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Abstract 

This paper deals with some properties of temporal pattern 
discrimination performed by single digital-computer simulated 
synaptic cells. To clarify these properties, the Shannon's entropy 
method which is a basic notion in the information theory and a 
fundamental approach for the design of pattern classification 
system was applied to input-output relations of the digital computer 
simulated synaptic cells. We used the average mutual information 
per symbol as a measure for the temporal pattern sensitivity of the 
nerve cells, and the average response entropy per symbol as a 
measure for the frequency transfer characteristics. To use these 
measures, the probability of a post-synaptic spike as a function of 
the recent history of pre-synaptic intervals was examined in detail. 
As the results of such application, it was found that the EPSP size 
is closely related to the pattern of impulse sequences of the input, 
and the average mutual information per symbol for EPSP size is 
given by a bimodal curve with two maximum values. One is a small 
EPSP size and the other is a large EPSP size. In two maximum 
points, the structure of the temporal pattern discrimination reverses 
each other. In addition, the relation between the mean frequency, or 
the form of impulse sequences of the input, and the average mutual 
information per symbol has been examined. The EPSP size at one 
maximum point of average mutual information is in inverse pro- 
portion to the magnitude of input mean frequency which relates to 
the convergence number of input terminal, while that at the other 
maximum point is proportional to that of the mean frequency. 
Moreover, the temporal pattern discrimination is affected remark- 
ably by whether successive interspike intervals of the input are 
independent or not in the statistical sense. Computer experiments 
were performed by the semi-Markov processes with three typical 
types of transition matrixes and ~hese shuffling processes. The 
average mutual informations in the cases of these semi-Markov 
processes are in contrast to those of the shuffling processes which 
provide a control case. The temporal structure of successive inter- 
spike intervals of the input is thus a significant factor in pattern 
discrimination at synaptic level. 

1. Introduction 

In order to examine the processing of information 
in the nervous system, we need to know how all-or- 
nothing impulse sequences in nerve fibers are processed 
by single nerve cells. The occurrence of a post-synaptic 

spike of single cells is a probability function of succes- 
sive inter-spike intervals of pre-synaptic spikes. Hence 
in this type of junction, the input-output probabilistic 
properties must be examined. Several statistical and 
probabilistic measures have been used to describe 
these properties (Gerstein, 1962; Hoopen, 1966; 
Werner and Mountcastle, 1965; Stein, 1967; Segundo 
et al., 1963, 1966, 1968). Werner and Mountcastle 
(t965) applied the information theory experimentally 
to mechanoreceptor cells activated by mechanical 
stimuli. They calculated the average mutual informa- 
tion per stimulus, indicating that the neuronal informa- 
tion capacity is limited to a definite value at a long 
time. Stein (1967) estimated the magnitude of the 
difference between the information capacities of single 
cells using frequency coding, and those using binary 
or interval coding. Segundo et al. (1963, 1966) found 
ganglion cells of the central nervous system of Aplysia 
to be pattern sensitive and examined the probability 
of a post-synaptic spike as a function of the recent 
history of pre-synaptic intervals. 

From this aspect the authors were interested in the 
temporal pattern discrimination of single nerve cells, 
and the Shannon's entropy method was applied to 
input-output relations of the computer simulated 
synaptic cells (Tsukada and Sato, 1972). In this paper, 
computer experiments were performed by the following 
procedure: 

(i) The statistical structure of the spike train in a 
pre-synaptic terminal is fixed on the gamma Order 3. 
The probability of the occurrence of a post-synaptic 
spike as a function of the recent history of pre-synaptic 
interval as well as of the EPSP size is computed by the 
digital-computer-simulated system. We calculated the 
average conditional entropy per symbol for the pattern 
classes, the average response entropy and the average 
mutual information per symbol. Next, we explore it 



20 

by the entropy method how many pre-synaptic spikes 
on the average influence effectively on the occurrence 
of a post-synaptic spike. 

(it) When the statistical structure (especially, mean 
frequency, distribution form) of the pre-synaptic 
spike train changes, it is examined how these entropy 
functions mentioned above change. In this computer 
experiment .we used the gamma distribution form as 
the input which is able to vary from exponential to 
normal 

(iii) We examine how to effect on these entropy 
whether successive inter-spike intervals of the pre- 
synaptic train are independent or not in the statistical 
sense. In order to execute this problem, we simulate 
in digital-computer semi-Markov processes with three 
types of transition matrixes which are characterized 
by physiological data. 

2.  M e t h o d s  

2.1. Synaptic Model 

The synaptic model which was used in this paper was based 
on the digital-computer-simulated synaptic cells in which the 
related experiments had been carried out (Segundo et al., 1966, 
1968). The simulated preparation consisted of a single pre-synaptic 
terminal (the input) which made an excitatory connection with a 
post-synaptic cell (the output). A post-synaptic cell was represented 
by a nerve cell whose state was defined by membrane potential P(t) 
and threshold H(t) at any time t. The P(t) was affected by EPSP's  
each of which corresponded to the certain pre-synaptic spike and 
of which the temporal summation was linear. The P(t) between 
spike firing and EPSP arrival was defined by the following equation: 

P(t) = P~ + (Po - e J  e -  ~(t-~o~ (l) 

where to: the absolute refractory period, 
P0: the initial resetting membrane potential, 
P| the resting membrane potential, 
2e: the decay constant of P(t). 

The PSP summation of n EPSP's (corresponding to arrival 
clock times q, t2, ..., t,) after a spike firing was defined by the 
following equation: 

m = i  

where T~ = t i - t~_ ~ for i = 2, 3, ..., n, T~ = t~ for i = 1 and the potential 
Pa is the peak potential of EPSP. Each EPSP size normalized by 

P~-P| 
resting threshold was represented by A o = - - .  The threshold 

/ /~- P~ 
H(t) after spike firing was defined by the following equation: 

H(O = t ~  + (no - H j  e -  ~"('-'~ (3) 

where H0: the initial resetting threshold, 
H~: the resting threshold potential, 
2u: the decay constant of H(t). 

The synaptic model which was obtained in the way described 
above is shown in Fig. 1. 

X1,2 =(X(1,2}}={(TK,TK-1 )} 

I I I 
I ~ I I 
I I ~- :~ I 
I I I 
I I I I I I 

t Communications I channel 
Pre-syneptic { nerve ceil ) Post-syneptic symbol response 

Probabitities 
P(x) P ( ylx ) P(y) 

to 

. . . . . . .  Hoe 

Fig. I a--c .  Digital-computer-simulated system used in this paper. 
a Random input impulse sequence and joint interval pattern X1, 2. 
b Input-output relation of the synaptic channel, c Model of the 

synaptic cell (see methods) 

2.2. Statistical Structures of Pre-Synaptic Impulse Sequences 

The sta.tistical structures of pre-synaptic impulse sequences 
give potent influences on the posl-synaptic discharge. Accordingly, 
the inter-spike interval mean, standard deviation, form, and the 
statistical dependence of the sequences of inter-spike intervals are 
important variables of the experiments. 

2.2.1. Order-Independent Pre-Synaptic Impulse Sequences. In 
the experiment (i), the random arrival clock times of a pre-synaptic 
spike train were determined by drawing the interval from a pseudo- 
random gamma distribution ~of Order 3 generated by a digital 
computer subroutine. In the experiment (it), the mean intervals 
and distribution form of the pre-synaptic interval sequences were 
changed. Let the probability density function (p.d.f.) of gamma 
distribution be 

e(exy -1 
fo'~(x) = F(o~-~- e- ~ ,  (4) 

where e > 0 and r > 0 are parameters, F(c 0 is a gamma function. 
The mean # and variance ~r 2 of the distribution are given by 

Q2" 

When c~ = 1, the p.d.f, is exponential and when ~ > 1, it is zero at 

the origin and has a single maximum at . If we take the 
Q 
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Fig. 2a---c. Typical serial correlograms of the input impulse se- 
quences generated by the semi-Markov processes with three types 

of transit ion matrixes, a Type I, b Type II, c Type III 

C( 
limit of (4) as cq 0--> oo with the mean # = - -  fixed, the distribution 

0 
is asymptotically normal around /x with the fractional coefficient 

l 
of variation ~ - .  In this experiment, c~ and # were the variable 

parameters of determining the form of p.d.f, and its mean interval. 

2.2.2. Order-Dependent Statistical Pre-Synaptic impulse Se- 
quences. In the experiment (iii), the pre-synaptic impulse sequences 
were generated by the three-stage semi-Markov processes according 
to the following conditions; we identified State 1 as normal distribu- 
tion of short interval mean, State 2 as that of middle interval mean 
and State 3 as that of long interval mean. Transition matrixes of the 
processes [pq] were defined by the following three types: 

i0 ,0  0.20 O.lq 
TypeI P s = [ p u ] = ~ 0 . 4 5  0.t0 0.45J (5) 

\o.lo 0.20 0.70/ 
/0.45 0.10 0.45~ 

Type I I  P n = r p q ] = 1 0 . 4 5  0A0 0.45) (6) 
\0.70 0.20 O.lO/ 
/O.lO 0.20 o,o  

Type III Pin= [Plj] = / 0 . 4 5  0.10 04s/. (7) 
\0 .70 0.20 0.10/ 

The Type I is such that  a long interval is most likely to be followed 
by a long interval and a short one by a short one. This type contrib- 
utes a positive component  to each serial correlation coefficient. The 
Type II is a simulated neuron producing irregular burst  (Smith and 
Smith, 1965) and is characterized by negative serial correlation for 
the first lag followed by slightly positive and then 0 correlation 
coefficients. The Type III is a simulated spike train of which the 
intervals alternate between long and short intervals and gives a 
strong negative first serial correlation with subsequent alternation 
in the sign of the coefficients of higher order (Wilson, 1964; Hermann 
et al., 1967; Perkel et al., 1967). To estimate the order-dependence 
of inter-spike intervals, each sample was converted into the cor- 
responding renewal process by random shuffling which destroyed 
serial dependence. The serial correlation coefficients of these 
examples are illustrated in Fig. 2. 

2.3. Input-Output Relations and Definitions 

The fundamental approach for the design of pattern classifica- 
t ion systems which makes use of the Shannon's entropy method is 
applied to the input-output  relations established at synaptic level 
(Fig. 1). First problem, therefore, is concerned with the representation 
of the detailed temporal configuration of input interval patterns 
X =  {xs}. In the pre-synaptic spike train, the one-dimensional 
temporal patterns of interspike intervals X 1 are displayed in an 
interval histogram, the two-dimensional patterns XI,2 in a joint  
interval histogram, and the n-dimensional patterns X1.2 ...... are 
represented by pattern points in an n-dimensional space. Here, the 
conventional expression is introduced as follows: Let the random 
arrival clock times of a pre-synaptic spike train be t~, ta, ..., tK, ..., t N 
in order, where T K = tK - tK_ 1 and N is a large number. We denote 
the subset of the inter-spike intervals by Xt = {xl} = {TK}, the 
adjacent inter-spike intervals by XI,= = {xl,2} = {(TK, TK- 1)} (Fig. 1), 
and similarly the successive inter-spike intervals by X1,a.3 = {x t,2, 3} 
= {(TK, TK-1, TK-2)} . . . . .  Xs,2 ....... = { x t , z  ...... } = {(Tr, TK-I  . . . . .  
Ts~ ,+2, TK-,+~)}. The j- th element of input interval patterns X 
takes on a value x s with probability P(xj). The post-synaptic neuron 
decides to which pattern class (firing a spike or remaining silent) 
the temporal  patterns of pre-synaptic intervals belong. 
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Secondly, hence, assume that the post-synaptic neuron is to 
be designed for recognizing two different pattern classes Y = {Yi} 
=(Yt, Y2) (Yi; firing a spike and Y2; remaining silent) and the 
probability of occurrence of pattern class y~ is P(y~). Thirdly, the 
conditional probability ofy~ when xi is observed is P(Yilx~) and 
it specifies the properties of a nerve cell as a communications channel. 

2.4. Entropy Methods 

A fundamental approach for the design of pattern classification 
systems which makes use of the Shannon's entropy method is applied 
to the input-output relation established at synaptic level. 

The mutual information per symbol pair (yi, x j) is 

I(y~, " ' P(yHx i) , P(xfly3 (bits). (8) 
xd = 1~ P(YI~  = lOg2 P(xi) 

The average mutual information is 

P(xjlyl) 
I (Y,X)=<I(yl ,  xj)>= ~ ~ P ( Y , , x 2 ) l o g 2 - -  

,,~ ~;~x P(x2) 

P(xflyl) (bits). (9) = ~ P(Yi) ~ P(xflyi) l~ p(xi ) 
y~eY xj~X 

Which may be written as 

I(Y, X) = H(X) - H(X] Y) = H(Y) - H(YIX) (bits). (10) 

In Eq. (10), 

H(X) = - ~ P(xj) log 2 P(xj) (bits) 
xjeX 

- ( x I Y ) = -  Z P(Y~) ~ P(xjly~)log2P%ly3 (bits) 
y~Y xjeX 

H(Y) = - y'. P(y~) log2P(yi) (bits) 
21~Y 

H(YIX)=- 2 r(xj) y P(yJxj)log2e(yHx) (bits). 
xjeX yleY 

I(Y, X1.2) and /(Y, Xl,2,3) . . . .  , I(Y, XI, 2 ...... ) denote the average 
mutual information per symbol pair (yi, xl,2) and (yi, X l , 2 , 3 )  , . . . ,  

(y~,x~,2 ...... ) respectively. The average mutual information is a 
measure for the discrimination which indicates the difference 
between the probability distributions {P(y~, xj)} and {P(y~). P(x~)}. 
On the other hand, the measure of H(Y) shows the uncertainty of 
the pattern classes Y = {Yl} and so, from this measure, we can 
estimate the input-output average frequency transfer characteristic 
of the nerve ceils. 

1.0 
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EPSP size Ao 
Fig. 3. The average mutual information I(Y, X1,2) and average 
response entropy H(Y) as a function of EPSP size. The input impulse 
sequence was a pseudo-random gamma distribution of Order 3 
with mean interval of 250msec generated by digital-computer 

subroutine 
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Fig. 4. Estimation of the order of Markov process of the com- 
munication channel (synaptic cell). Each of the average mutual 
information I(Y, XI,,) for n = 2, 3 . . . .  8 was calculated by the same 

simulated system as that in Fig. 3 

3. Results 

3.1. Order-Independent Pre-Synaptic Impulse Sequence 

3.1.1: Fixed Pre-Synaptic Inputs. The inter-spike 
interval distribution of pre-synaptic spike train was 
fixed to gamma distribution of Order 3 with mean 
250 msec while the EPSP size A 0 is increased from 
0.3-3.0. By the digital-computer-simulation methods 
described in the previous chapter, the values of the 
conditional probability {P(y~[xt,2) } of y~ when xl,  2 
is observed, the value of the average mutual informa- 
tion I(Y, X1,2) and that of the average response 
entropy H(Y) were calculated as a function of the 

EPSP size (Fig. 3). Table 1 shows the typical three 
examples concerning the conditional probability. 
Each case of A - C  in Table 1 corresponds to the Point 
A - C  in Fig. 3 respectively. 

As will be seen from Fig. 3, the value of I(Y, X1,2) 
against EPSP size shows a bimodal curve with two 
maximum values; one in the Point A (small EPSP 
size), the other in the Point C (large EPSP size), and 
with a minimum value in the Point B which is a middle 
EPSP size between A and C. H(Y) gradually increases 
as the EPSP size, passes through a maximum, and 
finally falls off. In Case A, the pattern class Yl concen- 
trates in a partial region of the T K -  TK-1 plane, in 
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faction of EPSP size. a Exponential. b Gamma of Order 3. c Gamma of Order 5. d Gamma of Order 10. M[TK]: Mean interval of input 
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the area below the T K = T r_ ~ line (heavily outlined in 
Table 1A). This result agrees with that reported by 
Segundo et al. (1966). In Case B, the pattern classes ya 
and Yz spread over all area of the TK--Tt~_ 1 plane 
and thus each pattern class cannot be separated from 
the other. In Case C, they separate from each other; 
y~ concentrates in the area above the TK = T,~_ 1 line 
(full line) and the other class Y2 in the area below the 
TK= TK_ 1 line (broken line) in Table 1C. When 
comparing the structures of pattern classification in 
the Case A with those in C, the pattern classes yt and Y2 
in the Case C are inversely related to those in A. 

Next experiment was performed to examine how 
many pre-synaptic spikes on the average influence 
effectively on the occurrence of a post-synaptic spike. 
Each I(Y, X1,2), I(Y, X1,3) . . . .  , I(Y, 2(1,8) per symbol 
pair (Yi, xl,2), (Y~,Xt,3) . . . . .  (Yi, xL8) respectively was 
computed by the same simulation models (Fig. 4). 

As will be seen from Fig. 4, the average mutual 
information against each EPSP size is described by 
following relations: 

a) A < 0 . 7  [(~X1,z)=I(Y, XI,3)..., 
b) 0.7<A=<1.0 I(Y, X I , : ) >  I(Y, X1,3)> I ( Y , X  1 4) 

= I(Y,, XI ,s )  . . . .  , 
c) 1.0 < A =< 1.9 I(Y,, X~,2)> I(Y, X~,3) > I(Y, X 1 A) 

> I (g ,  X1,5) > t(Y, X1,6) = I(g,, X~,7) . . . .  , 
d) 1 . 9 < A < 2 . 4  I(Y, X t , J > I ( Y ,  X t , 3 )>I (Y ,  X I A  ) 

= I(Y, X 1 5) = 
e) 2.4<A__<2.7 I(Y,,X1,2)> [(Y, XI,3) 

= 1(I/;, X 1 ,4 )  = . - . .  
These results suggest that the average effective 

numbers of the recent history of pre-synaptic inter- 
vals which influence on the probability of the 
occurrence of a post-synaptic spike are one interval 
in Case a), three intervals in Case b), five intervals in 
Case c), three intervals in Case d), and two intervals 
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in Case e). Thus we can estimate the order of Markov 
processes of the communication channels (synaptic 
neurons). 

3.1.2. Mean Frequency and Distribution Form. When 
the statistical structure (mean frequency and distribu- 
tion form) of the pre-synaptic impulse sequences 
changed (see Section 2.2), the values of the entropies 
I(Y, X1,2) and H(Y) as a function of EPSP size were 
computed by the same way of previous experiments 
(Fig. 5). Four forms of the pre-synaptic impulse 
sequences were used in this simulation; exponential, 
gamma of Order 3, gamma of Order 5, and gamma of 
Order 10. Megn frequency varied from 2 impulses/sec 
to 20 impulses/sec. In calculating these entropies, 
two-dimensional pattern X1, 2 was normalized by the 
mean intervals as follows: (TK, irK-t)u shows the pair 
intervals of i-th and j-th interval lenghs which are 
counted by steps of z msec where "c is determined by 
3 #In (P is mean interval and n is the number of time 
bins). 

As will be seen in Fig. 5, since I(Y, X~,J against 
EPSP size shows a bimodal curve with two maximum 

values, one in the small EPSP size is indicated by 
Ira(Y, X1.2) at Ao~ and the other in the large EPSP 
size by I~t.(Y, X1, j at Amr In the mutual relation 
between the mean frequency of input impulse se- 
quences and the EPSP size A0~ , when the mean 
frequency increases, its EPSP size decreases. On the 
other hand, in the case of AoH, when the mean frequency 
increases, its EPSP size increases. Each value of H(Y) 
in the case of small EPSP size becomes smaller in the 
order of the magnitude of input mean frequency, 
while in thecase of large EPSP size it becomes larger 
in opposition. 

In the relation between the distribution forms of 
the input impulse intervals and these entropies as a 
function of EPSP size, the bimodal curves of I(Y, Xt,2) 
against EPSP size become sharper in the order: 
exponential, gamma of Order 3, gamma of Order 5, 
gamma of Order 10, and the values of I(u XI.J at 
each fixed EPSP size and input mean frequency satisfy 
the following relations according to input forms: 
exponential > gamma of Order 3 > gamma of 
Order 5 > gamma of Order 10. These order relations 
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coincide with those of the fractional coefficients of 
1 

variation ~-/~ in the properties of the input gamma 
[ ,  

distribution. The values of H(Y) also satisfy the same 
relations as those of I(Y,, X~,z). 

3.2. Order-Dependent PrerSynaptic Impulse Sequences 

Three types of semi-Markov process as the original 
pre-synaptic impulse sequences and these random 
shuffled sequences were generated by the computer- 
simulated subroutines. For  each sequence, the average 
mutual information I(Y, Xt,2) per symbol pair (Yi, x1,2) 
and the average response information H(Y) were 
computed by the computer-simulated systems (Fig. 6). 
For  the computation of variability of I(Y, Xl,2)~humed 
l0 shuffled sequences were used in this paper. Thus, 
the range of the values of I(Y, X1,2)shuffled was deter- 
mined by the values of 30. and -30-, where 0. is the 
standard deviation of I(Y, Xl,z)sh,fn~d. 

As will be seen in Fig. 6a, each I(g, X1,2) of Type I 
original impulse sequences against EPSP size is 
smaller in value than that of shuffled sequences except 
for the case of very small EPSP size. Considerable 
discrepancies between I(Y, Xt,z)original and I(Y, 
X1,2)sh,m~a are noted especially in the following 
ranges of EPSP size Ao: from 0.95-1.05 and from 
1.3-1.6. Those of H(Y)original and H(Y)slauffled also 
show a similar tendency. On the other hand, as will 
be seen in Fig. 6C, the values of I(Y, X1,2) and H(Y) 
of Type III original impulse sequences are larger in 
value than those of the shuffled sequences. This dif- 
ference between two values of each entropy comes out 
remarkably in the same range of EPSP size as that of 
Type I. From the facts described above, the values of 
these entropies in case of Type III present striking 
contrasts with those in case of Type I and the results 
obtained here is related to physiological facts that 
some neuromuscular junctions in crustaceans are 
highly sensitive to pattern, the contraction being 
greater many times for a train of alternately long and 
short intervals than for one of uniform intervals at 
the same mean rate (Wiesma and Adams, 1950). In 
case of Type II, the values of these entropies are rather 
similar to those of Type III but not so remarkable 
(Fig. 6b). 

In addition to these entropy methods for the 
investigation of the stochastic properties of input- 
output relations in the single nerve cells, use of the 
serial correlation coefficients was introduced. The 
serial correlation coefficients of the pre-synaptic and 
post-synaptic impulse sequences were calculated 

1.0' 

~ 0.5. 

a 

H (Y) ~ o  Type I 
l i ' ~  \ Original 
,'~ I(YX )\~; ---Shuff led 

0 0.5 1.0 1.5 2.0 2.5 
EPSP size Ao 

1.0. 
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:~ 0.5 
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- - -  Shuffled 
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/I1u ,,,, 

0:5 1.0 1.5 
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Fig. 6. The entropies I(Y, X1,2) and H(Y) for the input impulse 
sequences generated by the semi-Markov processes with three 
states with mean intervals as follows: State 1 (short), 0.35 sec; 
State 2 (medium), 0.40 sec; State 3 (long), 0.45 sec. All intervals are 
normally distributed with standard deviation of 0.03 sec (see text) 
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Fig. 7. The serial correlation coefficients of post-synaptic impulse 

sequences (see text) 

against each typical EPSP size which correspond to 
the maximum and minimum values of 1(I7, X1,2)origi,al 
of Type I (Fig. 7). 

As will be seen in Fig. 7, the interval lengths of the 
post-synaptic sequences exhibit positive serial cor- 
relation coefficients for each EPSP size which cor- 
respond to b and d in Fig. 7, while for that which 
correspond to a and c they are approximately zero. 
This result indicates that the only positive correlation 
properties of the input interval sequences can be 
transmitted to the output interval sequences through 
the synaptic channel in case of the particular EPSP 
sizes (Points b and d). 

4. Discussion 

The purpose of the present paper is to investigate 
some properties of temporal pattern discrimination 
performed by the single nerve cells. We applied the 
Shannon's entropy method to input-output relations 

in digital-computer-simulated networks in the previous 
paper (Tsukada and Sato, 1972), In this paper, this 
method was developed to clarify the problem of 
pattern classification in nervous system. The discussion 
about this problem will give the following five conclu- 
sions: 

The first conclusion is that the EPSP size is closely 
related to the temporal pattern of input impulse 
sequences, i.e., the results of the average mutual 
information 1(I7, X1,2) for EPSP size are shown as a 
bimodal curve (Fig. 3). This property of temporal 
pattern classification is characterized by three different 
types. In the first type, the pattern class Yl (firing a 
spike) concentrates on the particular )oint patterns 
of the input impulse sequence which is given by the 
solid line in Table 1A. This type of pattern classifica- 
tion is obtained from the neuron models for small 
EPSP size and agrees with that reported by Segundo 
et al. (1966). In the second type, each of pattern classes 
Yt and Y2 spreads over all joint patterns of input 
impulse sequences. This result is obtained from that 
for middle EPSP size and constitutes no sensitivity to 
temporal pattern of the input. In the last type, for 
large EPSP size, pattern classes Yl and Yz separate 
the joint pattern of input impulse sequences into two 
parts. The structure of this temporal pattern classifica- 
tion contrasts in a striking way with that of the first 
type. 

The second conclusion is that, for each EPSP size, 
the average effective number of the recent history of 
pre-synaptie intervals which influence on the 
probability of the occurrence of a post-synaptic spike 
was estimated by the Shannon's entropy method. 

The third conclusion is that the pre-synaptic 
statistical structure (mean frequency and distribution 
form) is an important factor in the temporal pattern 
discrimination of the single cell. In the relation 
between the mean frequency of input impulse se- 
quences and the EPSP sizes at the two maximum 
values of I(Y, Xa,2) , the value of the EPSP size A0z 
at one maximum is inversely proportional to that 
of input mean frequency, while that of the EPSP 
size Aozz at the other maximum is proportional to it 
(Fig. 5). Concerning a number of neurons independ- 
ently sending impulse to a common nerve cell, it can 
be treated as a process formed by superposing several 
renewal processes (Cox, 1962). If the P individual 
process is a Poisson process of rate Q, then the pooled 
process is a Poisson process of rate PO, so that the 
mean frequency of input impulse relates to the con- 
vergence number of input terminals. Concequently, 
these results suggest that the optimal EPSP sizes of 
highly sensitive contributions to the temporal pattern 
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discrimination closely relate to the optimal convergence 
number of excited input terminals. Next, in the relation 
between the distribution forms of the input inter-spike 
intervals and the entropies for EPSP size, the values 
of H(Y) and I(Y, X1,2) for each fixed EPSP size and 
mean frequency satisfy the following relation: ex- 
ponential > gamma of Order 3 > gamma of Order 5 
> gamma of Order 10. Thus, the statistical structures 
(mean frequency and distribution form) of input 
impulse sequence and the membrane states (EPSP 
size and refractory) influence the temporal pattern 
sensitivity and frequency transfer characteristic. 

The fourth conclusion is that the temporal pattern 
discrimination and the frequency transfer charac- 
teristic are affected remarkably by whether or not 
successive inter-spike intervals of the input impulse 
sequences are independent in the statistical sense. 
Each of H(Y) and I(Y, X~,2) of the Type I input impulse 
sequences of positive contribution to the serial 
correlation coefficients is smaller in value than that 
of the shuffled sequences, but that of the Type III of a 
strong negative first serial-correlation with subsequent 
alternation in sign of the coefficients of higher order 
is larger in value than that of the shuffled sequences. 
These descrepancies come out remarkably at certain 
EPSP size, but go out at some EPSP size, i.e., this 
simulation model can distinguish some temporal 
patterns of the input impulse sequences. From these 
results, we may obtain a new interpretation about the 
learning system of temporal pattern discrimination. 

The fifth conclusion is that the order-dependent 
statistical property of input impulse sequence was 
destroyed through the synaptic channel except the 
case of one-to-one transmission but that of the only 
Type I input sequence of positive contributions to 
the serial correlation coefficients can be transmitted 
to the output impulse sequences in case of the 
particular EPSP size where the value of I(Y, X1.2) 
becomes minimum. 

If one considers information processing of the 
synaptic cell from the point of view of the temporal 
pattern sensitivity, the entropy method applied here 
provides a very useful way to estimate and compare 
different levels of the nervous system. The properties 
of the temporal pattern discrimination obtained by 

this digital-computer-simulated system suggests many 
physiological possibilities. 
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