, though, as GREGORY did not point out, fails if the roots are not all 
distinct. 

In another paper in the same volume of the Cambridge Mathematical Journal, 
GREGORY used exactly the same technique for finite difference equations3 °1 
GREGORY'S methods are very similar to those we found in the work of CAucHY, 
differing primarily in the free use that  GREGORY makes of the idea of treating 
the symbol of operation as if it were a symbol of quantity, for example in his 
proof of (9). In fact, GREGORY was familiar with CAUCHY'S work in this subject. 
In the paper on differential equations, he credits BRISSON'S work in t82t as 
being the first in which the method of the separation of symbols was applied to 
the solution of differential equations, and he cites CAUCHY'S Exercises as his 
source of information in regard to BRISSON'S work. 1°= (This is in fact not true, 
as we have seen in Section 2.) In a later paper he acknowledged the work of 
HERSCHEL, which however, he said, he had read only after his own work had 
been done. l°a 

GREGORY also applied the separation of symbols to partial differential equa- 
tions. He described his method as follows: 1°~ 

100 DUNCAN GREGORY, "On the solution of linear differential equations with 
constant coefficients," t839, Mathematical Writings: 18-21. 

101 DUNCAN GREGORY, "On  the solutions of linear equations of finite and mixed 
differences," 1839, Math. Writings: 47-52. 

102 GREGORY, "Differential equations," 15. 
10a DUNCAN GREGORY, "Demonstrations of theorems in the differential calculus 

and calculus of finite differences," 1839, Math. Writings: 122. 
x0~ DUNCAN GREGORY, " O n  the solution of partial differential equations," 1839, 

Math. Writings: 63. 
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Linear partial differential equations between any number of variables with 
constant coefficients, are to be treated exactly like ordinary differential 
equations with regard to one of the variables, the symbols of operation of the 
others being treated as constants. 

Like GREATHEED he considered the equation (2), but  his treatment differed 
somewhat since he used his own method for the ordinary equation. GREGORY 
mentioned GREATHEED'S work, but gave as the source of his own ideas, the 
Frenchman FOURIER. He wrote that  FOURIER had been the first to show that  
the solutions of partial differential equations could be expressed by the separation 
of symbols. But, he added, FOURIER had not used it as a method of obtaining 
solutions : 105 

His idea was apparently that  the expressions he obtained as solutions might 
be conveniently expressed by separating the symbols of operations, and not 
that  the symbolical expressions are the proper solutions of the equations, 
and the series merely the expansion of them. 

Other French writers, he went on, do not use the symbolical solutions at all, citing 
especially POlSSON, who, in dealing with FOURIER'S work, omitted them altogether. 
The reason for the neglect of the method, GREGORY felt, was that  its basic 
principles were not understood. Thus, he noted, the separation of symbols was used 
originally only to express known theorems, like that of LAGRANGE. But such 
results were treated as analogies and "few seemed willing to trust themselves 
to a method, the principles of which did not appear to be very sound. ''l°G But 
this lack had been remedied, he added, citing the work of SERVOIS. He wrote 1°7 

Servois was, I believe, the only mathematician who attempted to explain 
its principles . . . .  and it was in pursuing this investigation that  he was led 
to separate functions into distributive and commutative, which he perceived 
to be the properties which were the foundation of the method of the separation 
of the symbols, as it is called. This view which, so far as it goes, coincides 
with that  which it is the object of this paper to develop, at once fixes the 
principles of the method on a firm and clear basis. For, as these operations 
are all subject to common laws of combination, whatever is proved true by 
means only of these laws is necessarily true of all operations. 

GREGORY used this observation to apply the method of separation of symbols 
to the solution of simultaneous ordinary differential equations. Thus, he began 
his s tudy of that  subject by observing that  l°s 

lo5 Ib id . ,  62. 
lOS DUNCAN GREGORY, "On the real nature of symbolical algebra," 1840, M a t h .  

W r i t i n g s  : 7. 
lo7 Ib id .  

10s DUNCAN GREGORY, "On the integration of simultaneous differential equations," 
1839, M a t h .  W r i t i n g s :  95. 
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Since we have shewn that the symbols of differentiation are subject to the 
same laws of combination as those of numbers, they may be always treated 
in the same manner if the coefficients be all constant, which is the only case 
we shall consider. We have therefore only to separate the symbol of differentia- 
tion from its subject, and then proceed to eliminate one of the variables 
between the given equations, exactly as if the symbol of differentiation were 
an ordinary coefficient. 

That  is, the system of equations 

(4.12/ 
(JT)Y + bx=O 

can be solved by "mult iplying" the first equation b y -~ t  and subtracting a 
times the second equation from the result. This gives 

--ab x = 0  (4.t3) 

which is integrable, and y may then be found from the first equation. 

Not only did GREGORY defend the use of the symbols of differentiation and 
differencing as if they were symbols of quanti ty on the grounds that  they obey the 
same laws of combination, he argued that  in fact there was no valid distinction 
between the two types of symbols. "We have spoken," he wrote," as if there 
were a distinction between what are usually called symbols of operation, and 
those which are called symbols of quantity. But we might with perfect propriety 
call these last also symbols of operation."1°9 That  is, he noted, we can consider x 
the operation (x) performed on unity, x ~ the same operation performed n times 
in succession on unity; n x, n of the operations (x) on unity taken simultaneously, 
and a x  the operation a applied not to t but  to x. The symbols a, b . . . . .  then 
satisfy, GREGORY claimed, the laws of combination n° 

a m . a n x  ~ _ a m + n x  

a [b (x)~ ~ b [a (x)] (4.14) 

a (x) + a (y) = a (x + y ) ,  
and hence 

If /, ]1, etc. being any other general symbols of operation (],/1 being of the 
same kind) subject to the same laws of combination, so that  

(t) 

/ [11 (X)] = ll I/(X) ] (2) 

I (* + y )  = / (x) + 1 (y) 

109 GREGORY, "Differential equations," 24. 
11o Ibid., 25. 
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then whatever we may  have proved true of a, b, etc. depending on these 
laws must  necessarily be equally true o f / , /~ ,  etc. 

GREGORY referred to these laws as the index, commutat ive and distributive laws 
respectively. If (2) is interpreted wi th /1  as multiplication by  a constant, these 

are obeyed by  ~ x  and A. This observation was used by  GREGORY in his paper 

"Demonstra t ions  of theorems in the differential calculus and calculus of finite 
differences" written " t o  bring together the more important  of the theorems in 
the Differential Calculus and in the Calculus of Finite Differences, which depending 
on one common principle, can be proved by  the method of the separation of 
symbols. ' ' m  The principle referred to is the binomial theorem, for GREGORY 
claimed, this theorem was shown by  EULER to follow, even when the exponent 
is fractional or negative, from the laws listed above. That  is, he said in 

it will be found, on examining Euler 's demonstration, that  it includes not 
only these cases, but  also those in which a, b, and n are operations subject 
to certain laws; for it may  be seen, that  in the proof no other properties are 
presumed than that  a, b, and n are commutat ive  and distributive functions 
and that  a" and b ~ are subject to the laws of index functions. 

He went on to add, since the operations of the differential calculus and those 
of finite differences satisfy these laws, the binomial theorem may  be assumed 
true of them. Among the results he derived from this remark is LEIBNIZ' rule 
for the repeated derivative of a product. GREGORY wrote 

d (d 1 d) 
dx  u v =  ~ -  + ~ -  u v  (4A5) 

d 1 ~ d 1 d 
where ~ - a c t s  on v alone and a x  on u alone, then ~ - a n d - g ~  are commutat ive 

and the binomial theorem applies, and hence 

d n ( d  1 d ) -  
dx----~uv= ~ - + ~ -  u v  

dv du d~- lv  
= u  ~ + n  dx  d ~ - i  + 

n ( n - t )  d~u d , -2v  
1.2 dx I dx n-2 + ' " "  

(4.16) 

This GREGORY felt was now proved for all rational values of n. n3 However, if n 
is negative or fractional, the right hand side is an infinite series, and to modem 
minds this raises the question of convergence, which GREGORY completely ignored. 
In 1848 GREGORY'S procedure was criticised on this ground by Jo~IN YOUNG, 
an Irish mathematician.  YouNG pointed out that  GREGORY'S result was not 
correct for all values of n, in particular, that  if n was negative it was necessary 
to add a series of correction factors. Young praised the calculus of operations, 

nl  GREGORY, "Demonstrations of theorems," 108. 
112 Ibid., 108-109. 
118 Ibid., 110-11t. 



194 E. KOPPELMAN : 

calling it " a  method which has deservedly received much attention of late." 
But  he went on m 

the employment  of this refined principle of investigation requires, however, 
more than ordinary caution and circumspection: among other things it must  
be observed, that  the theorems to which it leads cannot generally be true 
when they assume the form of series, whose character is such that,  when the 
symbols of operation are replaced by those of quantity,  divergency takes 
place. 

GREGORY'S use of the calculus of operations was defended by  CHARLES GRAVES, 
also an Ir ishman and a close friend of WILLIAM ROWAN HAMILTON. Although 
GRAVES agreed with YOUNG that  the form of the i terated integral given by  
GREGORY was incomplete, he argued that  the fault was not inherent in the 
calculus of operations, "which, if applied to this problem with proper caution, 
will furnish the correct result in a direct and elegant manner. ' 'n5  The error, he 
claimed, was in the use of an incomplete form of the binomial theorem; the 
remainder term should have been retained. This result, he said, made n~ 

manifest the danger, noticed by Professor Young, of substituting symbols of 
operation for those of quant i ty  in divergent series, they indicate that,  whenever 
we know how to express in a finite form the value of the remainder after 
any given number  of terms of an infinite series, there is a safe way of effecting 
such a substitution. 

Returning now to GREGORY, he also a t tempted  to popularize the calculus of 
operations in his textbook, Examples o/ the Processes o] the Di]/erential and 
Integral Calculus, which first appeared in t84t ,  and then in a slightly revised 
version in t846. In the preface he noted that  he had used the method of the 
"Separation of the Symbols of Operat ion" extensively, since it not only shortens 
and simplifies problems, but also because it "offers to the student one of the 
most instructive examples of Analytical Generalization." Furthermore, he added, 
any idea that  it is not rigorous "is formed on a limited view of the nature of 
Analysis . . . .  ,,117 He used the technique both in developing a theory of fractional 
indices of differentiation and also in the chapter on "General theorems in the 
differential calculus." GREGORY gave as his major sources both SERVOIS and 
ROBERT MURPHY, whose work will be discussed below. 

Despite GREGORY'S lapses in rigor, he did obtain many  interesting results, 
and his efforts led to the acceptance of symbolic methods as legitimate by many  
English mathematicians.  Even more important,  as we shall see, his theoretical 
explanations were to shape his views on the nature of mathematics.  

xx4 JOI~N YOUNG, "On the extension of the theorem of Leibniz to integration," 
Phil. Mag., 1848, 33: 337. 

115 CHARLES GRAVES, " O n  the calculus of operations," Phil. Mag., 1849, 34: 60. 
116 Ibid., 62. 
11~ DUNCAN GREGORY, Examples o/ the Processes o/ the Di//erential and Integral 

Calculus. 2 nd ed. rev. ed. W. WALTON. Cambridge, 1846: iv. 
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GREGORY had restricted himself to the s tudy of equations with constant 
coefficients, as in fact, he was forced to by  his theory. This is because he assumed 
tha t  all the operations he was dealing with commuted with each other, and while 

dy  d (by) (4.t 5) 
b dx  - -  dx 

if b is constant, this is not so if the multiplier is variable. Hence the next step 
required was a s tudy of noncommutat ive operations. Such a work was published 
in t837 by  ROBERT MURPHY. MURPHY, an Irishman, had a short, tempestuous 
career. From a lower class background he was sent to Cambridge in 1825 on a 
scholarship which was raised by  subscription. His academic career was successful-- 
B.A.  as Third Wrangler in t 829--and then a fellow. Unfortunately he was not 
careful about money, and he was forced to leave in 1832 with his fellowship in 
sequestration for his creditors. After some years in Ireland he went to London. 
In t838 he became examiner in Mathematics and Natural  Philosophy at the 
University of London, where he remained until his death in 1843 at the age of 37. 

Although he was not prolific, his work shows extreme originality. The memoir 
which is relevant here, "F i r s t  memoir on the theory of analytical operations," 
clearly illustrates this. The subject mat te r  of the treatise is the theory of linear 
operations, which MURPHY defines as follows: "Linear  operations in analysis 
are those of which the action on any subject is made up by  the several actions 
on those parts connected by the sign + or -- ,  of which the subjects is composed." 118 
He was careful to define what it meant  to call two operations equal. Writing the 
"subjec t" ,  as he called it, to the left of the operation, MURPHY noted that  if we 
define the operations ~0 and A by  [xl ~o = x + h ,  [ul A = u ( x + h ) - - u ( x ) ,  then 

Eu] (v' - t )  = Eu] A 
(4.t6) 

[u] (A + 1) = [u] 

for any function u; and, he added n9 

When general relations such as these, between different symbols exist inde- 
pendently of the particular value of the subject, we may  abstract  the considera- 
tion of the latter, and the sign = between symbols of operation being understood 
to indicate that  they are universally equivalent, the symbols ... would have 
the following relations ... 

~ p - - l = A  and / l + t = ~ p .  (4.17) 

MURPHY did not use the terminology of SERVOIS, but rather referred to two 
operations 0 and 0' which satisfied 00' = 0 ' 0  as "relat ively free" while those 
for which 0 0' 4 = 0' 0 were said to be "re la t ive ly  fixed." 120 

118 ROBERT MURPHY, " F i r s t  memoir on the theory of analytical operations," Phil. 
Trans., 1837, 127: 181. That is, 0 is linear if ( x ~ y )  O = x  0-4-yO. Modern analysts 
include the condition (ax)0 = a ( x  O) for all scalars a. The two are equivalent if 0 is 
continuous. MURPHY did assume the second condition was satisfied as well. 

119 Ibid., 180. 
1~o Ibid., 182. 
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MURPHY proved that  the sum and composite (he called it the compound) 
of two linear operations is linear. In regard to the binomial theorem he believed, 
like GREGORY, that  it applied to any two operations which were relatively free, 
even when the exponent is negative or non-integral. In general, in applications 
he ignored problems of convergence and had no hesitation about considering 
infinite series of arbi trary operations. But his t reatment  of inverses was quite 
sophisticated and avoided the pitfalls into which many  of his contemporaries 
were to fall due to the general indeterminateness of the inverse. He defined the 
inverse 0-: of the operation 0 by  the equation 

[y] 0 - : = u  when [u] 0 = y ,  (4.t8) 

and he proved not only that  the inverse of a linear operation was itself linear 
but also that  to invert a composite operation one must  invert not only the nature, 
but also the order of the constituents, i.e. that  (0~v)-: =~0-: 0-:. 

MURPHY'S discussion of the inverse centered around what he called the 
appendage of a linear operation. He pointed out that  if P is a subject such tha t  
[P] 0 = 0, where 0 is a linear operation, then if Ex] 0 = y ,  we have also Ix + P] 0 = y  
so that  [y] 0-: = x + P. He went on to say 1~1 

The appendage, therefore, in a linear operation is the result of its action on 
zero; P will express a / o rm ,  but  its magnitude must  be susceptible of an 
infinity of values, that  is, it contains arbi trary constants which enter as 
multipliers, for if a be such a constant, we have in general [X] a 0 = IX] O a 

and supposing X = 0, we have [0 a] 0 = [0] O a; therefore whatever value is 
given to [0] 0, a more comprehensive value is attained by  its arbitrary 
multiplication by  a. 

A good way to illustrate MURPHY'S theory is to look at an example. He 
considered the operation ~0, (defined above) and said that  if it acts on a function 
of two variables, say x and y, the appendage is /(y),  an arbitrary function of y ;  

but when it acts on x alone, there is no appendage at all, since in that  case 
[u] ~0~ = 0 implies u (x + h) = 0 for all values of x and hence that  u = 0. 

MURPHY anticipated some other problems of interest in later developments 
of transformation theory as well. He studied the form ( 0 -  0:) -a when 0 and 0: 
do not commute, and also the equation 0 ~ = t~ given t and either 0 or ~/, tha t  
is the determination of 0 = ~? t-: or ~ = t -1 0 t. He studied the operation e ° 
defined by  

0 ~ 0 a 
e ° = l  + 0  + 1 2 2  q 1.2-3 q (4.19) 

where 0 is a linear operation, and showed that  if 0 and O' are commutat ive then 

e ° • e °' = e °+°'. (4.20) 

The most striking aspect of MURPHY'S work is the extreme degree of generality 
and abstraction. Although in regard to applications to the calculus, the rigor is 
marred by the lack of attention to problems of convergence, the paper is a valuable 

121 Ibid. ,  t88-189. 
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contribution to the algebra of linear operations. In fact, in an account of the 
abstract  theory of linear operations, S. PINCHERLE, who himself did research in 
that  subject, discussed many  of MURPHY'S results and praised the paper highly. 122 

MuRPHY's work influenced GEORGE BOOLE who used his approach in order 
to extend GREGORY'S studies of linear equations to the case of variable coefficients. 
BOOLE is of course best known for his work in logic. And we will see, this work 
was related to his mathematical  studies. One of BoonE's earliest works, inspired 
by GREGORY'S paper on linear differential equations, was a simplification of the 
latter 's  method for the solution of equations with constant coefficients. BooI.E 
began by assuming that  a l , . . . ,  a n are distinct roots of 

m" + A  1 m n-1 + A  s m ~-~ + . . .  + A  n = 0 .  (4.21) 

But rather than factoring the corresponding differential equation into linear 
factors, as GREGORY and others had done, BOOLE used the partial fraction 
expansion; in other words, he wrote 

( d n  dn-1 )-1 
u = ~ + A ~  dy.~_ ~ + . . .  + A  n X 

(4.22) 
N d -i -i 41) + N 2 (~-  --43) +.-. -{- N n ( {  -- •) } X, 

where N 1, N 2 . . . .  , N n are the constants which occur in the partial fraction 
expansion of 

1 
(m - al) (m - a~)... (m - an) " (4.23) 

In justifying this method BOOLE wrote 1~3 

the method of the resolution of this into a sum of partial fractions is independent 
of any properties of the variable, except the three which have been shown 

d 
by Mr. Gregory (Vol. I, p. 3t) to be common to the symbol ~ - ~ ,  and to the 

algebraical symbols generally supposed to represent numbers. 

But  BOOLE'S most important  work in the calculus of operations was his 
paper "On a general method of analysis" published in 1844. This work, which 
won the Mathematical Medal of the Royal Society, was very significant, both 
in influencing later workers in the calculus of operations and in shaping BOOLE'S 
views on the nature of mathematics.  BOOLE opened his paper by  noting that  
"much  attention has of late been paid to a method in analysis known as the 
calculus of operations, or as the method of the separation of symbols." He went 
on to say that  GREGORY " h a d  both clearly stated the principles on which the 
method is founded, and shown its utility. ''1~4 The other sources cited by  BOOLE 
are MURPHY, SERVOIS and DEMORGAN (his work will be discussed below). The 
object of BOOLE'S work was to apply symbolical methods to the solution of linear 

122 S. PINCHERLE, "Equations et opgrations fonctionelles," Encyc lopdd i e  des 
sciences  m a t h d m a t i q u e s  p u r e s  et appl iqudes ,  ed. J. MOLK, Tome 2, vol. 5, 5 and 8-9. 

123 GEORGE BOOLE, " 'On  the integration of linear differential equations with 
constant coefficients," Camb.  M a t h .  J., 1841, 2:115. 

224 GEORGE BOOLE, "On a general method of analysis," Phi l .  T r a n s . ,  1844, 134: 225. 
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equations with var iable  coefficients. In  order to do this he had  to remove  GREGORY'S 
assumpt ion  t ha t  all the operat ions t ha t  can be considered mus t  commute .  In  his 
own words ~5 

The  object  of this paper  is to develop a me thod  in analysis, which while it 
operates  with symbols  apa r t  f rom their  subjects,  is nevertheless free from 
restrictions. 

The first section of the paper  gives the requisite " s y m b o l i c a l "  background.  
Assuming tha t  the function /(x) can be developed in a power  series in x, BOOLE 
finds a series expansion for / (zc + 0) in ascending powers of 0, under  the assumpt ion  
tha t  ~ and 0 are dis tr ibut ive operat ions which combine according to the law 

I(~)  = 2 I ( = )  0 (4.24) 

where ~ acts on z~ so tha t  ~1(~) = / ( g z l ) .  The  result  is 

I(~ + q ) - - z / . ( ~ ) q - u ,  
(4.25) 

- ~  , Io(~) ----l(~). 

He also showed tha t  

/(x) 0 ~ u - - ~ / ( ~  +m) 

/ (z~) 0 m = 0 '~ / (m) (4.26) 

z * ( ~ - - t )  ... ( ~ - - n  + 1 ) u = x ( x  +r)  ... (x + ( n - - ~ ) r ) ( - ~ - x ) " u .  

In  the second equation,  the subject  u is equal  to 1, and  in the third r----A x. 

Then  if one lets r----O (tend to zero to be more  exact),  d ~ X ~ - ~  Q~--=X or  
d 

x = e ° = 0, ~ = d 0 ---- D, these equat ions become 

/(D) e m ° u = e m ° l ( D + m ) u  (a) 

/ (D) e ~° = e m° [ (m) (b) 

v ( v - t )  .. ( v - n  (c/ 
(4.27) 

These last  three equations,  ]3OOLE noted,  were a l ready known. But ,  he said, for 
the sake of the "mainta inenee  of an unbroken analogy,  it has been thought  be t te r  
to deduce t hem from the propert ies  of the more  general sys tem in ~ and 0. ''1~6 
Other  appl icat ions were derived b y  let t ing 

d 

X e ~ - -  x d 
~z - -  r , q = x e dx. (4.28) 

The  equations (27) were those which he used for his mos t  general  result. In  
part icular ,  f rom (27c) he derived his basic theorem 127 

12~ Ibid., 226. 
1~ Ibid., 232. 
x*v Ibid., 282. 
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Every  linear differential equation which can, with or without expansion of 
its coefficients, be placed in the form 

• d ' * u  d n - l u  
(a + b x  + c x  2 + . . . ) ~ -  + ( a ' + b '  x +c '  x 2 + . . . ) ~  ~ . . . . .  X 

may  be reduced to the symbolical form 

/0(D) u +] I (D)  e ° u +12(D) e 2° u + . . . .  U (viii) 

wherein ]0,/1,/2 . . . .  are functional symbols, and U is a function of e °. 

BOOLE then gave a general method for solving equations of the form (VIII) in 
which he made use of equation (27b). 

By assigning different values to ~ and ~, BOOLE was able to solve other types 
of equations as well. In  particular, letting 

d d 
7~ ~ X - -  X e  d x  d x  , ~ = x e  

o r  
d d 

d x  

(4.29) 

BOOLE studied finite difference equations. Clearly BOOLE was in this work 
studying an abstract  system, in that  his symbols were considered only from the 
point of view of their laws of combination in deriving the basic equations. BOOLE 
ended the paper by  saying that  such considerations were very important  and 
had a wide range of applicability. He wrote 1~7 

Fearful of extending this paper beyond its due limits I have abstained from 
introducing any researches not essential to the development of that  general 
method of analysis which it was proposed to exhibit. I t  may  however be 
remarked that  the principles on which the method is founded have a much 
wider range. They may  be applied to the solution of functional equations, 
to the theory of expansions, and to a certain extent, to the integration of 
nonlinear differential equations. The position which I am most anxious to 
establish is, that  any great advances in the higher analysis must  be sought 
for by  an increased attention to the laws of the combination of symbols. The 
value of this principle can scarcely be overrated. 

BOOLE'S own later writings include some further work along these lines. He 
considered again the problem of the expansion of / (~ + ~) in powers of ~o, changing 
his assumption on the laws of combination of the distributive operations ~ and 
~.12s He also applied his method to several differential equations of physics. 129 

]3OOLE wrote two texts which were very widely used and in fact are still in 
print, one on differential and the other on finite difference equations. In both 

128 GEORGE BOOLE, " O n  the theory of developments. Part I.," Camb. l~ath..[., 
1845, 4: 2t4-223. 

129 GEORGE BOOLE,  "On the equation of Laplace's function," Camb. and Dub. 
Math. J., 1846, 1: 10-22; "On the attraction of a solid of revolution on an external 
point," Camb. and Dub. Math. J., 1847, 2:1-7 and "On the differential equations of 
dynamics," Phil. Trans., 1863, 153: 485-501. 
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works he devoted considerable space to what he called symbolical methods. 1~0 
What  he meant  by  this term, BOOLE explained in a p a p e r "  On a certain symbolical 
equat ion" which appeared in 1847. By definition, he wrote, the terms symbolical 
equation and symbolical solution mean that  the results are such that  "Their  
validity does not depend on the significance of the symbols which they involve, 
but  only on the t ruth of the laws of their combination. ''13~ As we shall see, BOOLE'S 
work in the calculus of operations was intimately connected with his views on 
logic and the nature of mathematics.  I t  also influenced a number of (mainly 
obscure) British mathematicians to work along the lines he set out, though not 
all with the same care as BOOLE, particularly with respect to arbitrary constants 
and functions which might have to be introduced. During the t840's and t850's 
the pages of the Cambridge and Dublin Mathematical Journal (this superseded 
the Cambridge Mathematical Journal in t846), the Philosophical Magazine and 
the Philosophical Transactions were filled with a t tempts  to apply and extend 
BOOLE'S results. 

Some of the problems encountered are illustrated in the work of the Reverend 
BRICE BRONWlN, one of the earliest and most prolific adherents to the new 
method. In his first paper on this subject, "On the integration and transformation 

of certain differential equations" BRONWlN used the notation D = ~ and the 
equations 132 

x D~y =D"  x y  - - n D ~ - l y  

x ~ D"y =D"  x~y - - 2 n D ' - l x y  + n  (n --1) D"-2y (4.30) 

x a D~y = D" xay --  3 n D ~-z x2y + 3 n (n -- t) D "-2 xy  -- n (n -- 1 ) D~-ay 

which he claimed were true for both positive and negative values of n in order 
to solve the equation 

( d2y ) dy 
x d ~  +K2Y  + 2 p  ~ -  = 0 ,  p a positive integer. (4.3t) 

Letting y = (D 2 +K~) p u, he reduced the equation to the form 

d2u 
dx 2 + K  S u = 0  (4.32) 

and obtained as his solution 
Y = ( D2 +KZ)P-10. (4.33) 

This result was criticised by BOOLE, who noted first that  BRONWIN'S result was a 
special case of the theory in his 1847 paper on symbolical equations. BRO•WlN'S 
transformations, he noted, depended on the properties of two compound factors 

130 GEORGE BOOLE, A Treatise on Di/ferential Equations. 5 th ed. Reprint from 
4 th ed. 1877. With supplementary volume, ed. I. TODHUNTER. New York, 1959: 
381-460 and 675-699; The Calculus of Finite Dif/erences. 4 th ed. RepriIlt from 3tOed. 
t880. ed. J. MOULTON. New York, n.d.: 236-263. 

lal GEORGE BOOLE, " O n  a certain symbolical equation," Camb. and Dub. Math. J., 
1847, 2: 7. 

132 BRICE BI~ONWlN, "On the integration and transformation of certain differential 
equations," _Phil. Mag., 1846, 29: 494-500. 



Calculus of Operations and Abstract Algebra 201 

~ and o which combine according to the law (t) Zm ~ = ~ =~-1,  where the equation 
to be solved was ~ u = 0. Based on his earlier work, BOOLE added, the general 
solution was seen to be 

u = ~ o  ~ ~oXp - ~  0, (4.34) 

which is t rue "wha teve r  m a y  be the interpretat ion of the symbols ~ and o 
provided tha t  they  satisfy the combinat ion law (1)." ~8~ This applied to BROXWlN'S 
problem (letting p = m and y = u) where 

7e~ = x ( D  2 + K  S) + 2 m  D,  Q = D  2 + K  S. 

Hence the solution to the equation, using (33), is 

u = (3  3 + K2) " {x (D 2 + K2)} -x (D ~ + K 2) - ~  0,  (4.35) 

and, says BOOLE, when m > 0 it is necessary to retain exactly two of the constants  
which arise from (D 2 +K2)-*~; BRONWIN'S solution, he stated, lacks both  the x -~ 
and these constants.  

In  a later paper, BRO~CWlIV corrected has method  to take care of BOOLE'S 
criticism. TM He became more sophisticated in the use of BOOI.E'S methods and 
published several papers on applications to ordinary and partial differtial equations 
and finite difference equations, la5 BRONWIN clearly acknowledged his debt  to 
BOOLE. In  an t848 paper "On some theorems of use in the integrat ion of linear 
differential equations," he wrote ~36 

within the last few years or since we have become acquainted with the 
theorems 

](D +a)  y = e  -a ,  [(D) e'~ y 

/ (D + ~ )  y = e - ~  /(D) e~ y 

(q0 a function of x) the lat ter  theorem given by  Mr. Boole in the Mathematical 
Journal, the method  of integrat ing Linear Differential Equat ions  has undergone 
a great  change. 

Another  mathemat ic ian  influenced by  BOOLE was CHARLES HARGREAVE. 
HARGREAVE was a lawyer by  profession, bu t  he published several interesting 
papers in mathematics .  His first publication in the calculus of operations was a 
criticism of BRONWlN'S work. He made the same observation tha t  BOOLE had, 

13a GEORGE BOOLE, " O n  the Rev. B. Bronwin's method for differential equations," 
Phil. Mag., 1847, 30: 7. 

la4 BRICE BRONWIN, " O n  a new method of integrating linear differential equations," 
The Mathematician, t847. Reprint, t856: 204-208. 

l~S ~RICE BRONWlN, " O n  the integration of certain differential equations," Camb. 
and Dub. Math. J., 1846, 1: 154-160; "On the integration of certain equations in 
finite differences," Ibid., t 847, 2: 42-47; "On  some theorems of use in the integration 
of linear differential equations," Ibid., 1848, 3: 35-43; "On the solution of linear 
differential equations," Phil. Trans., 1851, 141:461-482 and "On the integration of 
linear differential equations," Phil. Mag., 1851, 2: 477-483; 1852, 3: 187-192. 

13~ BRONWlN, "On some theorems," 35. 
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and he obtained the same solution, though his method was different. 137 HAR- 
GREAVE'S most important  work is found in the paper '" On the solution of linear 
differential equations",  which won the Royal  Society medal in mathematics  in 
t848. The first section of the paper is headed "Genera l  theorems in the calculus 
of operations." 1~8 Letting D represent differentiation with respect to the independ- 
ent variable, HARGREAVE'S basic theorems are 

9 (D){~x. u) =~ (x) 9 (D) ~, +V (x) 9' (D) u 

+ ~  tx) 9"(D)+~7~.3~ (x/ 9 ' " (D)+. . .  
(4.36) 

9 (x) ~, (D) u ---- ~f (D) {9 (x). u} - -~ '  (D) {9' (x). u} 

+ ½ y / '  (D) {9" (x). u} - -  
t ~ ' "  (D){9'" (x). u} +. . .  

where 9 and ~ are functions which can be developed in ascending or descending 
integral powers of D. Clearly, if this is not so, the formulas do not make sense, 
or, in HARGREAVE'S term, are not interpretable. HARGREAVE did not worry about 
convergence, and probably led by  the analogy with the role of imaginary numbers 
in tr igonometry as it was then understood, he, like BOOLE, assumed that  in the 
course of calculation it was only necessary that  the end result be interpretable. 
He wrote "we shall therefore not hesitate to pronounce any interpretable result 
derived from the free use of these theorems true, although the intermediate 
steps of the process are not capable of rational interpretation. ''1~9 

HARGREAVE used these theorems to solve linear differential equations, both 
in the above paper and in one published in 1850. Many of the examples were 
taken from BOOLE'S 1844 paper, though, as HARGREAVE noted, the methods 
were different34° 

The form of the equations given above, particularly the use of 9 '  (D), 9"  (D), 
etc., suggested to HARGREAVE some general results in the calculus of operations. 
He denoted by  V the operation of deriving 9 '  (D) from 9 (D). The symbol V thus 
had the same relation to D that  D had to x, and, he wrote, m 

if we apply the established theorems of the Calculus of Operations to the new 
symbol, we shall acquire enlarged and more convenient forms for the expression 
of complex operations; ... 

HARGREAVE noted that  V obeyed the index laws, using the terminology of 
GREGORY, and that  it was distributive and commutat ive with respect to x or 

la7 CHARLES HARGREAVE, "Observations on the l~ev. ]3. ]3ronwin's paper on the 
integration and transformation of certain differential equations," Phil .  Mag. ,  1847, 
3 0 :  8-t0. 

138 CHARLES HARGREAVE, "'On the solution of linear differential equations," Phil .  
Trans. ,  1848, 139: 31-54. 

189 Ibid. ,  31. 
14o CHARLES HARGREAVE, "General methods in analysis for the resolution of linear 

equations in finite differences and linear differential equations," Phil .  Trans. ,  1850, 
141 : 261-286. 

141 CHARLES I-IARGREAVE, "Applications of the calculus of operations to algebraical 
expansions and theorems," Phil .  Mag. ,  1853, 6: 352. 
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any function of x, but  that  it possessed neither of these properties with respect 
to D. 

HARGREAVE a n d  BRONWIN were most concerned with that  aspect of BOOLE'S 

work which dealt with operations of the calculus. However the general study of 
the laws of combination of symbols and their consequences contained in BOOLE'S 
work was not overlooked by his contemporaries. An interesting paper on this 
topic was written by WILLIAM DONKI~¢, Savilian professor of astronomy at 
Oxford in 1850. In this work DONKIN studied symbols of operation Q and 
which combined according to the following laws 942 

~o~--0co=el  

(4.37) 

co O~ - -  ~%co = ~%+1. 

Assuming that  / ( , )  is a function which can be developed in integral powers of x, 
he derived series expansions for 

1 (CO t 

in terms of 0i. For example, 

~1 1, ~ ]"(co) + . . .  (4.38) /(co) e =ol(co)  + T (~) + 1-2 - 

He applied his results to the differential calculus, letting co = D ,  o =x, and to 
finite differences with co = e D, ~ =V ~. 

Another follower of BOOLE who was interested in the study of non-commutative 
symbols of operation was W. H. L. RUSSELL. His first work in the calculus of 
operations, which appeared in the 1854 volume of the Cambridge and Dublin 
Mathemalical Journal was concerned only with applications34a But his major 
effort in that  field, a series of three papers which appeared in the Philosophical 
Transactiom in t862-1863, was very much symbolically oriented. RUSSELL'S 
account of the genesis of the method is interesting in that  he gives major credit 
to LAPLACE. It  is a good description of the growth of the method and BOOLE'S 
key role. RUSSELL wrote TM 

The calculus of generating functions, discovered by Laplace, was, as is well 
known highly instrumental in calling the attention of mathematicians to the 
analogy which exists between differentials and powers. This analogy was 
perceived at length to involve an essential identity, and several analysts 
devoted themselves to the improvement of the new methods of calculation 
which were thus called into existence. For a long time the modes of combination 
assumed to exist between different classes of symbols were those of ordinary 

142 WILLIAM DONKIN, " O n  ce r t a in  t h e o r e m s  ill t h e  calculus of ope ra t i ons , "  Camb. 
and Dub. Math. J. ,  1850, 5: 10. 

143 W. H.  L. RUSSELL, "On  t h e  i n t e g r a t i o n  of l inear  d i f fe ren t ia l  e q u a t i o n s , "  Camb. 
and Dub. Math. ] . ,  1854, 9: 104-112. 

144 W.  H.  L. RUSSELL, " O n  t h e  calculus  of symbols ,  w i t h  app l i ca t ions  to  t he  
t h e o r y  of d i f fe ren t ia l  e q u a t i o n s , "  Phil. Trans., 186t,  151: 69. 

t4 Arch. Hist. Exact Sci., Vol. 8 
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algebra; and this sufficed for investigations respecting functions of differential 
coefficients and constants ... The laws of combination of ordinary algebraical 
symbols may  be divided into the commutat ive and distributive laws; and 
the number of symbols in the higher branches of mathematics which are 
commutat ive with respect to one another is very small. I t  became then 
necessary to invent an algebra of non-commutative symbols. This important  
step was effected by  Professor Bode  . . . .  

RUSSELL'S own studies began with a consideration of " func t iona l "  symbols 0z 
and Q which combine according to 

9" / (~)  u = / ( ~  - -n)  9"u. (4.39) 

If P, Q and R are functions of ~ and 9 such that  PQ = R, RUSSELL called P an 
external and Q an internal factor of R. He then studied the question of when a 
given function was an internal or external factor of some expression. For example, 
he asked when an expression of the form 9~1 (~) +~o (7~) is an internal or external 
factor of 

9" ~0~(~) + 9~-1~0,,_1 (~) + . . .  + 9  q~1 (~) + ~0(~). (4.40) 

RUSSELL applied his results to the integration of linear differential equations, 
d 

letting 9 = x and 0z = x 7 7 .  Thus, the equation 

dSu . d~u du _ ( 2 , _ 3 )  u = X  z (4.41) x~(x + l)~77¢ +3x(x+l)~Tfi +(x~ +4x~ +3x) 77  

takes the "symbol ica l  fo rm"  

9 a = a u + q 2 ( 3 ~ a + ~ - - l )  u + 3 9 ( ~ a + l )  u + = ( ~ - - t )  u ~ - X  x. (4.42) 

RUSSELL'S theory then enabled him to factor (42), which gave him 

(9 (~ - -2 )  + ~ ) ( 9 ( ~ - - t )  + (~ + t ) ) ( 9 ~  + ~ - - t )  u = X z ;  

or (4.43) 
d + 2 X } { ( x ' + x )  d d __t}  = X  z 

And the latter equation he was able to integrate. 

In the second paper, RUSSELL used the same laws for his symbols = and 9 
and studied questions like how to extract  the square root of certain symbolical 
expressions and ways to find the highest common internal factor of two such 
expressions. The latter gave him a method for determining when two linear 
differential equations had a common solution. ~4~ The last paper of the series 
contained the consideration of symbols of operation which combined according 
to a slightly different law. Again it was concerned mainly with problems of 
" fac tor ing"  symbolical equations. 146 

145 W. H. L. RUSSELL, "On the calculus of symbols, I I ,"  Phil. Trans., 1862, 152: 
253-272. 

~,6 W. H. L. Rtrss~r.L, "On the calculus of symbols, I I I , "  Phil. Trans., 1863, 153: 
517-523. 
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RUSSELL'S work was extended by  WILLIAM SPOTTISWOODE. He studied the 
question of when ~0~ (~) a + %  (~) is an internal or external factor of 

~o~(e) ~"+~-l(e) ~-~+.--+~0(e) (4.44) 

and also how to determine the quotient. He also used more complex divisors, 
and like his predecessors applied his work to the solution of differential equations. 147 
Although all these men applied their work to the calculus, we clearly can consider 
parts of it to be, as RUSSELL himself called it, the study of a " n o n - c o m m u t a t i v e  

algebra." 
As we have seen, GREATHEED and GREGORY had applied the method of the 

separation of symbols to partial differential equations. But, although BOOLE 
had stated his basic theorems for functions of several variables, he himself applied 
them only to the ordinary case. The first systematic extension of BOOLE'S method 
to this subject was supplied by  ROBERT CARMICHAEL, who was a fellow at Trinity 
College, Dublin. He began his studies with a paper which appeared in t851. He 
introduced what he called the index symbol V, which he defined as follows: 14s 

d d d 
V=x12~x~ + x ~  +...+x~ dx." (4.45) 

He pointed out that  if u m = F ( x  1, x 2 . . . . .  x,) is a homogeneous function of 
degree m, EULER'S theorem can be stated as 

V u,,  = m u,~ . (4.46) 

But  then, applying the calculus of operations, V°u,~ = m°u,~ and hence ] (V)u,~ = 
/ (m)  u, , .  (Assuming tacitly that  ] can be developed in a power series.) CAR- 

d d d 
MICHAEL'S work was based on the mistaken belief that  - - w e r e  

d x  4 '  d x 2 ' ' " '  dx~ 
always pairwise commutative.  He justified this principle by noting that  it must  
be true since, for example, x~, x3, . . ,  are constant relative to x 1. CARMICHAEL 
utilized the extension of BOOLE'S theorems in the calculus of operation to the 
index symbol V. Thus, for example, BOOLE'S result 

D ( D - - t )  . . .  ( D - - ( n - - t ) ) = X ~ ( d ~ )  ~ (4.47) 

became 

V(V --1) ... (V - - n  + I )  =V~ =V% (4.48) 

He applied his theorems to the solution of both ordinary and partial differential 
equations. 

CARMICHAEL also extended some results in the calculus of operations due to 
his countryman C~IARLES GRAVES, who, as we have seen, was a staunch defender 
of the calculus of operations. GRAVES had studied the meaning of expressions 

14~ WILLIAM SPOTTISWOODE, "On  the calculus of symbols," Phil. Trans., 1862, 
152: 99-120. 

148 ROBERT CARMICHAEL, "Oil. the index symbol of homogeneous functions," 
Camb. and Dub. Math. J. ,  t851, 6: 277-284; 1853, 8: 8t-91. 

14" 
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such as a *n, and e ~ where ~0 is a distributive function satisfying ~o u v = u~0 v + v~0 u.149 
CARMICHAEL generalized this by  establishing interpretations for expressions of 
the form 

e *c'l ~ +~(Y}~-Y +"" /(x,  y . . . .  ). (4.49) 

He applied his results primarily to finite difference equations in several variables. 1~° 
In t853 SI'OTTISWOODE published an interesting generalization of the index 
symbol of CARMICHAEL. I5. However, in general, the application of the calculus 
of operations to partial differential equations was not particularly significant 
with respect to the development of general theories. 

As we have seen, the calculus of operations had its roots in the symbolical 
expression of certain series expansions, for example the statement of TAYLOR'S 

d h - -  
theorem as e d, ](X) = / (X  +h) and its generalization by HERSCHEL/(t + A ) u ,  = 
[(e 3,D) u,.  This last result was extended by  WILLIAM ROWAN HAMILTON in 
1837. I5~ But HAMILTON'S most important  work in the calculus of operations was 
his application of that  subject to the evaluation of certain definite integrals. 
This subject had acquired considerable importance with the work of FOURIER, 
CAUCH¥ and FRESNEL, and in fact, from general developments in physics. As 
ROBERT ELLIS, biographer of GREGORY and cofounder with him of the Cambridge 
Mathematical Journal wrote in 1845:15a 

Since the beginning of the century the general aspect of mathematics has 
greatly changed . . . .  the new requirements of natural  philosophy have greatly 
influenced the progress of pure analysis. In the mathematical  theories of heat, 
light, elasticity and magnetism an idea is prominent, which comparatively 
occurs but seldom in purely dynamical enquiries. This is the idea of discon- 
tinuity ... the power, therefore, of symbolizing discontinuity . . . . .  is essential 
to the progress of the more recent applications of mathematics to natural  
philosophy, and it is well known that  this power is intimately connected with 
the theory of definite integrals. 

In 1848 BRONWIN had done some work on the use of the calculus of operations 
for the evaluation of definite integrals, but  his work was not rigorous. TM HAMIL- 

149 CHARLES GRAVES, " O n  a generalization of the symbolic statement of Taylor's 
theorem," Proc. Roy. Ir. Acad., 1850-1853, 5: 285-287. 

150 ROBERT CARMICHAEL, "Theorems in the calculus of operations," Camb. and 
Dub. Math. J., 1853, 8: 165-171. 

151 WILLIAM SPOTTISWOODE, "On certain theorems in the calculus of operations," 
Camb. and Dub. Math. f . ,  t853, 8: 25-33. 

152 WILLIAM ROWAN HAMILTON, "On differences and differentials of zero," Trans. 
Roy. Iv. Acad., 1837, 17: 235-236. 

15a ROBERT ELLIS, "Biographical memoir of Duncan Farquharson Gregory," 
Mathematical Writings o/Duncan Farquharson Gregory. ed. W. WALTON. Cambridge, 
t865 : xx-xxi. 

1~4 BRICE BRO•WlN, "Application of certain symbolical representations of functions 
to integration," Camb. and Dub. Math. J., 1848, 3: 243-251. 
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TON'S work  along these lines, published in the  Philosophical Magazine in 1857 
was much  more  careful. 15~ He used the operat ions 

t 

I t =fd t  
0 

oo 

J, =fd t  (4.50) 
t 

co 

K =It  +Jr =fd t  
0 

to s tudy  the  series 

F~,,(t) = I ~ ( 1  + x  I ~ ) - ' - ½ 1  (a) 

or (4.5t) 

where 

F,,,(t) = I ~ ( 1  +x l~)-" j(t) (b) 

2 

0 

(4.52) 

The  integral  (52), as HAMILTON pointed out, appea r s  in the theory  of hea t  and 
had  been studied b y  FOURIER and POISSON. For  n > 0 he defined the funct ion/~ (t) 
b y  the relat ionship 

(t) = ( I  T - -  ( - J t~) )  / (t) = I~ / (t) - D 7"  / (t). (4.53) 

T h a t  -J~/ ( t )  =D -~/(t), he is careful to point  out, is t rue s ince / ( t )  vanishes a t  
infinity. The  bulk of the paper  is concerned with the problem of finding approxi-  
mat ions  fo r /~  (t). Al though the  paper  ends with a " t o  be con t inued" ,  HAMILTON 
did not  publish any th ing  fur ther  on the subject.  However ,  he did not  drop it  
either, and  his fur ther  work  is found in letters,  da ted  December  t857, addressed 
to the English ma themat i c i an  AUGUSTUS DEMORGAN, with whom he carried 
on a voluminous correspondance.  

In  these letters, HAMILTON obta ined  a number  of theorems of which the 
following is representa t ive:  156 

Theorem A: If  we have  two developments ,  ascending and descending 

~ox ----% - - a  1 x + a  2 x ~ - - e t c .  (t) 

~0 x = b 1 x -1 - -  b 2 x -~ + ba x -3 - -  etc. (2) 

for any  function ~o x, algebraical or t ranscendenta l ;  and if the  following third 
series 

/ t=-ao--alt+ a~t2 a~t~ + e t c .  (3) 
1 . 2  1 . 2 . 3  

155 WILLIAM ROWAN HAMILTON, "On  the calculation of the numerical values of 
a certain class of multiple and definite integrals," Phil. 2Vfag., t857, 14: 375-382. 

156 H A M I L T O N  tO DEMORGAN, December 4, 1857. Sir W I L L I A M  R O W A N  H A M I L T O N  

Papers, Trinity College, Dublin. 
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can be summed so as to give a function of t which is real, finite and continuous, 
with its diff 1 coeff s of all orders from t = 0 to t = oo, and which vanishes, with 
all those coefP, at this last limit; then 

b~ = / d t  t /t .  (A) = (4) 

In the course of discussing his theorems, HAMILTON used the notation of his 
e 

paper, modified somewhat by dropping the subscript, for example writing I ~ f d t .  
In this notation, the conclusion of the theorem became o 

b~ = K  j , - i / b .  (4.54) 

HAMILTON did a number of numerical verifications of this result and also sketched 
a proof, but he did not claim to complete r igor:  57 In the course of his discussion, 
he made considerable use of the calculus of operations, for example writing (t) 
and (2) in the form ~v x = K (J + x)-l/t and ~v x ---- K (x +J ) - l / t .  While not complete, 
HAMILTON'S work is interesting in itself and also because it shows that HAMILTON 
was aware of the work of the English school, one of his approaches being to use 
the study of laws of combination of noncommutative symbols which could then 
be interpreted as his symbols I ,  J and K. 

In the course of their correspondance, HAMILTON and DEMORGAN also mention- 
ed the functional calculus. In September 1849 HAMILTON wrote that PEACOCK 
had remarked that there was an analogy between the calculus of functions and 
quaternions, and DEMORGAN replied: "What  has not analogy with the functional 
calculus ?" i~s 

Actually, the calculus of functions, considered in BABBAGE'S sense, that  is--  
seeking the solution to functional equations--did not, as BABBAGE had hoped 
it might, become a major area of research during the period we are studying, 
although some work was done. Thus in t 817 WILLIAM HORNER extended BABBAGE'S 
solution of ~:x----= x by showing that the general solution could be obtained from 
a particular solution in a way similar to that which BABBAGE had used in other 
cases: 59 And in t840, WILLIAM WALLACE, who had been GREGORY'S teacher at 
the University of Edinburgh, studied the equation 

/ (X0) / (Xl) = C [ / (X 0 -~- Xl) - - / ( X  0 - -  Xl)?, (4. S S) 

where x 0 and x 1 are any two fixed values of x and c is a constant :  6° 

Both GREGORY and ELLIS wrote on functional equations. GREGORY generalized 
his and BOOLE'S methods for dealing with linear differential equations with 

157 HAMILTON to  DEMORGAN, December 23, 1857. Sir WILLIAM ROWAN HAMILTON 
Papers, Trinity College, Dublin. 

ls8 ROBERT PERCI~VAL Graves, Life o/Sir Willam Rowan Hamilton. 3 vols. Dublin, 
1882-I889: vol. 3, 277. 

1~9 WILLIAM G. HORNER, "Solution of the equation ~0nx =x,'" Ann. o/ Phil., 
18t7, 10: 341-346. 

le0 WILLIAM WALLACE, " S o l u t i o n  of a functional equation, with its application 
to the parallelogram of forces and to curves of equilabration," Trans. R. S. of Edin., 
1840, 14: 625-676. 
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constant coefficients to functional equations of the form 

~(~ x) +a l  ~0(~ ~-' x) +a2 9(o~ ~-2 x) + . . .  +an ~(x) = X ,  (4.56) 

where o~ is a known function 9 is to be determined. He did this by  introducing 
the operation :~ defined by  : ~ 9 ( x ) =  9(~ox). He then showed that  :~ satisfied 
the index law, the distributive law and commuted with constants. And, he wrote, 
since " these  are the laws which are used in applying the method of the separation 
of symbols to the solution of linear differential equat ions ; . . ,  the same method 
may  be applied to our functional equation." 161 ELLIS' work, published in the same 
volume of the Mathematical Journal was concerned with correcting and general- 
izing some results due to BABBAGE in solving functional equations involving 
derivatives362 

The most extensive work on the calculus of functions which appeared during 
the period we are considering was an article by  AUGUSTUS DEMORGAN which 
was written for the Encyclopedia Metropolitana and published in 1843. In his 
paper, DEMORGAN included historical background and a critical evaluation of 
the problems and methods involved in the theory, as well as solutions of specific 
equations. DEMORGAN felt that  the subject was important  more for its methodology 
than for any specific results. Thus, he wrote that  the advantage to the student 
of a s tudy of the functional calculus is that  it will lead him to " a  knowledge of 
forms and familiarity with the results of general operations as will render his 
grasp of ordinary mathematical  language more intellectual and less mechanical." 1~3 
DEMORGAN cited as those who had studied the language of mathematics  for its 
own sake BABBAGE, HERSCHEL and PEACOCK among English writers; CARNOT, 
CAUCHY and ARBOGAST among the French, and he added, while the subject was 
not studied much by  the Germans such a list would probably include Fuss, ABEL 
and JACOBI. TM 

DE1ViORGAN defined the calculus of functions as follows :165 

Given a function, and a general form of another, required, (if possible) a 
speci/ic form, such that  it and the given function shall be reducible to identity 
by the same operations. 

In this form, he noted, the origins of the calculus of functions was to be found 
in the works of EULER, LAMBERT, D'ALEMBERT, LAGRANGE, MONGE and LAPLACE. 
However, he added, it was the work of BABBAGE which gave the subject sub- 
stance.  166 DEI¥[ORGAN discussed many  examples taken from the work of BABBAGE 
and HERSCHEL. He was very much concerned with the difficulties which arise 
from the lack of uniqueness in the solutions of many  types of equations. As we 

161 :DUNCAN GREGORY, "On the solutions of certain functional equations," 1843, 
JVlath. Writings: 250. 

162 ROBERT ELLIS, "011 the solution of functional differential equations," Camb. 
Math. J., 1843, 3: t31-138. 

16a AUGUSTUS DEMORGAN, "Calculus of functions," Encyclopedia Metropolitana. 
London, 1843: vol. 2, 305. 

164 Ibid. 
165 Ibid., 306. 
1~ Ibid., 366. 
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shall see in the following section, DEMORGAN related many  of these problems 
to general questions concerning the nature of mathematical  laws. 

In general, in considering the work of this period, one must  agree with ELLIS, 
who remarked that  " i t  cannot be denied, that  hitherto the Calculus of Functions 
has not led to many  results of much interest." But  also, I think, one must agree 
with his conclusion that  this does not detract  from its importance. As he wrote, 
" I t s  value arises directly from the wide views it gives of the science of the 
combination of symbols."16~ 

Another subject which, as we have seen, was considered as part  of the calculus 
d ~ 

of operations is that  of assigning a meaning to ~ when c¢ is not integral. The 

Continental work, as well as that  of HERSCHEL and BABBAGE has already been 
discussed. In England, following them, we find that  PEACOCK devoted a fairly 
lengthy section of his British Association Report to the question, as he considered 
the theory to be an application of his principle of the permanence of equivalent 
forms. This principle, which is central to PEACOCK'S theory of algebra states 
that16s 

Whatever algebraical ]orms are equivalent, when the symbols are general in [orm 
but speci[ic in value will be equivalent likewise when the symbols are general in 
value as well as in [orm. 

This leads to an approach similar to that  of BABBAGE and HERSCHEL, in that  a 
formula proved for integral values is used to define the meaning for non-integral 
values. Thus, PEACOCK proceeds as follows. He noted that  among those formulas 
which limit one or more of their variables in form is I • 2 • 3 " . . .  " r, in which r 
must  be an integer. Thus in writing 

d r  x n 

dx" = n  (n -- t) (n - - 2 ) . . .  (n - - r  + 1) x ~-" (4.57) 

n is not limited, but  r appears to be. However, says PEACOCK, since we can find 
dr  x n 

a form of the coefficient in which r is not restricted, we can define ~ -  where r 
is not integral. The form he gives is 

d'x ~ r ( t  +n)  x~_ , (4.58) 
dx r -- F(t + n- - r )  

PEACOCK was familiar with LIOUVILLE'S work on this subject, but their theories 
differed in several significant points, in particular with regard to the problems 
involved when the F function becomes infinite in both numerator  and denominator, 
and the nature of the complementary function. 

During the 1840's there was, in Great Britain, a flurry of interest in fractional 
exponents of differentiation, clearly related to the general interest in the calculus 
of operations. In the first volume of the Cambridge Mathematical Journal GREAT- 
HEED criticized PEACOCK'S approach and emphasized the fact that  it was not 

167 ELLIS, "~unctional differential equations," 138. 
16S PEACOCK, "Report ,"  198. 
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the form of the formulas which is basic, but  rather the rules governing their laws 
of combination. 169 That  is, he took as the starting point for his theory the equations 

d~(u + v) d~u d~v 
dx= - - d x ~  + ~  (A) 

d.  dfl de+fl u 
dx~, dxa u - -  dx~+t~ (B) (4.59) 

d~ dfl dfl d= 
dx~ dyfl u - -  dyfl dx~ u .  (C) 

From (A) he is able to prove that  

d~ d~u 
dx~ cu  = c  dx~ (D) 

for c rational, and he extends it to all real values " b y  assumption." Using this, 
he is able to prove LIOUVILLE'S basic formula 

d~enx 
d x ~  = n~ e~* (4.60) 

and from this, obtain his general result 

d~ xn - P(n)  
d x ~  P ( n - - I ~  x~-~'  (4.6t) 

where P (n), a generalization of the gamma function, is defined by  the two 
properties P (n) = n  P (n - -  1) and P (n) finite, except where n is a negative integer. 
His method, as he acknowledged, is derived from that  of LIOUVlLLE. 

A similar approach was taken in t840 by  PHILIP KELLAND, professor of 
mathematics  at the University of Edinburgh. In a short historical introduction 
to his work, KELLAND cites LAPLACE and FOURIER as the followers of LEIBNIZ 
and EULER in this subject. FOURIER'S work, he noted, "showed how general 
differential coefficients might be deduced by means of definite integrals. 'uT° 
Like GREATI-IEED, he preferred LIOUVILLE'S approach to that  of PEACOCK. But 
his method was somewhat different. I{ELLAND assumed tile formula (D), and 
then proved (A) and (B). The problem, as he sees it, is, then, to extend the 
/ '  function. Like GREATI-IEED he does this by  introducing a new function IP, 
which is to agree with F ( P )  whenever both are defined, and which is to satisfy 
I t + P = P [ P .  His fundamental  formula is then 

d~ t t I n + ~  (4.62) 
d . . . ~ -  17 ( - t ) "  ~ + ,  

I(ELLAND claimed that  his work proved that  PEACOCK'S principle of the perma- 
nence of equivalent forms to be false, because the form of the differential coefficient 
was not unique. He argued that  

dvx~ 
= A  x "-~ (4.63) d xt* 

169 S. S. GREATHEED, " O n  genera l  d i f fe ren t ia t ion ,  n u m b e r s  t a n d  2,"  Camb. Math.  
J., 1839, 1, 2 nd ed. rev. 1846: 12-22, 120-t28. 

1~o PHILLIP KELLAND, "On general differentiation, I," Trans. R.  S. Edin. ,  1840, 
14: 567. 
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will always give 

A = / ( n + t )  
/ (n - ~  + t ) "  (4.64) 

but  that  the form of ](n + t )  is not necessarily I n + l - - t h a t ,  for example, it 
might also be (--  t)~ (sin n a) I n ~-V--since the only requirement is that  n / (n) = 
[ (n + 1). This reasoning is correct, if one assumes the laws (B) and (D). Hence if 
PEACOCK'S principle is interpreted to mean that  not only the form of the coefficient 
but  also these laws must remain valid in the extended system, then KELLAND 
has shown it to be false. 

Another example of this same general method is found in the work of the 
Reverend WILLIAM CENTER. 171 Like GREATHEED and KELLAND, he preferred the 
approach of LIOUVILLE to that  of PEACOCK, and also felt that  the difficulty lay 
in the proper generalization of t he /~  function to be employed. 

The relationship between this topic and the calculus of operations is clear in 
the work of these men. They all s tated at some point that  since in their system 
the symbols combine in accordance with the same laws as if the indices were 
integral, they could apply the methods of the calculus of operations to the solution 
of differential equations involving fractional indices and presented many  ex- 
amples. 17~ The subiect is quite complicated due to the lack of uniqueness of 
solutions, and the procedures employed were far from rigorous. However, their 
labors serve to illustrate the extent to which the British tried to push the calculus 
of operations and some of the difficulties encountered. 

The popularity of the calculus of operations was enhanced by its appearance 
in elementary textbooks. I have already mentioned those of GREGORY and BOOLE. 
DEMORGAN, in his text, On the DiHerential and Integral Calculus which appeared 
in t842, devoted some space to the calculus of operations. He discussed GREGORY'S 
work on the foundation of the method of the separation of symbols, symbolic 
theorems like those of LAGRANGE and HERSCHEL, and the use of symbolic methods 
for the transformation of divergent series, m He also considered the question of 
fractional indices of differentiation, but  here he concluded that  the subject is 
"unset t led ."  174 

I)EMORGAN also taught the calculus of operations to his classes at the 
University College, London where he was professor of mathematics from t828 
to t83t and then again from t836 to t866, both times resigning on a question 
of principle. DEMORGAN'S syllabi are known inasmuch as he was in the habit of 

171 WILLIAM CENTER, "On the value of (d/dz)°x °, when 0 is a positive proper 
fraction," and "On differentiation with fractional indices, and on general differentia- 
tion," Camb. and Dub. Math. J., 1848, 3: 274-285; 5: 206-217. 

1~ GREATHEED, " '  General differentiation," 120-I 28 ; Kelland, "On general dif- 
ferentiation, I I I , "  Trans. R. S. Edin., 1840, 14:250-284 and Center, "On differ- 
entiation," 275-276. 

its AUGUSTUS DEMORGAN, The DiHerential and Integral Calculus. London, t842: 
163-t67, 308-310, 56t. 

1~4 Ibid., 598. 
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preparing notebooks containing examples and illustrations of various topics for 
the use of his students. These books are deposited in the University of London 
library. There are two books, dated 1853 and 1854, labelled "Higher  Seniors" 
which give a straightforward account of the theory, similar to the material found 
in the article on the calculus of functionsY 5 

The first text  devoted exclusively to the calculus of operations was written 
by  ROBERT CARMICI-IAEL and published in t 855. In his introduction, CARMICI-IAEL 
wrote, 176 

The Calculus of Operations, in the greatest extension of the phrase, may  be 
regarded as that  science which treats of the combination of symbols of operation 
conformably to certain laws, and of the relations by  which these symbols 
are connected with the subject on which they operate. 

The work consists mainly of a summary and some extensions of the memoirs 
discussed above. But  there is one work which CARMICHAEL mentions as his major 
source, which we have not encountered before. This is An Elementary Treatise 
on the Calculus o/ Variations, published in Dublin in t850 by the Reverend 
JOHN HEWITT JELLETT, who, like CARMICHAEL, was a graduate of Trinity College, 
Dublin. JELLETT t reated that  subject in the context of the calculus of operations 
as follows. A variable quantity,  he wrote, is a function of others when its value 
depends on the value of the others. "The  nature of the relation subsisting between 
the first, or dependent variable, and the others, or independent variables, is 
termed the ]orm of the function. ''177 And, he went on to say, the value of the 
dependent variable depends on two things: the values of the independent variable 
and the form of the function. The calculus of variations is primarily concerned 
with changes in the value which arise from a change in form. In particular, if 
the form of one function depends on the form of some other function (for example, 
the differential quotient), we say that  the second function is derived from the 
first, a n d " . . ,  to investigate the change in a derived function, in consequence 
of a change in the form of its primitive is the object of the Calculus of Varia- 
tions. ''17s I t  is in this s tudy of change of forms, considered as the result of an 
operation on the function, that  the subject derives its relationship with the calculus 
of operations. 

In summary:  the calculus of operations, which had been imported from France 
and extended by BABBAGE and HERSCHEL, was a focal point for mathematical  
research in Great Britain between t835 and t865. In particular, as DEMORGAN 
pointed out, the Cambridge Mathematical Journal and its successor the Cambridge 
and Dublin Mathematical Journal were full of "symbolical reasonings." These 
included not only the papers discussed above, but  also additional papers by  

175 DEIViORGAN Papers, Box XII. University of London, London. 

176 ROBERT CARMICHAEL, A Treatise on the Calculus o/Operations. London, 1855: 1. 
177 JOHN HEWITT JELLETT, An Elementary Treatise on the Calculus o/ Variations. 

Dublin, 1850: 1. 
17s Ibid., 1-2. 
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BOOLE, C. GRAVES and others. 179 Furthermore, interest in the subject did not 
end in the 1860's. There were additional works in Great  Britain and increasingly 
by Continental mathematicians through the end of the century and into the 
twentieth century. The earlier work was made more rigorous and as it was bet ter  
understood it led eventually to the modern theory of linear operations. A bibliog- 
raphy of this work, though unfortunately the citations are often not exact, can 
be found in articles by  S. PINCHERLE. The role of integral equations in leading 
to the general theory of function spaces has been treated by  MICHAEL BERN- 
KOPF. 180 

To return to the summary of the early work in Great Britain, GREGORY'S 
explanation of the validity of the separation of symbols was accepted as correct 
by  his contemporaries. For example, CARMICHAEL wrote; " M u c h  of the importance 
now attr ibuted to the Calculus of Operations is due to the vindication and illustra- 
tion of its claims by  that  mathematician. ''~s~ But GRECOR¥'S view of the subject 
was limited, inasmuch as he assumed that  all the laws of algebra must  be satisfied 
- - i n  particular, that  his operations commuted with constants--which limited 
him to equations with constant coefficients. Non-commutative operations were 
first studied by  MURPHY, whose t837 paper deserves an important  place in the 
history of the algebra of linear transformations. The study of such operations 
was continued by  BOOLE, who applied his results to the integration of linear 
differential equations with variable coefficients. This work was extended and 
applied by  many  other workers during the middle part  of the century. As pointed 
out at the beginning of this section, the early work in the calculus of operations 
has been severely criticized for its lack of rigor. I t  is true that  the unrestricted 
use of the method did lead at times to incorrect results, primarily because of 
the indeterminacy of the inverse operations and lack of attention to problems 
of convergence when the solutions occurred, as they often did, in the form of 
infinite series. However, the importance of the method should not be judged 
solely by  the actual results obtained through its use. As we shall see, it was 
involvement with this subject which was one of the major influences on GREGORY, 
BOOLE, and to a somewhat lesser extent, PEACOCK and DEMORGAN, in their 
formulation of a new concept of algebra during the same period. 

1~ GEORGE BOOLE, "On the transformation of definite integrals," Camb. Math. 
J., 1843, 3: 216-224; "On the inverse calculus of definite integrals," Ibid., t845, 
4: 82-87; BRICE BRONWlN, "On certain symbolical representations of functions," 
Camb. and Dub. Math. J. ,  1847, 2: 134-14o; CHARLES GRAVES, "On the solution of 
linear differential equations, and other equations of the same kind by the separation 
of symbols," Proc. Roy. I t .  Acad., t845-1847, 3: 536; "On the method of solving a 
large class of linear differential equations by the application of theorems in the calculus 
of operations," Ibid., 1854-1857, 6: 34-37; ARTHUR CURTIS, "On the integration of 
linear and partial differential equations," Camb. and Dub. Math. J. ,  t854, 9:272-290 
and FRAI~ClS INT]~WMAN, "On l~a, especially when a is negative," Ibid., 1848, 3:57-61 
are some representative titles. 

lSO PINCHERLE, "Equations fonctionelles"; "Pour la bibliographie de la th6orie 
des op6rations distributives," Bibl. Math., 1899, 13: 13-t8; 1VilCHAELBERNKOPF, 
"The development of function spaces with particular reference to their origins in 
integral equation theory," Arch. for Hist. o / E x .  Sci., 1966, 3: 1-96. 

lSl CARMICHAEL, Treatise, ix. 
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5. The Idea of Abstract Algebra in Great Britain 

The rise of an abstract  view of algebra was not the work of a single man, 
or even of a single school. Among the major influences were the work of ABEL 
and GALOIS in the theory of equations, leading to the development of group 
theory, GAuss' work in the theory of numbers, the creation of linear algebra, 
symbolic logic and the formalization of elementary algebra. However, as BOURBAKI 
has pointed out, it was the last three items which were most important  in moving 
towards a specifically abstract  point of v iew--and  these were carried out in 
Great Britain. Thus, BOURBAKI, in discussing the work of GALOIS and GAUSS, 
says 18~ 

leurs t ravaux n 'eurent  pas d'action immediate sur l '6volution de l'Alg~bre 
abstraite. C'est dans une troisi~me direction que se font les progr~s les plus 
nets vers l 'abstraction: ~ la suite de r6flexions sur la nature des imaginaires 
(dont la repr6sentation g6om~trique avait  suscit6, au d6but du X I X  e si~cle, 
d'assez nombreux travaux),  les alg~bristes de l'6cole anglaise d6gagent les 
premiers, de t830 ~ t850 la notion abstraite de loi de composition, et 61argissent 
immediatement  le champ de l'Alg&bre en appliquant cette notion ~t une foule 
d'Stres math6matiques nouveaux : alg&bre de la logique avec Boole . . . .  vecteurs, 
quaternions et syst&mes hypercomplexes g6n6raux avec Hamil ton ... matrices 
et lois non associatives avec Cayley . . . .  

However it was not their work on imaginary numbers but  rather the develop- 
ments in the calculus of operations which directed the attention of the English 
towards the abstract  s tudy of laws of combination. The desire to explain in a 
satisfactory was the principles of the calculus of operations, and to extend its 
applicability, was important  to GREGORY, BOOLE and DEMORGAN, and influenced, 
though to a lesser extent, HAMILTON as well. The significance of this fact is 
great, since by linking the introduction of Continental notation and methods in 
the calculus with the ensuing work in algebra, it yields a much more unified 
picture of mathematics in Great Britain during the first par t  of the nineteenth 
century than is usually presented. 

The progress of PEACOCK, GREGORY, BOOLE and DEMORGAN towards an 
abstract  view of algebra has been studied by DANIEL CLOCK in his dissertation, 
A New British Concept o/Algebra:  1825-1850. CLOCK addressed himself to the 
question 183 

Exact ly  when and to whom should we attr ibute the concept that  algebra is 
an abstract  deductive calculus that  can have more than one model ? 

Although he does not answer that  question categorically, he does give a full 
account of the progress made by the men whose work he discusses towards that  
goal. His principal conclusions are TM 

182 NICOLAS BOURBAKI, Elements d'Histoire des Mathdmatiques. Paris, 1960: 74. 
lsa DANIEL ARWlN CLOCK, "A new British concept of algebra: 1825-1850," 

Ph. D. dissertation, University of Wisconsin, 1964 : 2. The development of the English 
school of algebra is also treated in LUBOS Nov,c, "L'Ecole alg6brique anglaise," Rev. 
Synth., 1968, 89: 2~-222. 

184 Ibid., 2-3. 
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a) Peacock was a teacher who accidently or otherwise used the concept in a 
relatively unsophisticated way. 

b) Gregory refined the concept but did not live to make a major statement.  

c) DeMorgan expanded the concept and did make a fairly large work based 
on it. 

d) Boole constructed a full scale algebra essentially different from "o rd ina ry"  
algebra, an early example of a non-quantitative calculus. 

In light of CLOCK'S work, I will simply review briefly the views of algebra of 
these four men. PEACOCK defined algebra as the ~s5 

science of symbols and their combinations constructed upon its own rules, 
which may  be applied to arithmetic and to all other sciences by interpreta- 
tion . . . .  

However the generality of this s tatement is misleading, because he insisted that  
the laws of arithmetic must  always be valid. In his words ls6 

Though the science of arithmetic, or of arithmetical algebra, does not furnish 
an adequate foundation for the science of symbolical algebra, it necessarily 
suggests its principles or rather its laws of combination. 

The problem is, of course, that  he writes necessarily. Thus, for example, he would 
deny the name of algebra to a non-commutative system. In his textbook he 
was quite explicit on this point, writing ls7 

I believe that  no views of the nature of Symbolical Algebra can be correct 
or philosophical which makes the selection of its rules of combination arbi trary 
and independent of arithmetic. 

GREGORY'S views of algebra were more refined. Although his definition of 
algebra sounds much like PEACOCK'S, there is a difference. And it is one which 
may  explain the advance towards abstraction. GREGORY wrote tha t  symbolical 
algebra is 188 

the science which treats of the combination of operations defined not by  
their nature, that  is by what they are or what they do, but  by  the laws of 
combination to which they are subject. 

Notice that  whereas PEACOCK had referred to the combination of symbols, 
GREGORY talks of operations. As we have seen, he studied laws of combination 
abstractly laid down--part icular ly the distributive, commutat ive and index 
laws--and  then considered various interpretations of them. 

The contrast between the work of PEACOCK and GREGORY is well illustrated 
by  their t reatment  of the symbols + and --.  PEACOCK considered them to be 

lS5 PEACOCK, "Report," 194-195. 
ls~ Ibid., 195. 
is7 GEORGE PEACOCK, A Treatise o~ Algebra. 2 "a ed. rev. 2 vols. 1542-1845. Reprint. 

New York, 1942: vol. 2, 453. 
lSS GREGORY, "Symbolical algebra ,"  2. 



Calculus of Operations and Abstract Algebra 217 

"signs of affectation," that  is signs which do not affect magnitude, but  only 
direction} s° GREGORY discussed these symbols in a paper "On a difficulty in 
the theory of algebra." The difficulty referred to arose from the fact that  GREGORY 
felt that  any distinction between the symbols " a "  and " + "  in kind is only 
valid in arithmetical algebra, in which the meaning of the symbol (a + b) is fixed, 
and no attention is paid to the laws of the combination of symbols. "Bu t , "  he 
added, "in Symbolical Algebra, where any symbol represents an operation," a 
and + have no general meaning. 1°° In fact, according to GREGORY, the symbols + 
and - -  do not represent addition and subtraction in symbolical algebra. This 
is because 191 

a symbol is defined algebraically when its laws of combination are given; 
a n d . . ,  a symbol represents a given operation when the laws of combination 
of the latter are the same as those of the former. 

Now, he went on, + and - -  combine according to 

+ ( - - a ) = - - a  and - - ( + a ) - - - - - - a .  (5.1) 

But  addition and subtraction are inverse operations, and any two inverse opera- 
tions, say ] and 9 combine according to 

(5.2) 

Hence, he concludes, + and --,  not obeying the same laws of combination as 
addition and subtraction, cannot represent these operations. We are deceived, 
he added, because we write the sum and difference as a + x or a -  x, whereas 
ordinarily the result of applying ] to a is denoted ] (a). He then proceeded to 
s tudy the operation of addition, using A,  (a) to represent the addition of x to a, 
that  is x + a. He gave the following three laws of combination for his symbols: 19~ 

A~Ay (a) =AyA~ (a) 

(a) =Ao (x) (5.3) 
AxA v (a) =./lAy(, ) (a). 

The first law expresses, as GREGORY said, the fact that  A~ and Ay are commutat ive 
operations. (It  is the second that  we would say expresses the fact that  addition 
is commutative.) The third law, says GREGORY, states that  if we first add y to a, 
and then x to the sum, the result is the same as if we first add y to x and then 
add the result to a, i.e. that  x + (y + a ) =  (y + x ) + a .  GREGORY was close to 
the associative law, which was to be isolated by  HAMILTON and had been missed 
completely by  PEACOCK. As CLOCK has pointed out, this was probably because 
the latter did not conceive of addition as a binary operation. 1°3 

189 PEACOCK, "Repor t , "  225 and Treatise, vol. 2, 120--121. 
19o DUNCAN GREGORY, "On a difficulty in the theory of algebra," t843, Math. 

Writings : 241. 
lol Ibid., 236. 
192 Ibid., 239. 
193 CLOCK, J9. 
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GREGORY was clearly on the right track, but  unfortunately he did not live 
to carry out his ideas further. DEMORGAN, on the other hand, left a large and 
coherent work on the subject, including a series of four papers " O n  the Founda- 
tions of Algebra" which appeared in the Cambridge Philosophical Society Transac- 
tions. His general goal in this work - - a t  least in the first three papers - -was  a 
clear theory of the complex numbers. In them he gave a list of eight axioms which 
contained, at least implicitly, most of the axioms which characterize a field. 
The degree of abstraction found in this work seems to be between that  of PEACOCK 
and GREGORY. Thus, in the first paper, which was read in 1839, DEMOI~GAN 
distinguished between technical and logical algebra: 194 

Technical algebra is the art of using symbols under regulations which, when 
this part  of the subject is considered independently of the other, are prescribed 
as the definition of the symbols. Logical algebra is the science which investigates 
the method of giving meaning to the pr imary symbols, and of interpreting 
all subsequent symbolic results. 

I)EMORGAN discriminated between defining, explaining and interpreting symbols. 
A symbol, he said, is "de]ined when such rules are laid down for its use as will 
enable us to accept or reject any transformation of it, or by  means of it. ''195 
The distinction between the explanation and interpretation of a symbol is 
essentially the point at which it occurs. Thus 19~ 

a simple symbol is explained, when such a meaning is given to it as will enable 
us to accept or reject the application of its definition, as a consequence of 
that  meaning; and a compound symbol is interpreted when, having occurred 
as a result of explained elements, used under prescribed definitions, a necessary 
meaning can be given to it . . . .  

DEMORGAN cites PEACOCK as the first to have made the distinction between 
two kinds of algebra, but, he says, he prefers the term technical to symbolical, 
"because the latter does not distinguish the use of symbols from the explanation 
of symbols. ''19~ In the first paper he studied the "possible explanation of one 
given technical a lgebra";  but  he indicated that  there might be others, for he 
writes of " the  symbolical algebra which we have, a n d . . ,  any other which we 
might have." 198 But he was not consistent in this, and in his book Trigonometry 
and Double Algebra, which appeared in t849, DEMORGAN wrote 199 

Any system of symbols which obey these rules and no others, except they 
be formed by combinations of these rules--and which uses the preceding 
symbols and no o thers - -  except they be new symbols invented in abbreviation 
of combinations of these symbols-- is  symbolical algebra. 

19~ AUGUSTUS DEMoRGAI% "On the foundations of algebra, I , "  Trans. Camb. 
Phil. ~qoc., 1837-1842, 7: 173. 

195 Ibid., 174. 
196 Ibid. 
1~7 Ibid., 176. 
19s Ibid. 
199 AUGUSTUS DEMoRGAI% Trigonometry and Double Algebra. London, t 849 : 

103-104. 
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The rules referred to first appeared in his second paper on the foundations of 
algebra and are essentially the axioms which characterize the field of complex 
numbers, s°° I t  was the system of complex numbers which he called logical algebra. 
And in his t reatment  of it we can see the influence of the operational point of 
view. DEMORGAN wrote 2°1 

The first step to logical algebra is the separation of the rules of the ordinary 
science from its principles, or rather of its laws of operations from the ex- 
planation operated upon or with. 

Although DEMoRGA• included the s tudy of the symbols previous to explanation 
as necessary, he felt that  this was not by  any means what we should call mathe- 
matics. He wrote tha t  ~°~ 

... the art of operation, previously to the explanation of its symbols, is 
precisely what Dugald Stewart imagined every mathematical  science to be, 
namely a pure consequence of definitions, which upon other definitions might 
have been another thing. This opinion was not, and perhaps is not, without 
its followers. 

(DUGALD STEWART was a member  of the Scottish "common sense" school of 
philosophy.) DEMORGAN went on to reject this view and said that  the s tudy of 
rules without meaning is not a science and certainly bears no resemblance to the 
work of the mathematician.  A person "who makes the transformations of algebra 
by  the defined laws of operation only," he added, " i s  comparable to one who 
puts a dissected map together by  the backs of the pieces alone; whereas the person 
who looks at the front, and uses his knowledge of geography to help more resembles 
the investigator and mathematician.  ''2°3 (DEMoRGAN'S views are not without 
their supporters today.) 

Although DEMORGAN did not base his idea of algebra on the concept of 
arithmetic as a suggesting science in the sense of PEACOCK, his views were some- 
what  limited in a similar fashion. In essence, in the main body of his work, he 
was looking for a single universal system, in which all operations led to interpretable 
results and in which the laws were the axioms characterizing the complex numbers. 
DEMORGAN felt that  he had achieved this, when, in his third paper in the series, 
he gave a definition for A B, where A and B represent both magnitude and direc- 
tion, i .e.  are complex. ~°l DEMORGAN'S aims remained the same, even in the 
last paper  in the series, which was a work inspired by  the publication of HAMILTON'S 
first paper  on quaternions in 1844. In this memoir DEMORGAN studied what he 
called systems of algebra of the n th character. Such a system was defined to be 

300 AUGUSTUS DE1V~ORGAN, "On the foundations of algebra, I I , "  Trans. Camb. 
Phil.  Sot., t837-1842, 7: 287-300. 

2ol Ibid., 287. 
302 Ibid., 288-289. 
203 Ibid. 
201 AUGUSTUS DEMORGAN, " O n  the foundations of Mgebra, I I I , "  Trans. Camb. 

Phil.  Soc., 1849, 8: 139-t42. 

~5 Arch. Hist. Exact Sci., Vol. 8 
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one in which there were n symbols ~1, ~2, ~8 . . . .  and where 

al ~1 + a~ ~2 + . . . .  bl ~1 + b~ ~2 +"" (5.4) 

implies that  a~ ~- b 1, a~ = b 2 , etc. " T h i s  condition, however," he wrote, "is  connect- 
ed with the interpretation: a perfect symbolical system might very well exist 
without it ." 305 DEMoRGAN proceeded to study various ways in which one can 
define the products ~ ~i, which he then extended to general products by assuming 
the distributive law. But  he tried to do this so that  A B = B A  and A (BC) = (A B) C. 
Any definition that  failed to do this, he labelled " imperfec t" ,  because, he said, 
his object was " to  detect systems in which the symbolic forms of common algebra 
are true . . . .  -2o6 In effect, DEMORGAN was working in n dimensional vector 
spaces over the reals and trying to define a product which would make them 
fields. This is, of course, not possible unless n = 1 or 2. 

DEMORGAN'S views on the nature of algebra were also influenced by the fact 
that  he was a logician. In a paper entitled " O n  infinity; and on the signs of 
equality," published in t87t ,  he made some interesting, if somewhat obscure, 
comments on the difference between algebra and logic. Algebra, he wrote, was 
not yet a formal science in the sense that  logic was, because in a formal algebra 
every form and every transformation had to be universal. But  the forms of 
algebra admit  exceptions; for example a b ~-b implies a = t ,  but  2x = x  does 
not give 2 = t. (Here a and b are symbols in arithmetical algebra, i. e. they  represent 
natural  numbers, and hence the cancellation law for multiplication is not restrict- 
ed.) PEACOCK'S principle of the permanence of equivalent forms came closest to 
the assertion that  algebra is a formal science, wrote DEMORGAN, " b u t ,  it lacked 
the distinction between form and mat ter . "  2o7 

The last member  of the English school we are considering here is BOULE. He 
did not write explicitly on the formalization of algebra but  expressed his views 
on the nature of algebra and mathematics  in his logical works. In the introduction 
to his first logical work, The Mathematical Analys i s  o/Logic,  t 847, Booze  wrote sos 

We might justly assign it as the definitive character of a true Calculus, that  
it is a method resting upon the employment of Symbols, whose laws of 
combination are known and general, and whose results admit  of a consistent 
interpretation. 

In The Laws o/ Thought, t854, he stated that  " i t  is not of the essence of mathe- 
matics to be conversant with the ideas of number and quanti ty ."  2o9 His strictures 
on the nature of symbolic reasoning show that  he, like PEACOCK, believed that  
some suggesting science was necessary, though he went beyond PEACOCK by 

2o5 AUGUSTUS DEMoRGAN, "On  the foundations of algebra, IV," Trans. Camb. 
Phil. Sue., 8: 241. 

2o~ Ibid., 254. 
207 AuGusTus DEMORGAN, "On infinity and on the sign of equality", Trans. 

Camb. Phil. Soc., 1871, 11: 18i. 
los GEORGE BOULE, The Mathematical Analysis  of Logic. t847. Reprint. Oxford, 

1951 : 4. 
202 GEORGE BOULE, An Investigation o/ the Laws o/ Thought. t854. Reprint. New 

York, n.d.: 12. 
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asserting that  this science need not be arithmetic. BOOLE described the construc- 
tion of a symbolic science as follows: One must  start  with a fixed interpretation 
of the symbols in order to establish the laws of combination; in the formal process 
of reasoning, no attention should be paid to the interpretability of the intermedi- 
ate steps; only the final result must  be interpretable. 21° In  logical works, the so- 
called suggesting science is, BOOLE claimed, the laws of thought. CLOCK is very 
critical of ]3OOLE for insisting on a suggesting science and calls his work a step 
backward from tha t  of GREGORY and DEMORGAN in the process of abstraction, m 
But this is not, I think, quite fair, as it fails to take into account BOOLE'S work 
on the combination of symbols, done in connection with differential equations. 
As we have seen, GREGORY restricted himself to equations with constant coeffi- 
cients, because his justification of the method of the separation of symbols rested 
on the assumption that  his symbols obeyed the ordinary laws of algebra. BOOLE, 
on the other hand, freed himself from this restriction and studied non-commutat ive 
operations. And, of course, he also gave his famous algebraic interpretation of 
logic. 

BOOLE stated his basic position in the Laws o/ Thought as follows: 212 

All the operations o/Language, as an instrument o/reasoning may be conducted 
by a system o/signs composed o/the/ollowing elements, viz.: 

1st. Literal symbols, as x, y, etc., representing things as sub]'ects o~ our 
conceptions. 

2rid. Signs o/operation, as +, --, ×, standing/or those operations o/the 
mind by which the conceptions o/things are combined or resolved so as to/orm 
new conceptions involving the same elements. 

3rd. The sign o/identity, =. And these symbols o/Logic are in their use 
subiect to de/inite laws agreeing with and partly di//ering /rom the laws o/the 
corresponding symbols in the science o/ algebra. 

The laws which BOOLE isolated for his symbols are 

xy  = y x  

12 = x (5 .5 )  

z(x +y) =zx  +zy.  

Thus, he said, since we have the special law x 2 =-x, it is not worthwhile to trace 
the analogy between ordinary algebra and the system of logic. There are only 
two symbols of number  subject to that  law, namely 0 and 1. BOOLE concluded ~13 

Let  us conceive, then, of an Algebra in which the symbols x, y, z, etc. admit  
indifferently of the values 0 and t ,  and of these values alone. The laws, the 
axoims, and the process, of such an Algebra will be identical in their whole 
extent with the laws, the axioms, and the processes of an Algebra of Logic. 
Difference of interpretation will alone divide them. 

21o Ibid., 66-70. 
2n CLOCK, 157. 
212 ~BooLE, Laws o/ Thought, 27. 
213 Ibid., 37-38. 
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Looking at the work of the English school of algebra during the first half 
of the nineteenth century, CLOCK'S summary seems fair: 2~ 

the principle aspects of a concept of an abstract algebra were rather clearly 
enunciated during that  period. The actual construction of a genuinely abstract 
algebra remained yet  to be accomplished. 

CLOCK did not discuss the work of HAMILTON, which played an important 
role in the rise of abstract algebra. HAMILTON'S concept of algebra differed 
considerably from that  of his English contemporaries, though, as we shall see, 
he did come to feel a certain degree of sympathy with their views. His most 
important contributions to algebra are his work in the formalization of elementary 
algebra, his theory of complex numbers and his discovery of quaternions. The fact 
that  the quaternions did not turn out to be the important tool in geometry and 
physics which HAMILTON and some of his followers claimed they were led to a 
decline in his reputation during the first part of the twentieth century. But in 
recent years there have been important reassessments of HAMILTON'S contributions 
to algebra. 

MICHAEL CROWE, in his History o/ Vector Analysis, has argued convincingly 
that  modern vector analysis developed historically as a modification of HAmIL- 
TON'S quaternion system. ~15 The significance of HAMILTON'S work in the formaliza- 
tion of elementary algebra was pointed out by C. C. •ACDUFFEE who wrote 
that2~e 

Hamilton's careful, detailed and logical criticisms of the foundations of algebra 
have been important steps in the development of modern abstract algebra. 

And J ~ O ~ E  MANHEIM, ill his Genesis o/Point Set Topology, credited HAMILTON 
with the first modern scientific treatment of the irrationals. 217 

I suspect that  the reason for the neglect of HAMILTON'S work on the foundations 
of algebra is that  it is contained in the "Essay on algebra as the science of pure 
time," whose metaphysical sounding title must have discouraged many from 
reading it. Its philosophical content has been succintly summarized by G. WIND- 
RED as being based on three fundamental concepts: 1. the notion that  time is 
connected with existing algebra; 2. the notion, or intuition, that  time may be 
developed into an independent pure science; and 3. that the science so developed 
is identical with algebra, insofar as algebra is a science, ms 

HAMILTON took as his starting point the assumption that  algebra, like geometry, 
should be "deduced by valid reasonings from its own intuitive principles." mo 

2x~ CLOCK, 166. 
~15 MICHAEL J. CROWE, A History o] Vector Analysis. Notre Dame, Indiana, 1967. 
21~ C. C. MACDUFFEE, "Algebra's debt to Hamilton," Colletion o/Papers in Memory 

o/Sir William Rowan Hamilton, 25-35. New York, 1945: 25. 
21~ JEROME ~ANHEIM, Genesis o/Point Set Topology. Oxford, 1964: 78. 
als G. WINDRED, "The history of mathematical time," Isis, 1933, 19: 150. 
219 WILLIAM I~owAN HAMILTON, "Theory of conjugate functions or algebraic 

couples; with a preliminary and elementary essay on algebra as the science of pure 
time," t837, Math. Papers: vol. 3, 5. 
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The principle which he chose as a basis is that  of pure time, or " the  closely 
connected (and in some sort coincident) notion of Continuous Progression." ~o 
HAMILTON cited some interesting authorities as lending credence to his idea: 
NEWTON, "whose revolutionary work in the higher parts of both pure and applied 
Algebra was founded mainly on the notion of fluxion which involves the notion 
of t ime;" J. NAPIEIL who in his discovery of logarithms used the idea of "Contin- 
uous Progression, in describing which, he speaks expressly of Fluxions, Velocities 
and Times",  and, surprisingly, LAGRANGE. Now LAGRANGE, HAMILTON admitted, 
had tried to banish the idea of t ime and to reduce the theory of fluxions " to  a 
system of operations upon symbols, analogous to the earliest symbolic operations 
of algebra." But, in regarding algebra as the "Science o/Funct ions" HAMILTON 
felt that  LAGRANGE had unwittingly let the idea of t ime back in--because the 
clearest idea of a function is that  of a "Law connecting Change with Change. But 
where Change and Progression are, there is TIME."  221 Starting with his intuitive 
base, HAMILTON took a constructive point of view. From the notion of instants 
of time, he defined the integers and the rationals. He stated clearly the laws of 
number, including the commutative,  associative and the distributive, the existence 
of an identi ty for addition and multiplication and the existence of inverses, and 
at each step proved these for the class of numbers under consideration. I t  should 
be noted that  the term associative law seems to have been coined by  HAMILTON, 
who first used it in a paper of 1844 on quaternions. ~22 

Based as it was on the ordinal motion of number as primary, HAMILTON'S 
work led him to an appreciation of the importance of the idea of order, a concept 
that  DEMORGAN had missed completely, since he concentrated on the complex 
numbers. From his ordering of the rationals and tile assumption that  t ime is 
continuous, HAMILTON derived his theory of irrationals. Thus, assuming the 
identi ty between instants of time and the set of real numbers, he showed that  
not all numbers are fractional and that  there are fractional numbers which are 
not the squares of other such numbers. HAIX, IILTON then proved that,  under his 
assumptions, every positive ratio does have a square root, which can be approxi- 
mated  as closely as desired by  rationals, or as he called them, fractional numbers. 
This he achieved by  a series of lemmas: ~2a 

I. If  x is positive, then as x increases continuously, x 2 increases continuously. 

II .  Between any two unequal ratios, there is another ratio. 

As a corollary to II, he gets: Given the two series a', b', c', ... and a", b", c", . . . .  
If  the smallest ratio in the second series is larger than the largest ratio in the 
first series, then there is a ratio a such that  

a > a  ~, a > b  ~, a > c ' , . . .  

a < a " ,  a < b " ,  a < e " ,  . . . .  

220 Ibid. 
2~x Ibid., 5-6. 
~ WILLIAM ROWAN HAMILTON, "On a new species oi imaginary quanti t ies 

connected with the theory of quaternions," t844, Math. Papers: vol. 3, t 14. 
228 HAMILTON, "Pure time," 56-58. 
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i i i .  If  _b > o, there exists a unique positive ratio a which satisfies 

Y/7 n ~t 
a > ~ r  a_<=m,, 

t t ?1 mr1 where n~, n ,  n , are any positive whole numbers which satisfy 

~t  ~V~t ~ t t  ~ t t  

m'm' <b_ m"rn" >b_. 

IV. Between any two unequal positive ratios there is the square of a fractional 
number. 

Using these lemmas, HAMILTON was able to prove his result in the following 
theorem: 

The square a_.aa of a determined positive ratio a_, of which the existence was 
shown in the I I I r d  Lemma, is equal to the proposed positive ratio b in the 
same Lemma;  that  is 

~t 
if a _ > ~ r  whenever 

n" 
and a < -&wr whenever 

then aa ~ b, a_ ~V~_, 

~t We 

~l t  ~ t t  

m t t  v~tt ~ ~) 

m', ~', m", n", being any positive whole numbers which satisfy the conditions 
here mentioned, and b being any determined positive ratio. 

HAMILTON'S theory clearly has its roots in EUDOXUS' definition of proportion, 
a definition he knew and admired. I t  also bears a striking resemblance to the 
work of RICHARD DEDEKIND. The relationship between HAMILTON'S theory and 
that  of DEDEKIND was discussed briefly by  H. E. HAWKES, in 190t. HAWKt;S 
pointed out that  although there is a similarity, HAMILTON'S work was incomplete 
in several respects when compared with DEDEKIND'S. He also stated tha t  it 
was doubtful that  DEI)EKIND was influenced by HAMILTON, since the former 
based his theory on the continuity of space rather than of time. ~24 Despite its 
flaws, HAMILTON'S work remains an impressive at tack on a very difficult problem, 
and one which has been unfairly neglected. 

HAMILTON extended his number system to include complex numbers, by 
defining them as ordered pairs of reals. He laid down the rules for the addition 
and multiplication of two pairs and again proved all the field axioms were satisfied. 
The definitions, he noted, were made so as to preserve as great an analogy with 
the theory of singles, i. e., reals, as possible. In this regard, the degree of abstraction 
he was willing to accept is delineated in the following quote: ~ 

In general the definitions of mathematical  science are not altogether arbitrary, 
but a certain discretion is allowed in the selection of them, although once 
selected, they must  then be consistently reasoned from. 

224 :EDWIN HERBERT HAWKES, " N o t e  o n  Hamilton's determination o~ irrational 
numbers," Bull. Amer. Math. Soc., 1901, 7: 306-317. 

~25 HAMILTON, " P u r e  time," 8t. 
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But, later on, he seemed to draw back a bit. At the end of the section on algebraic 
couples (complex numbers), we find him defending his theory of pure time. Thus, 
he wrote ~26 

Were those definitions altogether arbitrary, they would not contradict each 
other, nor the earlier principles of Algebra, and it would be possible to draw 
legitimate conclusions, by  rigorous mathematical  reasoning, from premises 
arbitrarily assumed: but  the persons who have read with attention the forgoing 
remarks of this theory, and have compared them with the Preliminary Essay, 
will see that  these definitions are really not arbitrarily chosen, and that  though 
others might have been assumed, no others would be equally proper. 

HAMILTON'S theory was not well received; even his friends felt that  he was 
mistaken in bringing in the notion of time, and that  he should have referred 
only to the idea of continuous progression. In answer, he wrote to DE!V~oRGAN 
in t841 that  ~27 

One thing I am, and was prepared to admit, nay  if it had seemed needful, 
to contend for, tha t  Algebra does not require for its foundation as a Science, 
any knowledge or conception of the actual succession of events or of the 
relation of cause and effect; continuous progression appeared, and still appears 
to me sufficient: but  this I thought  and think, is the essential element ill the 
conception of what I call pure time. 

HAMILTON then quoted a passage from KANT to the effect that  "we can think 
to ourselves no line, without drawing it in thought . . . .  " And, he went on, 22s 

I cannot say whether the passage was in my  recollection when I was drawing 
up my  Paper  on Algebra, but  I remember that  a similar train of thought 
prevented me from yielding to the suggestion of some friends, who were of 
the opinion that  without much impairing the s tatement  of my  own views I 
should be likely to escape much opposition if I contented myself with speaking 
of continuous succession or progression, without introducing the jealousy- 
exciting name of Time. 

I)EMORGAN referred to the theory in a friendly spirit in t h e "  Calculus of Functions," 
where he wrote ~9 

A distinguished analyst calls Algebra the science of pure time ... the notion 
of time, succession, and number are so clearly related tha t  we have no doubt 
very admissible conventions would make this true. 

On the other hand, it was severely criticized by  ARTHUR CAYLEY, first Sadlerian 
Professor of mathematics at Cambridge and an important  figure in the history 
of algebra. CAYLEY wrote in t864 2~° 

226 Ibid. 
227 R. GRAVES, VO1. 3, 426. 
228 Ibid. ,  426-427.  
2~2 A. DEMORGAI~, "Ca l cu lu s  of f unc t i ons , "  347. 
28o ARTHUR CAYLEY, "011 t h e  n o t i o n  a n d  b o u n d a r i e s  of a lgeb ra , "  1864, Math .  

Papers:  vol. 4, 292. 
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I do not admit  the assertion, that  the idea of number  is derived from that  
of time, it appears to me that  it is derived from that  of succession in t ime 
or space indifferently. 

In t883 he went even further, denying that  continuous progression of any kind 
was fundamental.  ~$1 The question of whether the cardinal or ordinal concept of 
number is pr imary is one which is still argued by  philosophers of mathematics.  

Although HAMILTON'S work was important  in the development of a formal 
view of mathematics,  he himself, as we have seen, did not subscribe to it. However, 
he was in close contact with members of the English school, especially DEMORGAN. 
And, although he never totally abandoned his KANTIAN position, he did become 
more receptive to the views of PEACOCK, GREGORY and DEMORGAN. Thus, in 
1846, he wrote that  although he had not given up his ideas, he had come to 
believe that  ~s~ 

there is a sort of symbolical science, or science o/language which well deserves 
to be studied, abstraction being made for a while of meaning, or of interpreta- 
tion; and /o rms  o/expression being treated as themselves the subject-matter  
to be studied: in short I feel an increased sympathy  with, and fancy that  I 
better  understand that  Philological School . . . .  

Among the authors included by HAMILTON in that  school were  PEACOCK, GREGORY 
and MARTIN OHM. OHM was the brother of the physicist GEORG OHM. From 1811 
to t82t he worked, according to his own testimony, on an a t tempt  to unify all 
of mathematics  into one system. BOUR]3AKI credits his work as being the first to 
a t tempt  to base all of analysis on arithmetic, e33 An exposition of the general 
principles on which his work rests was translated into English in t 843 under the 
title The Spirit o/Mathematical Analysis and its Relation to a Logical System. 
OHM began with seven basic operations: + ,  -- ,  × ,  + ,  powers, roots and logarithms. 
He then defined mathematical  analysis as " the  doctrine of these (seven) (mental) 
acts to one another, to which we are led by  the consideration of (whole, indenom- 
inate) number."  284 OrlM'S theory is rather involved, but it clearly was a forerunner 
of later a t tempts  to base all of mathematics  on the integers. The work impressed 
HAMILTON, and by  his admission, influenced his thinking. 

In the preface to the Lectures on Quaternions, which appeared in 1853, HAMIL- 
TON again linked O~IM and PEACOCK. He wrote that  his 235 

own old views respecting Algebra, perhaps modified in some respects by 
subsequent thought and reading are not fundamentally and irreconcilable 

231 ARTHUR CAYL]~Y, "Presidential address," 1883, Math. Papers : vol. t 1,429-459. 
232 tZ. GRAVES, vol. 2, 52t-522. 
~aa NICOLAS ]3OURBAKI, Eldments de Mathdmatiques XXII .  Livre I. Thdorie des 

Ensembles. Chapitre 4. Structures. Actualitds Scientifiques et Industrielles. 1258. Paris,  
n.d.: 94. 

334  MARTIN OHM, The Spirit o/Mathematical Analysis and its relation to a Logical 
System. trans. A. J. ELLIS, London, t843: t2. 

~ z ~  WILLIAM I:~OWAN HAMILTON, Lectures on Quaternions. Dublin, 1853: (14). In 
this work the page numbers of the preface were enclosed in parentheses. 
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opposed to the teaching of writers whom I so much respect as Drs. Ohm and 
Peacock. 

HAMILTON described what he believed to be the method of these authors as 
follows : 2a~ 

I by no means dispute the possibility of constructing a consistent and useful 
system of algebraical calculations, by starting with the notion of integer number; 
unfolding that  notion into its necessary consequences; expressing those 
consequences with the help of symbols, which are already general in their 
form, although supposed at first to be limited in their signification, or value; 
and then, by de/inition, for the sake of symbolic generality, removing the 
restrictions . . . .  

This, HAMILTON felt, described the approach of both PEACOCK and OHM, though, 
he wrote, the former concentrates on the "permanence of equivalent forms", 
while the latter emphasizes " the  relations between the fundamental operations." 2~7 
The problem with this approach, says HAMILTON, iS that  it takes the cardinal 
concept of number as the starting point, whereas he feels that  it is the ordinal 
concept which is more basic. Thus, he said, " I  cannot fancy myself as counting 
any set of things, without first ordering them, and treating them as successive . . . .  ,, 23s 
I t  was possible, he added, to use the theory of pure time as the "suggestive 
science" in PEACOCK'S sense, and this had the advantage of delaying the introduc- 
tion of uninterpreted symbols. But finally, he admitted that  whatever the basis 
of algebra 239 

the actual calculations suggested by this, or by any other view, must be 
performed according to some fixed laws of combination o/ symbols, such as 
Professor DeMorgan has sought to reduce, for ordinary algebra, to the smallest 
possible compass . . . . .  

Beginning in t846 HAMILTON published a series of papers entitled "On  
Symbolical Geometry." Here again he cited PEACOCK and OI~M as the authors 
who had led him to a deeper appreciation of the new school of algebra. He began 
as follows: 2~o 

The present paper is an at tempt towards constructing a symbolical geometry, 
analogous in several important  respects to what is known as symbolical 
algebra, but  not identical therewith; since it starts from other suggestions 
and employs in many cases other rules of combination of symbols. 

28~ Ibid., (t 5). 
2~ Ibid. 
~38 Ibid. 
389 Ib id . ,  (16) .  

24o WILLIAM ROWAN HAMILTON, "On  symbolical geometry," Camb. and Dub. 
Math. J., t846, 1: 45. 
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His object in writing the paper was two-fold, he added; first to illustrate the 
quaternions in another light, and secondly, what would probably interest his 
readers more, to ~1 

furnish some new materials towards judging of the general applicability and 
usefulness of some of the principles of symbolical language which have been 
put forward in modern times. 

As early as t835, in criticizing the symbolic school of algebra, HAMILTON had 
noted that  "Geomet ry  itself might be presented in a merely logical or symbolical 
form . . . .  " though, he added, he did not think it should be. ~42 

At the end of his paper on algebraic couples, HAMILTON had spoken of his 
hopes of extending the theory to triplets, and in fact to arbitrary sets of moments  
and steps of time. 248 As his notebooks testify, he spent much time on the a t tempt  
to define multiplication for such objects. Like DEMORGAN, he wanted, at first, 
a system which would form an associative, commutative,  division algebra over 
the reals. But, led in part  by geometric considerations, he took, in 1843, the step 
of sacrificing the commutat ive law of multiplication for four-tuples. And hence, 
creating one of the first non-commutative algebraic systems, which he called the 
system of quaternions. Thus, in assessing HAMILTON'S contributions to the growth 
of an abstract  view of algebra, we find that  it was much more technical than 
philosophical. He gave a constructive view of the irrationals and the complex 
numbers and isolated the axioms which characterize a field. Furthermore, his 
quaternions furnished an example of a non-commutat ive system. But his own 
views on the nature of mathematics looked back towards KANT rather than 
forward to a more abstract  point of view. 

In most histories of mathematics,  the rise of abstract  algebra is linked with 
the increased necessity to deal with complex analysis and hence to the need for 
the justification of so-called imaginary quantities. The geometric interpretation 
of the complex numbers is a fascinating example of simultaneous discovery, 
followed by  a time lag before the theory was generally accepted. I t  has been 
studied in detail by several scholars. 24~ The part  played by ideas on imaginary 
numbers on the growth of algebra has also been elucidated. 245 The British mathe- 
maticians whose work we are considering here were familiar with, and discussed 

241 Ibid. 
242 I~. GRAVES, vol. 2, 143. 
243 HAMILTON, "Pure time," 96. 
244 WOOSTER WOODRUFF t3EMAN, "A chapter in the history of mathematics," 

P7oc. Amer. Ass. for the Adv. o/ Sc., 1897, 46: 33-50; PHILLIP S. JONES, "Complex 
numbers: an example of recurring themes in the development of mathematics," 
Math. Teacher, t954, 47: 106-144; 257-263 and G. WINDRED, "The history of the 
theory of imaginary and complex quantities," Math. Gaz., 1929, 14:533-541 are 
among the most complete. 

245 ERNEST NAGEL, "Impossible numbers: a chapter in the history of logic," 
Studies in the History o/Ideas III .  ed. Dept. of Phil. Columbia Univ. New York, 1935: 
429-475; FEDERIGO ENRIQUES, The Historic Development ol Logic. trans. J. ROSENTHAL, 
New York, 1929 and CROWE. 
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a t  length, the works of JOHN WARREN, Abb6 BUlgE, ROBERT ARGAND, CHARLES 
MOUREY, AUGUSTIN CAUCHY and KARL GAUSS, as well as the early work of 
JOHN WALLIS on this subject. But  despite this, the role of the geometric inter- 
pretation of the complex numbers on their thinking was not really strong, since 
it was not regarded as a sufficient foundation for their use. For example, ROBERT 
WOOl)HOUSE would not accept any geometric interpretation as a sound basis for 
the use of imaginaries, since one of his aims was to free analysis from any depend- 
ence on geometry. WOOl)HOUSE wrote a paper, published in the t 801 volume of 
the Philosophical Transactions giving his view of the proper foundation for the 
use of imaginaries. I t  was written as a direct reply to a paper by JOHN PLAYFAIR. 
PLAYFAIR had suggested that  the reason that  computations involving imaginary 
quantities lead to correct results was to be found in the analogy between 
circular and hyperbolic arcs, and that  because of this, such quantities could not 
be used to prove results, but  only to suggest them; any such true result could 
and should be proved independently. 246 This att i tude WOOI)HOO'SE rejected 
completely; in his view operations on imaginary quantities led always to true 
conclusions, and hence there had to be a logical explanation of this fact. As he said ~47 

I t  would indeed be a singular paradox or a rare felicity if t ruth not always 
attained by  meditation should unexpectedly result from unideal operations 
conducted without principle, purpose, or regularity. 

WOOl)HOUSE'S own view was strictly formal, and was related to his theory of 
series. Thus, he said, we can at tach a meaning to the symbols ~ and + and prove 
that  (a + b) x_~(c + d) = a c  + ad + bc + bd, if a, b, c, d are real. But  we cannot prove 
that  (a + b ~/------{) (c + d V---t) and a c - -  b d + (a b + b c) V-- t are equivalent. What  
we must  do is to assume that  this is so; that  is to extend the rule demonstrated 
for the real quantites to ones involving |/----~. Thus the fact that  x V---{ - x V t 

is o, or that  xl/----Y is V -  1 is due to the assumption that  " x  is to combine with 
X 

1/-----t as with real quantities. ''24s WOOl)HOUSE'S views here clearly presage 
PEACOCK'S principle of the permanence of equivalent forms. 

Furthermore an expression like e ~ V =i was to be defined by  

X2 X3 

e~v ~ = t  + x  V ~ t.2 1 .2 .31 / -~  + " '  (5.6) 

where the right hand side was to be computed according to that  rute. 

The geometric interpretation of imaginaries did play an important  part  in 
leading HAMILTON to his concept of quaternions. In the first published account 
of quaternions HA_~IILTON asserted that  it was the a t tempt  to generalize Jomq 

2*s JoHN PLAYFAIR, "On the arithmetic of impossible quantities," Phil. Tram., 
1788, 68: 318-343. 

24~ ROBERT WOODI~OUSE, "On the necessary truth of certain conclusions obtained 
by means of imaginary quantities," Phil. Trans., 1801, 91: 91. 

2,s Ibid., 100. 
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WAI~REN'S definition of the proportion between four lines in a plane to lines in 
space which had led him to the quaternions. 249 JOHN WARREN'S Treatise on the 
Geometrical Representation o/the Square Root o/Negative Quantities, published at 
Cambridge in t828 was the first nineteenth century work in English to expound 
the geometric interpretation. (Abb6 BU~E'S work, though published in the 
Philosophical Transactions previous to that  date, was in French.) WARREN had 
defined quant i ty  to mean a line drawn from the origin, and hence completely 
determined by  its length and direction. His definition of proportion was tha t  
the ratio of two lines was the same as that  of two others if their lengths had the 
same numerical ratio and if they formed equal angles. 25° 

HAMILTON" described his a t tempt  to generalize this idea to lines in space as 
follows: Letting i = ] / ~  and j another V ~ t, perpendicular to the plane of t 
and i, x + i y  + j z  denotes the line from (0, 0, 0) to (x, y, z). If  WA~gEN'S theory 
extends to space, (x + i y  +fz)  ~ must  represent the third proportional between 
(t, 0, 0) and (x, y, z) as indicators of lines. Thus its length should be the third 
proportional between t and V x2 +y2 +z  2. Assuming the ordinary rules of arith- 
metic, HAMILTON found that  the square was given by  

x 2 __y2 __z ~ + 2 i x y  + 2 f x z  + 2 i f y z .  (L7) 

But, he added, the if  term must  vanish if the length is to have its proper value. 
This term, he went on, would be omitted either by  letting i f  = 0 ,  or i / = - - f i .  
Since on the first assumption the length of a product is not the product of the 
lengths, he preferred the second, and letting i~----k, he found k ~ - - -  t. 251 This 
account of HAMILTON'S has convinced most historians, who emphasize the role 
of the complex numbers over that  of his algebraic theory in shaping HAMILTON'S 
thought. 25~ But HAMILTON kept returning to the idea of "pure  time." Thus in 
the first extended publication on quaternions he presented them as quadruples, 
and described them as ~3 

at least in their first aspect and conception, a continuation of those speculations 
concerning Algebraic Couples, and respecting Algebra itself, regarded as the 
science of Pure Time. 

And in t852 he described the role played by  the two strands of thought:  TM 

249 WILLIAM ROWAN HAMILTON, "On quaternions, or a new system of imaginaries 
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350 JO~N WARREN, Treatise on the Geometrical Representation o/ the Square Roots 
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V---I had haunted me long, and I did know the outlines of double algebra, 
not only before I thought of the quaternions, hut  also (I  think) before I had 
formed, with the help of Kant,  any very definite views about pure time . . . .  (and) 
when those views ... were formed, I was naturally led to see that  any number 
of independent progressions might be imagined as easily as two and thus 
formed early the notion of triplets and sets, of moments, steps and numbers. 

Thus we had the complex numbers derived as pairs of reals, without any reference 
to geometry, and this idea extended to quaternions as quadruples. And HAMILTON 
himself modified the early statement on the role of geometric thinking in the 
discovery of quaternions. He later wrote that  while in the first published work 
he had emphasized geometric considerations ~'55 

yet I have memoranda which show that  I had been recently reading my own 
paper on algebra, and seeking to illustrate its first principles to my boys, 
especially as related to equal and to successive steps ix time. So that,  although, 
at the last moment, it was geometry that  moulded and fixed my conception 
of the i ik,  I had been prepared for accepting it, by recent as well as by other 
speculations, of a more abstract sort. 

That  the geometric approach to the complex numbers was not sufficient was 
stated explicitly by PEACOCK. The ability to give a geometric interpretation of 
V -  t ,  and to imaginaries in general, he wrote 256 

does not in any respect affect the general theory of their introduction or of 
their relation to other signs: for in the first place, it is not an essential or 
necessary property of such signs: and in the second place, it in no respect 
affects the form or equivalence of symbolical results, though it does affect 
both the extent and mode of their application. 

DEMORCAN also rejected the idea that  algebra could or should be based on 
geometric ideas. In a Penny Cyclopedia article, "Negative and impossible 
quantities," he stated that  the theory of double algebra (as he called the complex 
numbers), was founded not on geometry, but  rather on symbolical algebra, that  
is, drawn from arithmetical suggestion and then cut loose. The resulting system, 
complete in its own right, could then be applied to geometry. 257 And this is the 
program he carried out in his text  Trigonometry and Double Algebra. That  is, the 
rules of combination are considered as the basis of the subject and the geometry 
is introduced as an interpretation. ~Ss 

The geometric interpretation of the complex numbers has sometimes been 
thought to have led directly to the notion that  the subject mat ter  of mathematics 

255 Ib id . ,  307-308. 
25a PEACOCK, "Report," 1 3t. 
25~ AUGUSTUS DEMoRGAN, "'Negative and impossible quantities," Penny Cyclo- 

pedia, London, t840: vol. t6, 136. 
258 AUGUSTUS DE1VIoRGAN, Trigonometry and Double Algebra. London, t849. 
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is more than simple quantity.  ~59 And it is true that  in the work of many  of the 
men who introduced the idea, the objects of study appear as magnitude affected 
by direction. But  still the notion of magnitude seemed essential. The next advance 
towards abstraction was to drop any use of magnitude and s tudy objects defined 
by  their laws of combination. And this seems to have occurred first in the calculus 
of operations. As we have seen, all of the men who were active in producing a 
new concept of algebra had some degree of connection with the calculus of opera- 
tions. This was no coincidence. Particularly in the case of GREGORY, DE'ORGAN 
and BOOLE the calculus of operations played a strong role in forming their way 
of thinking about the nature of mathematics.  Thus, GREGORY opened his paper  
on the nature of symbolical algebra by  stating that  2.° 

The following a t tempt  to investigate the real nature of Symbolical Algebra ...  
took its rise from certain general considerations, to which I was led in following 
out the principle of the separation of symbols of operation from those of 
quantity.  

In  fact, GREGORY preferred to consider the symbols of ordinary algebra as 
symbols of operation. In his paper, "On a difficulty in the theory of algebra," 
which has been mentioned before GREGORY actually identified the two subjects. 
He argued that  the symbols + ,  -- ,  × ,  + were invented for the purpose of 
indicating operations on numbers;  but that  it was found that  the symbol × 
might be omitted, the operation being indicated by  the juxtaposition of symbols, 
a x being written for a X x. He continued 261 

From this the transition was easy to the conception of a as the symbol of 
operation; a change of great importance, as leading to the view that  Symbolical 
Algebra is a Calculus of Operations. 

In  the same paper, he says ~6~ 

Symbolical Algebra must  be considered as a science of operations represented 
symbolically: ... it will, I am convinced, be found tha t  there is no other way 
of explaining the difficulties of Algebra in a uniform and consistent manner.  

And DEMoRGAN seems to have shared this view. In introducing double algebra, 
the wrote, 263 

I t  thus appears that  what we here denominate addition is truly not addition 
of magnitude to produce magnitude, but junction of eHects to produce joint 
eHects. 

259 NAGEL, "Impossible n u m b e r s . "  
260 GREGORY, "Symbolical a lgeb ra , "  1. 
261 GREGORY, "Difficulty in  t h e  t h e o r y  of a lgeb ra , "  242. 
262 Ibid. 
~63 A. DEMORGAN, Trigonometry, l 1 8. 
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Furthermore, in his first paper on the foundations of algebra, he noted that  a 
symbol may  be used to denote magnitude, or the operation by  which magnitude 
is obtained; and, he added, "modern  algebraists usually dwell on the second 
notion, that  of operation. ''264 In the introduction to the paper, DE2vIORGAN 
explicitly pointed both to the imaginary numbers and the calculus of operations 
as the resons for an inquiry into the foundations of algebra, writing 365 

The extent to which explanation of the meaning of the symbolical results of 
Algebra has been carried within the last half century; and the complete 
interpretation of all which formerly appeared incongruous; the separation, 
as it was called, of the symbols of operation and quantity,  which amounts 
to the use of an algebra in which the symbols represent something more than 
simple magnitude; will for some t ime to come suggest inquiry into the logic 
of this many-handeled instrument of reasoning, which seems able of presenting 
under fixed laws of operation, all the results which arise from very distinct 
pr imary conceptions as to the things operated on. 

The idea that  ordinary algebra is itself a calculus of operations was expanded 
upon by  DEMOI~GAN in his article on the calculus of functions. There, he 
wrote tha t  "strictly speaking, we have ill the letters of Algebra our first arbitrary 
symbols o/ operation." The science of "abs t rac t  number" ,  he added, is best 
defined as " the  method of reasoning upon the operations which may  be performed 
on 1."266 DEMORGAN then used this to justify the method of the separation of 
symbols in the following manner.  The step from u, +A ux to (1 +A) u, ,  considering 
d-A u~ as the operation which converts u, to %+1 is the same as that  from a + ba 
to (t + b)a, when a is considered as an operation on t and (1 + b) a the same 
operation on a as t + b on 1. But  then, he added, the expression 

(1 + A ) * % = % + n A u , +  n ( n + l )  z j2ux+. ."  
2 (5.8) 

which treats A as a quant i ty  on one side of the equation, and as a symbol of 
operation on the other, is not different from the way in which " the  enlarged 
view of a lgebra" treats the expression 

n(n+l)  a2b+ . . . .  ( l + a )  ~ b = b + n a b +  2 (5.9) 

.And, I)EMORGAN concluded 267 

The preceding view may  perhaps remove some of the feeling of unmixed 
astonishment with which the student always regards (or ought to regard) 
the now common method of the separation o[ the symbols o/ operation [rom 
those of quantity in the higher mathematics.  

26~ A. DEMORGAN, "Foundations, I ,"  1 75. 
265 Ibid., t 73. 
266 A. DEMORGAN, "Calculus of ~unctions," 306. 
367 Ibid., 311. 
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How hard it was to break away from the rules of arithmetic is shown by 
DEMoRGA~'S further considerations. He stated that  the notation (t + A ) u  x does 
not require any extension of the meaning of the symbol + ,  as was required in 
writing a + b V ~ , but  that  the general use of 

(9 +9)  x -- 9x + ~ x  (5.to) 

is not really acceptable, if the separation of symbols is to be applied. For then, 
he claimed, it must be defined so that  

(9 +~)2 x = 92 x + 2 9~vx +~2x (5.11) 

which seems to require that  9~x=~gx. DEMoRGAN felt that  without this 
condition being satisfied, or a bet ter  definition of + ,  separation of symbols could 
not validly be applied here. In other words, he seems to limit his discussion to 
systems in which the laws of arithmetic and their consequences are maintained. 
But  in a footnote he apparently recognized that  this is not a necessary condition. 
These considerations show, he wrote, "how apt we are to take the convention 
derived from our own first view of numbers as the limit of our method of consid- 
ering symbols." ~es 

That  the new views of algebra were related to the calculus of operations is 
also shown by  the fact that  although PEACOCK did not specifically write on the 
calculus of operations, DEMoRcAN credits him with a large role in establishing it. 
In his article "Operations" in the Penny Cyclopedia DEMORGAN outlined the 
history of the method of the separation of symbols. He observed that  in the early 
works by LAGRANGE, ARBOGAST, BRINKLEY--and even in the translation of 
LACROIX by  BABBAGE, PEACOCK and HERSCHEL--it was regarded only as giving 
a strong presumption of truth, not as a method of proof. The first general account 
of why it should or should not give true results in certain cases, DEMORGAN 
continued, is found in the work of SERVOIS. But  2s9 

The last step was virtually made by  Dr. Peacock, in his Algebra (1830); for 
though this work does not mention the subject, yet  it is the first which lays 
down the principles on which the theory of separation is neither a resemblance 
of algebra, nor a calculus of functions founded on algebra, but  an algebra, 
or if the reader pleases, algebra itself; so that  its conclusions rest upon the 
same foundations as those of ordinary algebra. 

DEMORGAN'S views of the relationships between the various questions being 
considered here - - the  calculus of operations, the geometric representation of the 
complex numbers, and the development of abstract  algebra--were stated clearly 
in t87t .  He wrote 27° 

2e8 Ibid., 312-313. 
269 AUGUSTUS DEMoRGAN, "Operations," Penny Cyclopedia, London, 1840: vol. 16, 

443. 
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Those who have seized the spirit of the relation between the different forms 
of algebra, the ascent from arithmetic to single and thence to double algebra, 
and to such triple algebra as has been given, the divergence to the calculus 
of operations, algebra divested of some of its laws which has been made an 
extension of the calculus of operations, and the method of quaternions, seek 
for illustration of difficulties by allowing the formal science to remain un- 
touched, and looking for other mat ter  of meaning to the symbols under which 
all the relations of form shall be preserved. 

The reference to the extension of the calculus of operations is probably to the 
w o r k  of MURPHY a n d  BOOLE o n  non-commutative operations. 

The role played in BOOLE'S thinking about logic by the calculus of operations 
was pointed out by ROBERT HARLEY, a friend and biographer of his. After 
discussing the paper of t844, "On a general method of analysis," HARLEY s a y s y  1 

In the course of these speculations, and others of a like nature which grew 
out of them, Mr. Boole was led to consider the possibility of constructing 
a calculus of deductive reasoning. The severe discipline of his efforts to extend 
the powers of analysis had given him not only a complete mastery over its 
mechanical processes, but  also, what was of far greater advantage a profound 
insight into its logical principles. In tracing out these principles he discovered 
that they admitted of an application to other objects of thought than number 
and quantity. 

In a biographical sketch of her husband, MARY BOOLE asserted that  the idea 
of symbolizing the relations of logic had occurred to him when he was a boy of 
seventeenY 2 BOOLE himself said that  the impetus to publish his first logical 
work came from the controversy between DEMORGAN and the Scots philosopher 
and logician Sir WILLIAM HAMILTON on the quantification of the predicateY 3 
However, this does not invalidate the point, suggested by HARLEY, and others, 
including Mrs. SOPHIE BRYANT and P. E. B. JOURDAIN, that  BOOLE'S work in 
the calculus of operations was of great importance in shaping his theory of 
logic. 274 

Thus, BOOLE opened The Mathematical Analysis o/Logic with an appeal to 
algebra. He wrote 275 

Those who are acquainted with the present state of the theory of Symbolical 
Algebra, are aware that  the validity of the processes of analysis does not 

271 ROBERT HARLEY, "George Boole, F. R. S. ,"  1866. Studies in Logic and Proba- 
bility by George Boole. LaSal le ,  I l l inois,  1952: 444. 
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373 G. BOOLE, Mathematical Analysis, Preface .  
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depend upon the interpretation of the symbols which are employed, but  
solely upon the  laws of their combination. 

The relationship between BOOLE'S work in logic and the calculus of operations 
is apparent in the comments which he made in criticizing a paper by BRONWlN. 
The heightened degree of controversy in mathematics of late, BOOLE wrote, was 
due to " the  unmeasured capabilities of modern analysis for the expression of 
general theorems." The primary reason for dispute was to be found, he added, 
"in the almost entire absence of any direct study of the laws of correct reasoning 
in connexion with the practical discipline of modern science." 376 

The close connection between BOOLE'S theory of logic and his work in analysis 
is also shown in the chapters on symbolic methods in his textbook on differential 
equations. In the preface to that  work he pointed out that  the true value of 
symbolic methods depends only in part on their simplicity and power. Their true 
importance, he went on, lies in their connection with the general relationship 
between language and thought. Thus, he wrote, in regard to such m e th o d sy  7 

in order to form a just estimate, we must consider them in another aspect, 
viz. as in some sort the visible manifestation of truths relating to the intimate 
and vital connexion of language with thought. 

Throughout the discussion of the method of the separation of symbols, the 
connection with the logical theory is apparent. For example, we find 2vs 

In thus expressing an operation by a symbol, in studying the laws of that  
symbol, and in founding processes and methods upon those laws, we introduce 
no strange or novel principles of Language; for it is the very office of Language 
to express by symbols the procedure of Thought. 

BOOLE went on to consider the meaning of such expressions a s / ( ~ x ) '  and he 

concluded that  "as a general principle . . . .  the mere processes of symbolical 
reasoning are independent of the conditions of their interpretation." This, he 
added, is not a mathematical principle, but  rather "i t  claims a place among the 
general relations of Thought and Language." 279 

Further evidence that  the idea of operation was basic in the work of the 
British mathematicians is found in the fact that in BOOLE'S first logical work, 
The Mathematical Analysis o/Logic, the basic symbols are symbols of operation. 
Thus he used the symbol t to represent the universe, symbols X, Y, Z to represent 
generic names; and a further class of symbols x, y, _z conceived of as follows: ~8° 

The symbol x operating on any subject comprehending individuals or classes, 
shall be supposed to select from that subject all the X's it contains. 

276 G. ]~OOLE, "Oil a paper by the Rev. Brice Bronwin," 418. 
~77 G. BOOLE, Difierentlal Equations, vii-viii. 
27s Ibld., 38t. 
379 Ibid., 399. 
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It  is these symbols of operation, which he called elective symbols whose laws 
of combination are then studied. And BOOLE noted that they satisfy the com- 
mutative and distributive laws, properties shared with symbols of quanti ty 281 

in virtue of which, all the processes of common algebra are applicable to the 
present system. The one and sufficient axiom involved is that equivalent 
operations performed on equivalent subjects produce equivalent results. 

In regard to the solution of equations involving elective symbols, BOOLE remarked 
that  282 

from the very nature of elective symbols they are necessarily linear, a n d . . .  
their solutions have a very close analogy with those of linear differential 
equations. 

The similarity of approach between this and GREGOI~Y'S work in the calculus of 
operations is striking. 

The idea of operations as the fundamental concept in algebra, and a connection 
with the separation of symbols is also found in the work of HAMILTON. If we 
look at the theory developed in the 4835 essay on "pure  time," we see that  
numbers and number couples are defined as operations on time steps and pairs 
of steps respectively. And in his discussion of that  essay, in the preface to the 
Lectures on Quaternions, HAMILTON pointed out that  V - l ,  in the theory of 
couples "is  an operator on a couple of time steps." 2s3 After deriving the law for 
the multiplication of number couples in general, considering them as operations 
which act on step couples, HAMILTON noted in a footnote that  2s4 

the principles of such derivation were only hinted at in the Essay of t83 5. . .  
but  it was perhaps sufficiently obvious that  they depended on the 'separation 
of symbols' or on the abstraction of a common operand. 

In his at tempt to get the quaternions accepted, HAMILTON presented many 
different ways of considering them. But they all had in common the fact that  
the qnaternions were essentially operations. Thus, in the Lectures he defined a 
quaternion as " a  geometrical quotient"  whose fundamental property is that  
" b y  operating, as a multiplier (or at least in a way analogous to multiplication), 
on the divisor-line a, it produces (or generates) the dividend-line b." 2s5 In the 
series of researches of 1848, HAMILTON, going back to the concepts of the 1835 
essay, defined the quaternions as operations on quadruples of time steps, whose 
laws of combination were then derived by the method of the separation of symbols. 
Thus, for example, letting q = (a, b, c, d), and defining the quaternion i by i q = 
(--b,  a, - -d ,  c), HAMILTON noted that i . i q  = (--a ,  - -b ,  --c,  --d)  = - - q ,  so that  

2sx Ibid., 18. 
2sz Ibid., 70. 
2s3 HAMILTON, Lectures, (12). 
~s4 Ibid. 
2s5 Ibid., (60)-(61). 
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"detaching the symbols of operation from those of the common operand" we 
have i 2 = - -  1.286 

In a letter to DEMORGAN, written in 1854, on what he called " the  Calculus 
of Quaternions," HAMILTON again emphasized quaternions as operations. He 
wrote ~s7 

we may sum up all the essential properties of the three peculiar symbols i, j, k 
and consequently very concisely state the whole symbolical foundation of 
the Calculus of Quaternions, by saying that  i, f, k are distributive and associative 
symbols of operations, unconnected by any linear relation but satisfying this 
/undamental [ormula : i s = i 2 = k 2 = i i k  = --  1. 

One other important situation in which HAMILTON used the idea of operation 
and the separation of symbols was in his study of the operations S, V, K, T. 
These were defined as follows: if Q = w  + i x  = ] ' y  + k z ,  then SQ =w, the scalar 
part of Q; VQ = i x  + ] ' y  + k z ,  the vector part of Q; K Q = w - - i x - - ] ' y - - k z  is 
the conjugate of Q and TQ = x ~ + y2 + z 2 its tensor modulus. These are significant 
in that by using S and V to separate the scalar and vector parts and studying 
them separately, HAMILTON and his followers, as CROWE has pointed out, were 
actually doing what is now known as vector analysis. ~ss 

With respect to HAMILTON'S relationship to the symbolic school, it is inter- 
esting to note that  after proving T.  TQ = TQ, using a geometric argument, 
HAMILTON added 2s9 

even though it is possible thus to employ geometrical considerations to 
suggest and even to demonstrate the validity of many general transformations, 
yet it is always desirable to know how to obtain the same symbolic results, 
from the laws o] combination o] the symbols: nor ought the calculus of quatern- 
ions be regarded as complete, till all such equivalences o] ]orm can be deduced 
from such symbolic laws, by the fewest and simplest principles. 

Important  as the focus on symbols of operation and their laws of combination 
was on the formation of the abstract view of algebra, it clearly was not the only 
relevant factor. One that should be mentioned, and which deserves further study, 
is the influence of new ideas in geometry. ERNEST NAGEL has pointed out that  
it was projective geometry, rather than non-EucLIDEAN geometry, which first 
made the mathematical community aware of the need to enlarge geometry from 
its EUCLIDEAN confines. He also pointed out the similarity between PEACOCK'S 
principle of the permanence of equivalent forms and J. V. PONCELET'S principle 

2s6 HAMILTON, " Qua te rn ions ,  F i r s t  ser ies ,"  168. 

~s7 HAMILTON to  DEMORGAN, May  6, 1854. Sir WILLIAM ROWAN HAMILTON Papers ,  
T r i n i t y  College, Dubl in .  

288 CROWE, 32- 

~S9 WILLIAM ROWAN HAMILTON, " O n  q u a t e r n i o n s ;  or  on  a new s y s t e m  of imagi-  
na r ies  in  a lgeb ra , "  1844-1850, Math. Papers: vol. 3, 241. 
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of continuity in geometry. 29° Also, as CARL BORER noted, the full title of the 
second volume of PEACOCK'S text  on algebra, On Symbolical Algebra, and its 
Applications to the Geometry o/ Position, suggests that  he was influenced by  the 
work of LAZARE CARNOT. 201 Certainly the work of the French geometers, MONGE, 

PONCELET and MICHEL CHASLES, was well known and much admired in Great 
Britain during the period under discussion. 

There is also the question of the influence of work in the theory of equations. 
While PEACOCK devoted a long section in his "Report on Analysis" to the subject, 
and HAMILTON did some research in it, this work does not seem to have contributed 
directly to their speculations on the "metaphys ics"  of algebra. 

The last point that  should be mentioned here is the role of the development 
of group theory. HAMILTON himself, in his late work on the icosian calculus, 
derived several group-theoretic results, but  he regarded this work as a generaliza- 
tion of the quaternions, and it followed his major  pronouncements on the nature 
of mathematics.  29~ Of course, the major  British contributor to group theory was 
ARTHUR CAYLEY. CAYLEY however tended to shy away from comments on the 
general nature of mathematics.  But  a short p a p e r "  On the Notion and Boundaries 
of Algebra," published in 1864, seems to show that  he shared the views of the 
symbolical school. I t  also reflects the fact that  early group theory was primarily 
concerned with groups of transformations, that  is, of operations. CAYLEY wrote 
that  "Algebra is an Art and a Science; qua Art it defines and prescribes operations 
which are either tactical or else logistical . . . " ;  tactical operations refer to permuta-  
tions or " the  arrangement in any manner of a set of things ;"  logistical operations 
are those which are arithmetical. And he added, "qua Science Algebra affirms 
a priori, or predicts the result of any such tactical or logistical . . ,  operation." 293 
CAYLE¥'S work, and its relationship to that  of his contemporaries, certainly 
deserves further s tudy and I think would show tha t  it too is closely related to 
the ideas discussed in this paper. 

6. Conclusions 

In any a t tempt  to delineate the origins of a complex idea, such as an abstract  
view of algebra, one must  be wary of making too strong a case for any one cause. 
For, as DEMORGAN pointed out in a letter to HAMILTON, a slight shift in emphasis 
may, for example, lead to the crediting of one or the other man for a certain 
discovery. DEMORGAN wrote 294 
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The essentials of a subject are subiective things so that different people are 
really and truly the inventors to different people. 

I have, in this paper, followed other scholars in giving credit for innovation 
and discovery: to WOODHOUSE, HERSCHEL, BABBAGE and PEACOCK for their 
roles in the introduction of Continental views to England and the subsequent 
reform, and to PEACOCK, GREGORY, DEMORGAN, ]3OOLE and HAMILTON for the 
work in algebra which followed. However, by concentrating on one key idea, 
namely the calculus of operations, I have presented a much more coherent picture 
of these developments than that  usually put  forth. 

During the eighteenth century, England remained in intellectual isolation 
from tile Continent. The work of the great Continental analysts--the BERNOULLIS, 
EELER, LAGRANGE and LAPLACE--WaS not assimilated. This had several causes. 
One external factor, undoubtedly, was the fact that  England and France were 
at war much of the time. Also, there may have been a feeling of arrogance among 
English intellectuals raised by the admiration of Continental philosophers for the 
English political system and her achievements in industry and commerce. 
Furthermore, the NEWTON-LEIBNIZ priority battle left those in academic circles 
with the belief that  it was a dishonor to NEWTON to abandon his notation or 
methods. 

The rebirth of an active school of mathematical research at the beginning of 
the nineteenth century is always tied to tile acquisition by the English of Continen- 
tal, particularly French ideas. Among these was the calculus of operations, a 
subject discussed in the works of LAGRANGE, LAPLACE, ARBOGAST, CAUCHY, 
FRAN~AIS, SERVOIS and others. Those who effected the introduction of the French 
ideas knew and admired the French work in the calculus of operations, and 
HERSCHEL, BABBAGE and PEACOCK embodied this in their own research. HERSCHEL 
used ARBOGAST'S method of the separation of symbols for the solution of finite 
difference and differential equations, and generalized LAGRANGE'S work on the 
expression of finite differences by symbolic means; ]3ABBAGE, in his work on 
functional equations, considered functional symbols to be symbols of operation; 

d ~ 
PEACOCK studied the meaning of-d~-,  where ~ is not integral; all these topics 

belong to some degree to what came to be called the calculus of operations. 

As the reformers had hoped, the introduction of Continental ideas was followed 
by a revitalization in science, particularly mathematics. Several new journals 
appeared, devoted wholly or in part to mathematics, and scientific societies 
sprung up on every side. The intellectual benefits include the work in abstract 
algebra, tile invafiant theory of CAYLEY and SYLVESTER, and the mathematical 
physics of GREEN, STOKES, KELVIN and MAXWELL. The follow up of the introduc- 
tion of a new method in analysis by the formulation of an abstract concept of 
algebra was not fortuitious. For, as I have shown, they are connected by the 
calculus of operations. 

GREGORY, BOOLE and DEMORGAN, who along with PEACOCK are generally 
considered the promulgators of the new algebra, all worked in the calculus of 
operations. GREGORY was an ardent supporter of the method of the separation 
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of symbols, which he applied to differential, finite difference and functional 
equations. BOOLE extended this work to linear equations with variable coefficients, 
thereby of necessity considering non-commutat ive operations. DEMORGAN 
worked on functional equations. Both BoonE and DEMORGAN devoted much 
space to the subject in their popular elementary textbooks. But even more 
important ,  we find tha t  their views on the nature of mathematics  are explicitly 
related to this work in the calculus of operations. GREGORY stated specifically 
that  he was led to his theory of algebra by  his desire to justify the use of the 
separation of symbols. DEMORCAN and BOOLE both included this as a development 
which called for a broader notion of mathematics,  since one had an algebra in 
which the objects were not symbols of magnitude. Furthermore, and this could 
not just be coincidence, the idea of operations pervades their work. Boone 
considered his logical symbols to be symbols of operation. DEMORGAN and 
GREGORY suggested that  the ordinary symbols of algebra might best be t reated 
as if they too were symbols of operation. HAMILTON in several of his different 
t reatments  of the quaternions defined them as symbols of operation. Even in his 
work on algebra as the science of pure time, the idea of operation is central and 
the method of the separation of symbols a much used tool. Thus, we see that  by  
concentrating on the calculus of operations, one can trace a direct development 
from the writings of various French authors through the work of the members of 
Analytical Society to the formulation of a new concept of algebra in Eng- 
land. 

I t  is interesting to note also that  the other contemporary developments in 
mathematics  which influenced the English writers also come to them from the 
French. Projective geometry during the first part  of the nineteenth century was 
very much a French science. CertMnly knowledge of that  subject by  the British 
mathematicians seems to have come primarily from that  source. Bu~E and ARGAND 
were among the earliest to give geometric interpretations of the complex numbers, 
and the work of the former was published in England. CAUCH¥ gave one of the 
first non-geometric justifications of the complex numbers. Nor was there a 
total  lack of interest in the foundations of mathematics  in France. The early 
work of CARNOT and LAGRANGE on the basis of the differential calculus was carried 
forward by  ARBOGAST and SERVOIS; while CAUCHY made rigorous the idea of 
limit. But  it was in England tha t  the idea of abstract  algebra was first 
formulated. 

I t  is interesting to speculate on the reason for the fact tha t  these ideas had 
to be transported to England before they were combined into a general concept 
of algebra as a formal system. I think one may  say that  it seems to bear out 
PIERRE DUHEM'S theory of the national character of the two countries. DUHEM 
distinguished the "esprit de finesse" or weak but  ample mind of the English 
from the "espr i t  g6om6trique" or narrow but  rigorous mind of the French. 295 
And it is true tha t  we find tha t  the French never really trusted the calculus of 
operations, because it seemed to have no basis other than analogy and they 
could not give general limits as to the extent of its applicability. In  their more 

~0~ PIERRE DUHEM, The Aim and Structure o/ Physical Theory, trans. P. WEINER. 
New York, 1962: 60-69. 
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pragmat ic  fashion, the British accepted the method  happily,  since it worked in 
so m a n y  cases. And in extending it to  non-commuta t ive  operations and t ry ing 
to just ify its use they developed a broad theory  which in effect led to a formal 
view of the nature  of algebra. 

This work is a revised version of a dissertation submitted in partial fulfillment 
of the requirements for the Ph .D.  degree at The Johns Hopkins University in 1969. 
I would like to thank Professor CARL BOYER of Brooklyn College of the City University 
of New York and Professor HARRY WOOLF of Johns Hopkins for their assistance. 

Department of Mathematics 
Goucher College 

Towson, Maryland 

(Received August 13, 1971) 


