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Abstract. We consider a new method for producing intensity stabilization of cw lasers. This method in- 
corporates negative feedback from a nonlinear saturable absorber to provide wideband noise-reduction 
and may produce an output beam for which shot noise is below the quantum limit. This new method 
can be used with a large variety of cw lasers and is particularly applicable to frequency-stabilized 
lasers which are locked to absorption lines. 
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New methods for the reduction of laser noise are of general 
experimental and theoretical interest and have an obvious 
value in fields of laser application ranging from metrology 
and spectroscopy to delicate forms of laser surgery. Recent 
theoretical attention has been given to the production of 
squeezed photon states [1] and a decrease in noise level 
below the quantum limit has been reported [2]. We consider 
here a new method which should not only provide a sub- 
stantial reduction in common sources of amplitude noise, 
but also may reduce shot noise below the level expected 
from the quantum effect. This type of device, which we will 
refer to as a laser stabilitron, involves a three-mirror sys- 
tem in which two coupled cavities are produced. One cav- 
ity contains an amplifier, and the other contains a saturable 
absorber. Due to nonlinear effects, there are two different 
regions of operation in the system: One of these is char- 
acterized by hysteresis and instability. The other is stable 
and should permit strong suppression of fluctuations in the 
laser intensity. Although we are primarily concerned here 
with laser stabilitrons working in the optical domain, the 
same type of stabilization method involving coupling be- 
tween two cavities could also be used with maser Oscillators 
and saturable absorbers operating at microwave frequencies. 

It is well-known that saturated absorption inside a sin- 
gle laser cavity produces a bistable regime and hysteresis 
phenomena [3]. Positive feedback between the optical field 
and absorption is evident. Increasing the field leads to a re- 
duction in saturable absorption. Conversely, decreasing the 
effective losses in the cavity increases the intensity inside the 
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laser resonator. Hence, hysteresis phenomena appear when 
the change in saturated absorption exceeds the change in 
saturated gain. Theoretical analysis has shown that a large 
increase in quantum fluctuations can occur in a laser with 
intra-cavity saturable absorption [4]. It has also been noted 
that propagation of a strong beam through a nonlinear ab- 
sorbing medium can exhibit regions of instability in which 
fluctuations are amplified [5]. Further, when the laser beam is 
transmitted through a Fabry-Perot interferometer filled with 
absorber, bistability and differential amplification of noise 
fluctuations can occur [6]. However, when the incident and 
output beam from such an absorber-filled cavity are com- 
bined interferometrically and the system is operated near 
the turning points in the bistable region, photon noise can 
be reduced below the shot noise at nonzero frequency [7]. 
This photon noise reduction is associatd with a temporal re- 
distribution of the photons inside the cavity. Unfortunately, 
the optimum squeezing condition in the passive case occurs 
right at the turning points where the system is on the edge 
of instability. As we will show, one can decrease these am- 
plitude fluctuations by using negative feedback between the 
field and the absorber inside the cavity. Indeed, the opti- 
mum stabilization point in this new system appears to be 
equivalent to the optimum squeezing condition for photon 
noise reduction in the passive, absorber-filled Fabry-Perot 
discussed in [7]. 

A schematic diagram of the method is shown in Fig. 1. 
The amplifying and absorbing media are separated by a high- 
reflecting mirror (M2 in Fig. la) which divides the system 
into two coupled resonators. The first cavity contains the am- 
plifying medium and the second one contains the saturable 
absorber. If the resonant frequencies of the two cavities are 
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Fig. 1. a The coupled cavity method used to produce noise reduction. 
b Effective laser mirror composed of cavity 2. Tef = ltrans/linc and 
Ref = [ref/[inc are used to determine the laser oscillation conditions 

different, the coupling between the cavities is negligible. In 
that limit, oscillation in this system may be considerd as 
that in a conventional laser with a cavity formed by mir- 
rors MI and M2. However, when the frequencies of the two 
resonators coincide, interaction between the two cavities oc- 
curs. Then, saturation of the absorber by a strong field leads 
to an increase in output intensity through mirror M3. The 
strong negative feedback mechanism between the field in- 
tensity in cavity 1 and the absorption in cavity 2 works as 
follows. Increasing the gain and intensity in cavity 1 leads 
to increased field intensity in cavity 2 and, correspondingly, 
to a decrease in absorption. That, in turn, leads to increased 
transmission from cavity 1 to 2 - hence, an increase in the 
loss of the laser and a decrease of the laser intensity in cav- 
ity 1. In this system, the intensity I1 in cavity 1 (hence, 
the power output P1 to the left in the Fig. la) is stabilized, 
whereas the intensity i2 in cavity 2 (hence, the power output 
P2 to the right in Fig. la) is strongly variable. 

For simplicity, consider the case where all the mirrors 
have the same transmission coefficient T. Here, the total 
loss involves the transmission of mirror 1 and of mirror 3, 
the internal dissipative losses, and the absorption in cavity 2. 
Due to the difference between the field intensities in cavities 
! and 2, the laser power P1 emitted to the left from cavity 1 
and P2 emitted to the right Cavity 2 in Fig. la are given by 

P I = I 1 T  and P 2 = I 2 T ,  (1) 

where I1 and I2 are the field intensities in the first and second 
cavity. 

Two different operating regimes for such a laser are possi- 
ble. In the first regime, coupling between the two resonators 
is considerable. It occurs when the resonator losses are com- 
parable to the middle mirror transmittance. In this case, the 
second resonator may be considered as a reactive load. The 
fields in the two resonators are comparable and transmission 
from one resonator to the other is the determining factor 
for three-mirror resonator laser operation. Some aspects of 
this regime have been considered elsewhere in the literature 
[8, 9]. 

The second regime is the most important one for the 
present purposes. In this case the transmittance of the inter- 
mediate mirror is less than the loss in the second cavity. If 
the length of the second resonator is less than that of the 
first, the field in the second resonator will follow the field 

in the first. These conditions result in a stable oscillation 
regime in which the influence of the second resonator may 
be considered as a small additional load on the first cavity. 

To determine the laser oscillation conditions, it is conve- 
nient to consider the second cavity as a mirror (see Fig. lb) 
with an effective transmission coefficient Tef and an effective 
reflection coefficient /~ef together with an effective phase 
shift which determines the oscillation frequency. This ap- 
proach has been used previously by several authors to ana- 
lyze three-mirror cavities for the purpose of mode selection 
[10]. To obtain the desired noise-reduction effect from the 
saturated absorber in cavity 2, it is essential that the fre- 
quency of the second cavity be tuned to provide a maxi- 
mum intensity in the second cavity. This corresponds to a 
minimum intensity in the first cavity and, of course, does 
not produce the maximum laser intensity. Due to coupling 
between the two cavities, the frequency is shifted from the 
resonant frequency of the isolated second cavity. However, 
in the limit of small coupling considered here, this shift is 
negligible. At the resonance condition for the second cavity, 
it may be seen by summing the infinite series for the trans- 
mitted and reflected field amplitudes by the second (Fabry- 
Perot) cavity at resonance that 

re f  = T 2 / ( T  + f + As) 2 

and 

Ref = ( f  ÷ As)2 / (T  + f + As) 2 , (2) 

where the total fractional energy loss per pass in cavity 2 
during oscillation is given by ( T + f + A s ) ,  As is the saturated 
absorption, f is the dissipative loss from sources such as 
scattering and it has been assumed that f ,  As << 1. Note 
that Tef + Ref • 1 because of the loss in cavity 2. 

Clearly, from (1) and (2), the power out of the absorption 
end of the laser is P2 = h T  = I1ref (see Fig. lb). Hence, 

I2 = I l T e f / T ,  (3) 

and from (2) 

I1 = [A / (T /T~ /2  - T - f )  - 1]T/g2Tef . (4) 

In practice, the system requires hard excitation in the sense 
that the gain must be turned up high enough to exceed the 
threshold, 

2G > 1 - R e f ÷ T ÷ 2 f  

= 1 - ( f + A ) 2 / ( T + f + A )  2 + T + 2 f ,  (5) 

involving the unsaturated gain and loss for oscillation to oc- 
cur. However, after oscillation starts, G and A are reduced 
to their saturated values and the condition for cw laser os- 
cillation becomes 

2G s = Lef = 1 -- ( f  + As)2 / (T  ÷ f + As) 2 ÷ T ÷ 2f,  (6) 

where Lef is the effective loss in the laser (cavity 1) after 
oscillation has reached steady-state, Gs is the saturated gain 
per pass, and the fractional dissipative loss per pass f is 
assumed to be the same in each cavity. Formula (5) is valid 
for small gain and states that the round trip saturated gain 
2Gs equals the effective loss Lef at steady state. The latter, of 
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course, includes the saturated absorption A~ in cavity 2. We 
shall assume homogeneous saturation in both media, hence 

Gs = G/(1 + giI1) and A~ = A/(1 + g212) (7) 

are used in (6), where I1 and /2  are related by (3) and I1 is 
given in terms of Tef by (4). 

Equation (6) and relations (1), (3), (4), and (7) permit 
determining the output laser intensities P1 and P2. However, 
the equations are very nonlinear and the analytic solution 
of (6) is complicated [11]. Eliminating I1 in (6) permits 
expressing G directly in terms of the intensity I2: 

G = (1/2) [1 + 9112(A/(1 + 92-/2) q- T -q- f)2/T] 

x [1 - ( f  + A/(1 + gzI2))2/(A/(1 + 9212) 

+ T +  f)2 + T + 2 f ] .  (8) 

Graphic solutions to (6) will help to explain the behavior 
and the main properties of  the proposed three mirror systm. 
As noted, steady-state laser oscillation corresponds to the 
requirement that 2Gs(-/1) = Lef(I1). Although the saturated 
gain has a simple, monotonic dependence on I1, the effec- 
tive loss Lef has a much more complex behavior. As shown 
in Fig. 2, there are two distinctly different regions: For small 
values of A, the effective loss is also monotonic in its de- 
pendence on intensity I i .  Solutions to (6) in that region at 
the points a, b, and c in Fig. 2 would be stable, but the sys- 
tem would have noise properties similar to a conventional 
laser. For large values of  the absorption parameter, Lef has 
a triple-valued dependence on the intensity. As indicated by 
the dashed vertical lines at the fight in Fig. 2, strong hystere- 
sis effects would occur if the intensity I1 were tuned back 
and forth through the triple-valued region; however, the ver- 
tical jump upwards to the fight of  point e would not occur 
without a substantial increase in the unsaturated gain. The 
points e and f are near the edges of  a region of instability 
(the turning points in Fig. 2). Because OLef/OI1 < 0, oscil- 
lation in between the points e and f would be completely 
unstable. 

These two different regions are separated by a critical 
value for the absorption, Ac~it = 8(T + f ) ,  for which there 
is a point of  inflection labelled d in Fig. 2, where the two 
solutions for OI1/OLef = 0 coincide. Hence, by adjusting 
the parameters so that the saturated gain curve (2Gs)) in- 
tersects the effective loss at point d on Acrit, very stable 
low-noise oscillation should be obtained. The actual intensi- 
ties in the two cavities for this condition can be determined 
from (8) and are shown as a function of G in Fig. 3 for 
the same conditions assumed in Fig. 2. Note that the inten- 
sity in the left cavity (I1) goes through a plateau at point d 
on the curve for Acrit (= 0.18 for the parameters assumed) 
where OI2/OG = 0, whereas that in the right cavity ( h )  
increases strongly with G. The desired condition for oscil- 
lation corresponds to the saturated gain curve (dashed curve 
for G = 0.11 in Fig. 2) intersecting the effective loss at point 
d on the critical absorption curve and leads to oscillation at 
point d in the middle of  the plateau on the curve of I1 vs 
G for A = 0.18 in Fig. 3. Although the intensity (I2) in 
the absorption cavity will depend strongly on variations in 
the gain (G), the intensity (/2) in the gain cavity will be 
nearly independent of fluctuations in the gain at operating 
point d. Thus, the output (P1) to the left in the apparatus 
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Fig. 2. Effective loss Lef (solid curves) and 2Gs dashed curves) as 
a function of intensity 31 in the laser cavity for different values of 
A. Graphical solutions for oscillation condition by intersections of the 
solid and dashed curves. The optimum low-noise condition is obtained 
by adjusting the gain so that 2Gs (dashed curve) intersects L~f at the 
point d on Ao~it. As indicated by the dashed vertical lines on the curve 
at the right, strong hysteresis effects would occur for A > Acrit as 
3"1 is tuned through the triple-valued region. In regions such as points 
between e and f,  oscillation would be unstable 
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Fig. 3. Intensities I1,12 as a function of unsaturated gain for different 
values of A. The optimum low noise condition (point d) corresponds 
to point d in Fig. 2. The dashed region on the curves for A -- 0.24 
correspond to the region of instability between points e and f in Fig. 2 

shown in Fig. la  should be unusually noise free. The dashed 
portion of the curves for A = 0.24 in Fig. 3 correspond to 
the unstable region of oscillation in between points e and f 
in Fig. 2. The particular conditions assumed in Figs. 2 and 3 
are intended primarily for illustration, but are representative 
of realistic values of  the loss and saturatioon parameters. 
Based on theoretical studies of  the passive absorber-filled 
Fabry-Perot [7], quantum noise reduction may increase with 
increasing values of  the loss in the system. (Increasing f 
increases the ratio o f / 1  to Is  in Fig. 3.) 

In principle, this method could be used to stabilize the 
power of most known lasers. The method, of  course, re- 
quires that the laser frequency should closely correspond to 
the resonant frequency of cavity 2 and that requirement pro- 
vides the main experimental difficulty. At one extreme, the 
laser could simply be phase-locked to the absorber cavity. 
There are, of  course, many examples of amplifier-absorber 
pairs where the frequencies are closely matched: e.g., H e -  
Ne/CH4 at 3.39 gm, He-N2-CO2/SF6 at 10.6 ~tm, He-Ne/I2 
at 0.633 gin, and Ar+/I2 at 0.5145 gm. In these cases, fre- 
quency stabilization can also be achieved by locking the 
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laser cavi ty  to the center  of  the saturable absorber  line us- 
ing we l l -known  methods  [12]. It should also be possible  to 
use solid state or  diode lasers matched  to crystals wi th  color  
centers as saturable absorbers.  
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