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Abstract. The proposed multivariate control charts for 
p-dimensional vectors are an extension of the conven- 
tional control charts for one variable. The controlling 
quantity is the Mahalanobis distance of vector x from the 
central value vector x . . :  D = (x - x..)T. I~-1. (x - x..),  
where C is the covariance matrix estimate. The quantity 
D has Hotelling's T 2 distribution. A PC program was set 
up for the automatic graphical construction of such 
charts. The program draws the sequential chart of the 
quantity D as well as the position of the vectors x in the 
p dimensional control ellipsoid in the axes of the principal 
components. In this way a control chart was developed 
for the calibration curve in the photometric determina- 
tion of Fe a + with sulfosalicylic acid. Vector x was formed 
by absorbance values for the calibration curve points 
(p = 5). The chart can assist in detection of even small 
disturbances of the calibration curve. 

1. Introduction 

The control chart method is a useful tool for internal 
quality control, widely used in analytical and clinical 
laboratories. The charts are based on the repetitive analy- 
sis of a sample (or samples) of known composition (daily, 
with each batch, etc.) and the graphical representation of 
the quality indices examined, such as the results of indi- 
vidual analyses, averages of groups of analyses, or the 
ranges within groups. Plots of such indices against time 
can be used to examine the stability of the system or to 
draw conclusions concerning the nature of the variability 
of the results. It is clear that factors affecting variability 
include, in addition to those intrinsic to the method, also 
the quality of the laboratory equipment, chemicals, per- 
sonnel skills, etc. 

Shewhart charts are probably the best-known control 
charts [1]. They are set up by drawing a central line and 
a pair of lines of control limits, parallel to the central line 

Correspondence to: O. M e s t e k  

above and below it; the limits are usually referred to as the 
inner and outer control limits. 

2. Theoretical 

2.1 Control charts for one variable 

There are no problems in constructing the chart if a single 
type of data concerning the amount of a single analyte is 
treated. In the first stage, when the method is stable, 
several analyses of a reference material are made every 
day or with each sample batch (an intralaboratory stan- 
dard is sufficient for such purpose). For  statistical reasons, 
the number of groups of analyses should not be lower 
than 20, and the analyses should not all be accomplished 
within a short period of time because data concerning the 
significance of variability among the groups are not 
known in advance [2]. Data so obtained are then used to 
determine the limit of "tolerable error" i.e., they will serve 
as a reference set for future control analyses of the same 
reference material. The analysis of the data variance in the 
starting series then enables several kinds of control charts 
to be constructed. The first is the control chart for indi- 
vidual measurements; here the central line will have 
a value which is equal to the mean value of all measure- 
ments and the inner and outer control limits will lie at 
distances of ___ 2"sT and + 3"sT, respectively, from the 
central line. (sT is the total standard deviation). 

q 

2 (x,j- x )  2 
S 2 = i = l j  = I  

q ' r - - 1  
(i) 

The group-average chart is the next control chart. The 
central line again represents the average value of all 
measurements and the control limits lie at distances of 
___ 2"Ss and +_ 3"Ss from it, where Ss is the standard 

between-group deviation. 

q 
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In both cases, q has the meaning of the number of groups 
and r is the number of repetitions within each group. 

The coefficients of + 2 and + 3 for the standard 
deviations were initially + 1.96 and _+ 3.09, for which on 
average 5% of all results lie beyond the inner control 
limits and 0.2% of all results lie beyond the outer control 
limits. For  practical reasons the coefficients are rounded 
to the integers _+ 2 and _+ 3, so that 4.55% and 0.27% 
results lie beyond the inner and outer control limits, 
respectively. 

The Shewhart control charts are usually interpreted as 
follows. An adjustment is made if: 

- one value lies beyond the outer control limits, 
- two values lie beyond the inner control limits on one 

side of the chart, 
- a sequence of 7 points lies on one side of the control 

chart (bias), 
- a sequence of 7 points exhibits an increasing or decreas- 

ing trend. 

2.2 Control charts for several variables 

The use of one dimensional statistical methods is ques- 
tionable if a vector x, expressing the amounts of several 
analytes rather than data concerning the amount  of 
a single analyte, emerges from the analysis. Sets of one- 
dimensional control charts are inapplicable, especially 
when the components of vector x are mutually correlat- 
able. There is a principle saying that what emerged to- 
gether should be analyzed together. The multivariate con- 
trol chart proposed is designed to treat such data. 

If p-dimensional vectors xi (i = 1 , . . . ,  n) have a p-di- 
mensional normal distribution with a mean value of ~t and 
a covariance matrix C, then the Mahalanobis distance of 
the vectors from the mean value, 

Di  = (x i _ ~)T.  C -  1. (x i _ [!,) (3) 

has the ~2 distribution with p degrees of freedom (see, e.g., 
[3], [5], ]-6] - also for the basic statistical methods to be 
used later). This fact is utilized in the construction of the 
control chart of vectors xi. For  100 ° ~% of vectors x~, Eq. 
3(a) 

(X i - -  ].[)T. C - 1  . (x  i _ ILL) ~ Z2 (p ) ,  (3a) 

is an inequality that describes a p-dimensional ellipsoid. 
For  cz = 0.9973, which corresponds to the control limit of 
+ 3 "s in the one-dimensional charts, 0.27% of the vec- 

tors x~ lie beyond the ellipsoid, whereas for ~ = 0.9545, 
corresponding to the limit of + 2" s, 4.55% of the vectors 
xi lie beyond the ellipsoid. 

In addition to the control chart for the quantity D~, 
the vectors x, transformed into the principal component 
coordinates, can also be plotted in a control ellipsoid. 
Inequality (3a) can be modified [4] to the form 

p 
Z y2/)~j < c (4) 

j--1 

where yj is the value of the j-th coordinate of the vector in 
the principal component coordinate system and ;~j is the 
j-th eigenvalue of the covariance matrix. This is the equa- 
tion of a p-dimensional ellipsoid whose axes coincide with 
those of the principal components; the ellipsoid contains 
all vectors whose Mahalanobis distance from the mean 
value does not exceed c. I fc  is put equal to  ~2.9545(P) , an 
inner control ellipsoid exists whereas if c is put equal to 
~2.9973(P) , an outer control ellipsoid is produced. 

In the common case, when the true values of !* and 
C are not known, the Mahalanobis distance must be 
calculated using estimates: 

Di  = (x i __ x . )T°  (%-1 °(X i _ X.)  (5) 

and the ~2 distribution must be replaced by Hotelling's 
T 2 distribution, which can be enumerated using F distri- 
bution: 

T2(p, n - p) = F(p, n - p ) ' p  "(n - 1)/(n - p) (6) 

This situation differs from those in the case of a univariate 
control chart, where, for n > 20, the normal distribution 
is very dose to the more exact Student's t distribution. 

The construction of the chart again begins by collect- 
ing xij data for an initial series of analyses of a reference 
material, distributed among q groups with r repetitions. 
As regards the time sequence of data collection, the same 
principle applies as with one dimensional control charts. 
The mean value vector x . .  is calculated: 

~ Xij 
X. .  --  i = l j = l  (7) 

q ' r  

The value of this vector is subtracted from all vectors xij. 
The vectors x i j - x . ,  are arranged in a matrix 
Xc~ntr whose dimension is p × q" r, and the estimate of the 
total covariance matrix is calculated: 

CT = (Xcentr. ° X~nt~)/(q" r - 1) (8) 

For  the vectors x obtained subsequently, the D values are 
calculated from Eq. (5) using matrix CT and plotted in the 
control chart (see later). This control chart is analogous to 
that for individual measurements and involves a variabil- 
ity both within the groups and between them. To con- 
struct the chart of group averages xi., those in the initial 
series are first calculated: 

i Xij 
j = l  

x i . - -  
r 

i = 1 . .  q (9) 

After centering, by subtracting the vector x.. ,  the group 
averages are arranged into a p x q matrix (Xcentr) and an 
estimate of the covariance matrix of the group averages is 
calculated: 

(~S = (Xcentr" X{¢ntr)/(q - 1) (10) 
For the resulting vectors of group averages of analyses of 
reference samples, the D values are calculated from Eq. (5) 
using matrix Cs and are drawn in the control chart. 
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In contrast to the one dimensional case, the resulting 
control chart is not symmetric and is made up of three 
parallel straight lines. The first line corresponds to D = 0, 
(i.e. a zero deviation of vector Xij o r  X i . from vector x..); 
this is analogous to the central line in the one dimensional 
chart. 

The inner control limit lies at a distance of 
2 To.9545 from the base line, which is analogous to the 

control limit of + 2"s. The outer control limit lies at 
a distance of 2 T0.9973 , analogous to the control limit of 
_+ 3" s. Thus only the magnitude of the deviation of the 

vector from the central value can be inferred from the 
chart. To enable the direction of the deviation to be also 
followed, it is necessary to draw the individual x~j or xi, 
points in the p dimensional control ellipsoid constructed 
according to Eq. (4). Unfortunately there is no way to 
draw this control ellipsoid in a simple manner; it is carried 
out by resorting to sections in the axes of the coordinate 
pair. There are p" (p - 1)/2 such sections. The radii of the 
control ellipsoid in the axes of the principal components 

2 are N/(To.9545"~i) for the inner control limit and 
2 ~(T0.9973" ~i) for the outer control limit. Although the 

relationship of the principal components to the initial 
variables x may not be interpreted easily, the charts illus- 
trate the trends. It is, of course, also possible to draw 
projections of the p dimensional control ellipsoid, which 
is generally rotated around the coordinates of the initial 
variables x, on to the planes formed by pairs of the initial 
variables x. 

3. Practical 

3.1 Computer program for constructing 
multivariate control charts 

To facilitate and automate the construction of multivari- 
ate control charts, a PC-program has been developed 
which is capable of handling up to six variables, measured 
in groups with up to six repetitions. After reading data of 
the initial series of measurements, the program tests the 
normality of distribution of the variables using the Kol- 
mogorov test and the normality of the total p dimensional 
distribution using the multidimensional skewness test. 
Normality of the distribution is a necessary assumption 
for the successful application of the method. Subsequently 
the covariance matrices are calculated and the ANOVA is 
performed. The D values of the vectors in the initial series 
can also be calculated according to Eq. (5) (the series is 
mapped onto itself), so that the quality of the series is 
tested. 

For the points tested, the program calculates the 
group average, the D value for that average and its signifi- 
cance. The position of the tested point within the multi- 
dimensional control ellipsoid, drawn in the principal com- 
ponent axes, is another important value. This position is 
expressed by the number labelling the section of the 
ellipsoid within which the point lies. These and other data 
are entered into a table, which can be displayed on the 
screen. The fraction of variability born by the principal 
component and its composition from the initial variables 

can be easily seen because the program also performs the 
PCA for the normalized initial variables. 

The program then graphically draws the positions of 
the tested vectors in the multidimensional control ellip- 
soid. Sections of the ellipsoid are drawn along axes of any 
arbitrary combination of the principal component pairs. 
However one drawback of this approach is that, during 
the projection into the plane, those points actually lying 
beyond the p-dimensional ellipsoid may also be projected 
into the section through the ellipsoid; in fact, they may be 
projected into all the possible sections. The projection of 
the control ellipsoid onto planes formed by arbitrary 
pairs of the initial variables is also possible. 

The one dimensional control charts of the individual 
principal components with the control limits of 
_%+ 2" ( x ~  and _+ 3~/0~i) and the one dimensional con- 

trol charts with the limits of _+ 2"si and + 3"si for the 
individual initial variables can also be drawn. The charts, 
the latter in particular, are only auxiliary because even if 
all the variables (components of vector x) lie within their 
respective control limits, this does not guarantee that 
vector x lies within the control limits of T 2, (and vice versa). 

All charts are set up for averages of groups of 
measurements; it is, however, possible to look into 
a group and test the positions of the points which make 
up the group. 

3.2 Testing the calibration curve stability 

Multivariate control charts can also be utilized in ways 
other than for the quality control of the entire analytical 
process. They can also be employed to check the stability 
of partial analytical operations (e.g. in calibration curve 
plotting). 

3.2.1 Method tested. The multivariate control chart was 
applied to the particular case of testing the stability of the 
calibration curve in the photometric determination of 
Fe 3+ with sulfosalicylic acid. The calibration curve was 
set up for the following procedure. Volumes of 0, 1, 2, 
3 and 4 ml of a stock solution of 50 gg/ml Fe 3+ (in- 
tralaboratory standard) were added to 50 ml volumetric 
flasks and diluted with water to 25 ml; 2.5 ml of a 20% 
solution of sulfosalicylic acid and 1.5 ml of a concentrated 
solution of ammonia were added; the whole was made up 
to the mark with distilled water and homogenized. The 
absorbances of the solutions at 420 nm were measured on 
a Spekol 11 (Carl Zeiss, Jena) using 1 cm cells. 

All points of the calibration curve were measured in 
duplicate except for the blank, which was prepared in 
triplicate; one point, chosen at random, served as the 
reference solution in the photometric measurement. 

3.2.2 Data measured. Repeated measurements under in- 
dependent conditions were performed to obtain 22 calib- 
ration curves (q = 22) with duplicate measurements 
(r = 2) of absorbances of points of 0, 50, 100, 150 and 
200 ~tg Fe 3 +; this gave five-dimensional vectors x(p = 5). 
The absorbances (multiplied by 103) are given in Table 1. 
The data measured can be characterized by the total 



T a b l e  1. Absorbances measured for the initial 
group of measurements No. Blank 50 gg Fe 3+ 100 gg Fe 3+ 150 gg Fe 3+ 200 gg Fe 3+ 

Absorbance x 103 

1 1 104 206 307 409 
3 104 206 308 412 

2 4 104 206 308 412 
2 103 204 307 413 

3 3 105 207 311 414 
2 104 207 309 411 

4 4 104 206 308 411 
2 104 207 312 413 

5 - 9 92 195 296 397 
- 8 95 197 299 400 

6 3 107 209 311 412 
3 105 207 308 410 

7 3 104 207 311 414 
2 105 208 308 410 

8 2 105 208 310 412 
2 104 208 309 412 

9 - 6 95 196 297 401 
- 7 94 197 300 401 

10 2 104 206 311 413 
4 105 207 310 412 

11 1 i03 205 309 412 
2 104 206 307 411 

12 - 7 94 198 298 404 
- 7 96 199 301 402 

13 5 105 210 313 415 
7 107 208 315 415 

14 3 106 208 311 411 
2 104 207 308 414 

15 - 8 94 196 299 400 
- 6 95 199 302 404 

16 4 104 207 311 415 
6 106 210 310 413 

17 2 105 206 308 410 
4 106 208 310 413 

18 2 104 206 309 414 
0 103 206 308 409 

19 0 101 203 305 409 
1 102 206 307 411 

20 1 104 206 311 410 
4 106 208 309 414 

21 - 9 92 194 298 400 
- 10 92 194 297 398 

22 - 8 95 195 298 401 
- 8 95 199 301 403 
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covariance matrix CT (Eq. (8)) and the covariance matrix 
of group averages Cs (Eq. (10)), which are as follows: 

(~T ~-" 

and 

24.27 23.23 23.21 23.96 25.39" 

23.23 23.31 23.08 23.64 24.47 

23.21 23.08 23.85 23.97 24.83 

23.96 23.64 23.97 26.30 26.17 

25.39 24.47 24.83 26.17 28.72 

24.22 23.40 23.44 24.40 24.85 

23.40 23.34 23.25 23.87 24.85 

23.44 23.25 23.54 24.06 25.03 

20.40 23.87 24.06 25.51 26.08 

25.52 24.85 25.03 26.08 27.63 

The coordinates of the vector of the mean values are 
[ - 0.2, 101.6, 204.0, 306.5, 409.0]. (All data are absorban- 
ces multiplied by a factor of 103.) 

Visual comparison of the two matrices reveals that the 
inter-group variability will be more significant than the 
residual (intra-group) variability. This is confirmed by 
a multidimensional variance analysis using the Bartlett 
approximation (which is included in the computer code): 
the quantity ® is calculated: 

® = [ ( q - r -  1) 'CT-- (q-- 1) ' r 'Cs]  
[ ( q ' r -  1)'CT[ (11) 

Its function b, 

b = [1 + (p + q ) / 2 -  q . r ] ' l n ( ® )  (12) 

has an ~2 distribution with p ' (q  - 1) degrees of freedom. 
The b value obtained was 196.10, corresponding to a con- 
fidence level higher than 0.999. The higher value of the 
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intergroup variability can be explained in terms of the 
instrumental stability of the Spekol instrument, which is 
a simple apparatus designed for routine applications. 

The components of the vectors x are highly mutually 
correlated, as demonstrated by the correlation matrix of 
group averages fls: 

Rs  

1 0.98 0.98 0.98 0.99 

0.98 1 0.99 0.98 0.98 

0.98 0.99 1 0.98 0.98 

0.98 0.98 0.98 1 0.98 

0.99 0.98 0.98 0.98 1 

Consistent with this is the fraction of total variability, 
explained by the first principal component, which is 
98.6%. The loadings (the correlation coefficients between 
the principal component and the initial component) of the 
first principal component are 0.99, 0.99, 0.99, 0.99, and 
0.99, respectively. The loadings of the remaining principal 
components are invariably lower than 0.11 in their 
absolute value. 

3.2.3 Control chart of the calibration curve. The 22 calib- 
ration curves obtained were used as the starting series for 
setting up a control chart. The tested vector x was directly 
formed by absorbances of the calibration curve points. 
The mapping of the series onto itself is apparent from 
Fig. 1 showing the sequential diagram of the Mahalanobis 
distance D. Figure 2 shows a section through the control 
ellipsoid in the axes of the first and second principal 
components. The distribution of the points into two 
groups according to the value of the first principal com- 
ponent is apparent; this distribution also corresponds to 
that into groups with respect to the displacement along 
the absorbance axis. The uniformity of loadings of the 
individual variables for the first principal component in- 
dicates that this component is a measure of the calibration 
curve displacement along the absorbance axis; any distur- 
bance of the correlation structure (linearity of the curve) is 

T^2 control chart of vectors of group averages 

!O,C,L. 

[.C,L. 

~ 2 

Fig. 1. Control diagram of the Mahalanobis distance for the starting 
series of measurements 

only mirrored by the following principal components. 
Thus the distribution of points in Fig. 3 (control ellipse in 
the axes of the 3rd and 4th principal components) is 
uniform. Figure 4 shows the sequential control chart for 

Control chart in axes ofi PC No. 1 and PC No, 2 
[PC 2 
i 

. . . . . . . . . . . .  PUf 

.Enlarqernent in PC No. 2 ~ 8.0 

Fig. 2. Section through the control ellipsoid in the axes of the 1st and 
2nd principal components for the starting series of measurements 

Control chart in axes ofj PC No. 3 and PC No. 4 
IPC '~ 

........ ~ _ - . p ~ . - ~  

I 
1 
1 

Enlarqer~enl in PC No. ~ ~ 0.5 

Fig, 3. Section through the control ellipsoid in the axes of the 3rd and 
4th principal components for the starting series of measurements 

Control chart of pr incipal component No. 1 

].C,L. 

[.C.L 

. . . . . . . .  - 1 -  . . . . . . . . . . . .  

i 

o • o 

O,C,L, 

Fig. 4. Control chart of the 1st principal component for the starting 
series of measurements 
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the first principal component.  The distribution of points 
again corresponds to the different displacement of the 
calibration curves along the absorbance axis. Point No. 
21 lies near the inner control limit; however the control 
limits in one dimensional charts (where a variable is 
considered on its own, independent of the others) 
are different from those in a control ellipsoid (where each 
variable is considered in relation to the remaining 
variables). The sensitivity of the control chart for 
indicating various disturbances of the calibration 
curve was tested on an additional 13 calibration curves 
into which the following errors had been deliberately 
introduced: 

1 - correct calibration curve, 
2 - measured at 410 nm instead of 420 nm, 
3 - measured at 430 nm instead of 420 nm, 
4 - a double amount  of sulfosalicylic acid added to one 

point of the calibration curve, 
5 - a double amount  of ammonia  added to one point of 

the calibration curve, 
6 - the blank reference solution actually contained 5 gg 

F e  3 + 

7 - one of two repetitions of the blank solution actually 
contained 5 tag Fe 3 +, 

8 - one of two repeated measurements of the point of 
50 gg Fe 3 ÷ contained an additional 5 lag Fe 3 +, 

9 - one of two repeated measurements of the point of 
100 lag Fe 3+ contained an additional 5 gg Fe 3+, 

10 - one of two repeated measurements of the point of 
150 gg Fe 3+ contained an additional 5 gg Fe 3+, 

1 l  - one of two repeated measurements of the point of 
200 ~tg Fe 3 + contained an additional 5 lag Fe 3 +, 

1 2 -  stock solution of Fe 3+ contained 51 gg/ml Fe 3÷ 
instead of 50 gg/ml Fe 3 +, 

13 - c o r r e c t  calibration curves measured in 60 min. 

The absorbances measured are given in Table 2. 
Figure 5 demonstrates that the calibration curve is 

relatively insensitive to the amounts of reagents added, to 
small wavelength shifts towards higher values and to 
a delay in measurement; appreciable effects are caused by 
wavelength shifts towards lower values, addition of small 
amounts of Fe 3 ÷ and changes in slope of the calibration 
curve. Points 2 and 8-12 lie beyond the outer control 
limit, points 6 and 7 lie beyond the inner control limit. 
Figure 6 shows that only the disturbance of point 6 (refer- 
ence solution containing additional Fe 3 + - displacement 

! T"2 control chart of vectors of group averages 1 
', 2 12 

Fig. 5. Control chart of the Mahalanobis  distance for the tested group 

Table 2. Absorbances measured for the group 
of tested measurements No. Blank 50 gg Fe3+ 100 gg Fe 3+ 150 gg Fe a+ 200 gg Fe 3+ 

Absorbance x 103 

1 1 103 204 306 407 
1 104 205 309 411 

2 4 98 195 292 389 
2 99 195 294 393 

3 1 102 204 308 411 
2 103 204 304 406 

4 - 10 91 195 295 397 
- 10 90 193 299 400 

5 - 10 91 193 295 397 
- 9 90 194 296 401 

6 - 20 84 184 285 391 
- 21 82 185 289 389 

7 10 106 208 310 414 
3 104 208 312 412 

8 3 117 207 312 414 
2 108 207 309 413 

9 2 105 217 309 411 
1 103 206 310 412 

10 - 9 92 196 297 398 
- 9 92 194 306 399 

11 - 11 93 196 299 411 
- 10 94 195 298 401 

12 2 109 212 318 424 
2 109 212 317 420 

13 - 1 102 205 305 410 
0 102 204 309 411 
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along the absorbance axis) affects the value of the first 
principal component; the other disturbances are only 
mirrored by subsequent principal components (Fig. 7). 
Figure 8 is an example of projection of the control 
ellipsoid onto the plane formed by the initial variables; in 
this case the "blank" and the "50 gg" variables. 

where q is the number of points in the calibration curve 
(q = 5), r is the number of measurements in each point 
( r=  2), n is the total number of measurements 
(n = q ' r  = 10) and A is the true absorbance value. The 
quantity F in the table is a measure of the linearity of the 
dependence: 

3.2.4 Linear regression. The absorbances in the initial 
series of measurements were fitted by regression straight 
lines, 

= ao + a l"m (13) 

where ~ is the observed absorbance estimate, m is the 
Fe 3 + content in the solution and ao and al are constants 
calculated by the least squares method. The values of the 
constants are given in Table 3. The quantity sy in the table 
is the square root of the residual variance of the depend- 
ence: 

q 

r ' ( A i .  - ~,,i) 2 
n - q  i=~ 

V = - -  (15) 
q - - 2  ~ i ( A i j _ A i . )  2 

i = t j = l  

The calculated F value is invariably lower than 
Fo.95 (3, 5) = 5.410; hence all of the dependences are really 
linear. The highest slope, 2.052, is found for dependence 
18, whereas the lowest slope, 2.036, is observed for de- 
pendence 5. Both curves were tested for a parallel course. 

Sy z = ~ ~ (Ai j -  a o -  a , ' m u ) 2 / ( n -  2) (14) 
i = l j = l  

Control chart in axes of! PC No. 1 and PC No. 2 
~PC 2 

i 

Enlarqernent in PC No. 2 + 8.0 

Fig. 6. Section through the control ellipsoid in the axes of the 1st and 
2nd principal components  for the tested group 

~ PC 

Enlarqernent in PC No. + 2 0,5 

Fig. 7. Section through the control ellipsoid in the axes of the 3rd and 
4th principal components  for the tested group 

Control chart in axes ofivariables blank and 50uc 

var blank 

Fig. 8. Projection of the control ellipsoid into a plane formed by initial 
blank variables and 50 gg Fe for the tested group 

Table 3. Linear regression for the initial group of measurements  

No. ao al Sy F 

1 1.90 2.041 0.9969 0.226 
2 1.70 2.046 1.5930 4.485 
3 2.20 2.051 1.0031 0.122 
4 2.30 2.048 1.4009 0.427 
5 - 8.20 2.036 1.4832 0.167 
6 3.60 2.039 1.2475 0.310 
7 2.40 2.048 1.3416 0.048 
8 2.20 2.050 0.5701 2.667 
9 - 7.00 2.038 0.9618 0.389 

10 2.40 2.050 0.9618 1.417 
11 1.10 2.049 0.8624 0.813 
12 - 7.10 2.049 1.2016 0.472 
13 4.80 2.052 1.6125 2.667 
14 2.50 2.049 1.2425 0.049 
15 - 7.30 2.048 1.6317 0.154 
16 3.90 2.047 1.4979 1.053 
17 3.10 2.041 1.2016 0.083 
18 0.90 2.052 1.4009 0.022 
19 - 0.20 2.047 1.3252 0.798 
20 2.50 2.048 1.5370 0.036 
21 - 9.90 2.045 0.8023 1.194 
22 - 7.80 2.049 1.3624 0.040 



The criterion tested, 

lal-all  t (16) 
S 

2 2t 2 
sz=Sy  +Sy "__ (17) 

2 
(X i __ ~ . ) 2  

i = i  

has the Student distribution with 2 - n -  4 degrees of 
freedom. The calculated value of 1.75 is lower than 
to.975(16)=2.120 (both-sided test); hence, the two 
straight lines are parallel, and it is reasonable to assume 
that the remaining straight lines of the initial series will 
also be parallel. 

The regression dependences were also calculated for 
the group of calibration curves with disturbances deliber- 
ately introduced. The results are given in Table 4. All the 
dependences are linear. Since straight line 1 corresponds 
to the correct calibration, it served as the reference with 
which all the remaining dependences were compared. The 
comparison was based on the parallel course test (Eqs. 
(16) and (17)) and on the F test to compare the variances 

2 The results of the test and the comparison with the test Sy.  

performed by means of the control chart are given in 
Table 5, where detection of a disturbance is labelled with 

Table 4. Linear regression for the group of tested measurements 

N o .  a o a 1 Sy F 

1 1.10 2.040 1.3647 0.173 
2 2.00 1.941 1.5350 0.847 
3 1.00 2.035 1.7048 0.136 
4 -- 10.70 2.047 1.5632 0.506 
5 - 10.60 2.044 1.4491 1.133 
6 - 20.20 2.050 1.3509 0.205 
7 4.90 2.038 2.3425 0.732 
8 5.20 2.040 3.9937 2.957 
9 2.50 2.051 3.5768 0.999 

10 - 9.30 2.049 3.1295 1.370 
11 - 11.00 2.076 2.9496 0.564 
12 2.80 2.097 1.3252 1.088 
13 - 0.70 2.054 1.1347 0.140 

Table 5. Comparison of the control charts and regression analysis. The 
symbol ! denotes detection of a disturbance 

No t F Cont. charts 

2 10.78 ! 1.26 
3 0.51 1.56 
4 0.75 1.31 
5 0.45 1.13 
6 1.16 0.98 
7 0.19 2.95 
8 0.00 8.56 ! 
9 0.64 6.83 ! 

10 0.59 5.26 ! 
11 2.48 ! 4.67 ! 
12 6.70 ! 0.96 
13 1.76 0.69 
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the symbol !. The critical values are t0.975(16) = 2.120 and 
Fo.95(8,8 ) = 3.438. The table demonstrates that the dis- 
turbance for the calibration dependence 6 (incorrect refer- 
ence solution - displacement along the absorbance axis) is 
only detected by the control chart; however, in view of the 
high variance of displacements along the absorbance axis 
for the individual dependences, this may be fortuitous: If 
the displacement due to the incorrect reference solution 
did not have the same direction as that caused by the 
instrument, the control chart would also fail to detect the 
disturbance. Thus the control chart revealed all distur- 
bances disclosed by the regression analysis and, in addi- 
tion, signalled a disturbance for point 7 which regression 
analysis failed to detect. Although not appreciably differ- 
ent from that of the correct straight line, the variance 
2 for straight line 7 at the 0.95 confidence level is higher Sy 

(F = 2.95). Hence, in this case of testing the stability of the 
calibration curve, the control chart is more sensitive to 
disturbances than regression analysis. 

4 Conclusions 

The multivariate control charts proposed are based on, 
and are an extension of, the conventional control charts 
for one variable. They can be applied to the quality 
control of analytical procedures whose output consists of 
information on the amounts of several analytes and dur- 
ing the control of partial operations of the individual 
analytical methods. The control chart for the calibration 
curve of the photometric determination of Fe 3 +, demon- 
strated above, is an example of such an application. The 
procedure is very sensitive to disturbances in the correla- 
tion structure (linearity) of the curves but is less sensitive 
to displacements of the curves along the absorbance axis. 
This, however, is due to the high scatter in the displace- 
ments (which is a consequence of insufficient stabilization 
of the measuring instrument) rather than to the control 
chart itself. 
The PC-program for the construction of the charts is 
available from the authors. 
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