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Abstract. We present an analysis of the Raman interaction between a Rydberg atom and 
ultrashort light pulses. An application of the synchronization of quantum transitions to a simple 
atomic system (the hydrogen atom) is demonstrated. This is a direct way of measuring times and 
frequencies of microwave transitions between the high-lying atomic states using ultrashort light 
pulses. The results and analysis represent a new method for measuring the Rydberg constant. 

PACS: 32.80.Rm, 06.20.Jr 

The synchronization of quantum transitions by ultra- 
short pulses is a new method for directly measuring the 
periods or frequencies of natural oscillations in atoms 
and molecules [1, 2]. The main features of the method 
are as follows: (i) The synchronization of quantum tran- 
sitions is based on the interaction of atomic systems with 
perturbation pulses of a duration shorter than a period 
of the atomic oscillations under investigation. (ii) The 
phenomenon is not critically dependent on the nature of 
the pulse's perturbation. The latter may be an electric or 
magnetic field, a light, a collision with another particle, 
etc. (iii) If  they interact with a pair of perturbation pulses 
delayed in time, atoms or molecules make quantum tran- 
sitions which are synchronous with natural oscillations. 
The first of the pulses excites atomic oscillations and the 
second constrains the atoms to make synchronous transi- 
tions. (iv) In the time between the short pulses the atomic 
system is not perturbed by any measurement fields and 
thus measurement does not influence the atomic frequen- 
cies. (v) The interaction between an atom and a pair of 
time-separated light pulses depends on the time delay T 
but not on the difference of their optical phases. 

Here we demonstrate an application of the method to 
the simplest atomic system the hydrogen atom. The main 
spectroscopic aspect of investigations of the hydrogen 
atom is the measurement of atomic transition frequencies 
for determination of the fundamental Rydberg constant 
and a test of quantum electrodynamics. 

We present a way of measuring times and frequencies 
of microwave transitions between the high-lying atomic 
states by using ultrashort light pulses. We start with a 
brief analysis of the physical processes taking place when 
the Rydberg atom interacts with a short pulse. 

1. Interaction Between the Rydberg Atom 
and an Ultrashort Light Pulse 

Let a hydrogen atom be excited into the Rydberg state 
In0) (Fig. 1), with no being the principal quantum num- 
ber (no >> 1). The frequency intervals between In0) and 
nearby states In0 + 1) are approximately equal to the 
frequency COo = n0 -3 = 2~/To, where To is the orbital 
period, and atomic units (e = h = m = 1) are used. We 
assume that the angular momentum l0 of an electron 
in the atomic state In0) is much less than the principal 
quantum number no. This corresponds to small changes 
of momentum Al << no in a laser excitation of the Ryd- 
berg state In0) from the atomic ground state. 

We consider an interaction between the Rydberg atom 
and the light pulse 

E(t) = Eg(t) exp(--icot) + c.c., 

where E, co and g(t) are the amplitude, the carrier fre- 
quency and the pulse shape of the optical field, respec- 
tively. The duration of the light pulse 

oo 

= / dtlg(t)[ 2 27 

- - o o  

is assumed to be shorter than the inverse orbital fre- 
quency but longer than the inverse ionization energy 
(1 > co0r >> no1). 

This interaction between the Rydberg atom and the 
light pulse may be followed by (i) the one-photon ioniza- 
tion; (ii) the transition into a low-lying bound state with 
the emission of a photon; (iii) the two-photon Raman 
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Fig. 1. Interaction between the Rydberg atom and an ultrashort 
light pulse 

transitions In0) ~ In) via the continuum; (iv) the two- 
photon Raman transitions [no) ~ In} via bound states. 

The probability of the one-photon ionization for the 
duration z may be found using Fermi's "golden" rule 

Wi = 2zcldnoeE /hlzv , (1) 

where dik is a projection of the dipole moment onto the 
field direction for the transition [i) ~ [k), ~ = co - 1/(2n 2) 
is the energy (in a.u.) of a free electron. 

The probability of the stimulated one-photon tran- 
sition In0) ~ In) into a low-lying bound state is given 
by 

j dtg(t) exp(iArct) 2, W e  = IdnonE /hl z (2) 

where A r c =  rc,0n - co .  This probability is negligible for 
the detuning [Arcl >> z -1. 

As the spectrum of a light pulse is broader than the 
interlevel distance COo, a two-photon Raman excitation of 
the superposition of Rydberg states is possible. After the 
light pulse, the state of the atom may be written in the 
form 

I~) = E anln), 
n 

where a, is the expansion coefficient and I n -  n01 << no. 
The total probability of detecting the atom in any of 
the bound states In), which differ from [no), is equal to 
the sum of the individual probabilities of  the transitions 
In0) ~ In) 

W = ~ lanl 2. 
n@n0 

We find the probability W using perturbation theory. 
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If the optical frequency co is resonant with the tran- 
sition In0) ~ In/ into a low-lying state (i.e. IArcl < z-l) ,  
then the probability of the Raman excitation of the Ryd- 
berg manifold is given by 

W = IE/hl 4 Z Idnndnn°a(rcn~°' Arc)12' (3) 
n@n0 

where 
oo t 

y) = f dtg(t) expti(x + y)t] f dt'g* (t') exp(-iyt ' ) .  G(x, 
--0(3 --0(3 

The probability of  the two-photon process may exceed 
the probability of  stimulated one-photon emission if the 
number of Rydberg levels involved in the Raman process 
is large ( I n -  nolmax >> 1, i.e. rcoz << 1). To estimate the 
necessary light intensity, we use radial integrals R~' in the 
form (a.u.) [3] 

R~' = ~(nn')11/6(n 2 - n'2) -5/3 , (4) 

where ¢ = 1.304, n -  n' >> 1. Omitting the angular parts 
of the dipole matrix elements, we find from (2-4) that the 
inequality W/We > 1 is valid for the laser pulse energy 
(a.u.) 
Iz >_ (27C~)-2Cfi -11/3 , 

where c = 137, I is the intensity, and we have used two 
approximations (for 1 << (co0z) -1 << no):dnndnno "~ ]dnn0[ 2 
and 

E [G(rcnno, Arc)l 2 
n 

To dtlg(t)l 2 dt' g(t')exp(iArct') ~ T0z 3. 
--oD --o0 

For z ~ 10 4 (z _< COo "1 = n 3) and a _< 10, the intensity 
should be I > 10 -7. 

In the nonresonant case ([Arcl >> z-l), we cannot 
neglect the contribution of  continuum states Is} to the 
Raman process In0) --* [~) when the detuning Arc is too 
large. The probability W is 

W = Wa + Wv,  

where Wa and Wv are the probabilities of A- and V- 
like Raman processes, respectively (the corresponding 
expansion coefficients a~A and a~v of the state [~)  are 
mutually orthogonal in the complex plane). We find 

W A  = 7z2[E/h[ 4 E [dn~d~n°G(rc"n°)12' (5) 
n ~/=/'10 

where 
0(3 

G ( x )  = / dtlg(t) l 2 exp(ixt) 

--OO 
is the spectral density of  the field intensity, and 

Wv = [E[ 4 Z [D"°G(rcnn°)12' (6) 
nv~no 
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where Dnno = ~(d,nkdnk,oh-2Aco~ 1) is the two-photon ma- 
nk 

trix element, and Acok = co~onk -- co" 
The ratio of  the contributions of  A- and V-like Raman 

processes is (a.u.) 

w A / w  ~ 2,o-3 v = ACO 

where z -1 < Acoe~ _< co _< 1/2, Acoefr = cono~o~ - co ,  with 
the effective number neer corresponding to the estima- 
tion of  a radial part of  a two-photon matrix element 
by the formula Dnn' ~" Dnn = (e/h)2ll~°fr[ 2 × (Acoeff) -1, 
and we have used the substitutions (a.u.) /~" = n3/21~, 
(the renormalization of wavefunctions) and n ~ i/p (p is 
the radial momentum of a free electron) to calculate the 
probability (5). 

The one-photon ionization may be suppressed by the 
two-photon Raman process at a light intensity (a.u.) 

I ~ z c - l ~ - 2 c ( 2 c o ) l / 3 A c o 2 f f ,  (7) 

where we have used (1, 4, 6) and the approximation [for 
I << (co0~) -1 << no] 

oo 

[G(conno)l 2 ~ To / d t lg ( t ) [  4 ~ Toz. Z 
d 

n --0:3 

In the ease (cooz) -1 ~- 1 the right-hand part of (7) should 
be multiplied by To/r. 

2. Interaction Between the Rydberg Atom 
and a Pair of Light Pulses 

The time evolution of  the superposition of  Rydberg states 
generated by one light pulse manifests quantum beats 
of states with different quantum numbers n [4, 5]. The 
delayed light pulse which follows after a time T generates 
a new coherent superposition of Rydberg states, and this 
gives the interference with the high-lying superposition 
of  states excited by the first light pulse. 

The probability of detecting an atom in the Rydberg 
manifold after the second light pulse is equal to the 
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sum of the individual probabilities of Raman transitions 
[n0) ~ In). For a pair of  time-separated light pulses, the 
pulse shape g(t) is replaced by g(t) + g ( t -  T). Taking into 
account radiative decay we find [compare with (5, 6)] 

W(T) = ~ W.(T), (8) 
n # n o  

where the individual probability is given by 

Wn(T) = IEI 4 exp(-Yn0tex) {(IO,,012 + 7r2h-n[dn~d~nol 2) 

x Ia(con,o)l 2 exp[--Tn(t - T)] 

x [exp(-7,0 T) + exp( -y ,T)  

+ 2 e x p ( - T n o T / 2 - -  TnT/2) cos(co,,oT)]}, (9) 

where rex is the time interval between excitation of  the 
initial Rydberg state [no) and the first ultrashort light 
pulse, 7k is the decay rate of the state Ik), t is the elapsed 
time (t - T >> z). 

3. Detection of the Rydberg-State Superposition 

We assume that after the interaction between an atom 
and the two light pulses, Rydberg states of  the atom 
will be detected by the selective Stark ionization [6] to 
independently find the results of the excitation of  each 
Rydberg state In) (Fig. 2). If the ionizing electric field is 
increased, the current observed in an ion detector will 
be a sequence of  pulses. Each of  the pulses corresponds 
to the selective ionization of  one of  the Rydberg states 
from Jr/max) to Inmin). The total electric charge received 
by the detector in the time interval tmax --  train (ignoring 
the central pulse) is proportional to the probability of the 
excitation of  the Rydberg manifold. 

If the second light pulse arrives in phase with the beat- 
ing between one of the states In> and the initial state [no) 
(co,no T = 2=k), then a maximum of the respective ioniza- 
tion signal may be detected, but in the case of  antiphase 
arrival (co,~0 T = zc(2k- 'i)), the ionization signal will be 
absent see (9). This individual probability behaviour co- 
incides exactly with that occured in the synchronization 
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Fig. 2. Detection of Rydberg states by selective 
Stark ionization 
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of quantum transitions for two-level atomic systems [2]. 
Observation of  the behaviour as a function of the de- 
lay time T allows direct measurements of the times of 
quantum transitions. 

4. Computer Experiments 

Results of  computer calculations for the total probability 
(8, 9) of the excitation of  the Rydberg-state superposi- 
tion by pairs of light pulses at different delay times T 
are shown in Fig. 3. The case refers to short light pulses 
exciting a Rydberg manifold of  approximately 20 states. 
The Fourier transform of  this signal permits us to deter- 
mine the frequencies of  quantum transitions. The Fourier 
transformation was performed for the calculated signal, 
with an observation time equal to 600 periods To of qua- 
siclassical electron motion. The two lines in Fig. 4 refer to 
the quantum transitions between the initial state In0) and 
adjacent states In0___ 1). The linewidth at half-maximum is 
the inverse time of  the observation. The accuracy of the 
determination of resonance frequencies depends on the 
observation time and on the increment of the delay time. 
We find two resonance frequencies with an accuracy of 
order 105. 

5. Discussion 

The upper limit of  the observation time T is the lifetime 
of  the Rydberg state. For a Rydberg state with a small 
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angular momentum l << n the radiative lifetime in units 
of the period To is [3] Tnl/To = (x/3/8)c312. Thus, the 
accuracy in measuring resonance frequencies can be of 
the order of 109-101° (l = 1-10). For more accurate 
measurements, atoms in high angular momentum states 
(l ~ n) should be used. But such atomic states (no >> 1, 
l0 ~ no) are not dipole-coupled with low states (~ = 1- 
10), so in this case the Raman process of excitation of  
nearby Rydberg states will involve strongly nonresonant 
dipole transitions between the states. For example, if an 
atom is initially in the circular state [no, 10 = no - 1}, the 
adjacent state s with n = no + 1 may be excited by the 
Raman process 

In0, l0 - no - 1) ~ I h = no - 1, i = l0 - 1) ~ In0 + 1, 10). 

The product of the corresponding radial integrals is [3a] 
(a.u.) 
Px~' n-1 Dn+l,  n-1 

_ l , n _ 2 , , n _ l , n _ 2  ~--- 3n -1 

Thus the individual probability is I41,+1 oc n -2, i.e. an 
increase in the accuracy of frequency measurements by a 
factor n 2 for circular atoms, requires light pulses whose 
intensity is increased by n 2 compared to that for the 
excitation of small angular momentum states. 

We have thus identified new possibilities for frequency 
measurements by using short light pulses rather than a 
microwave field. The latter method includes only one 
dipole transition between two adjacent states and, due 
to the cw interaction, the transition is broadened by the 
microwave field. In our case a light pulse excites several 

W(T)/W(O) 

1.  ' . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . . .  

T 
. . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . . .  

10 20  30 40 50 60  

Fig. 3. Probability o f  the excitation o f  
the Rydberg-state  superposit ion by 
pairs o f  light pulses vs. the interpulse 
time T, with T measured in units 
o f  the orbital per iod To (no = 90, 
~co0 = 0.5) 

I -  

F ( l )  = 0 .983566  

(0 .9835769)  
,,¢ 

,,v' 

n ,  
, ,¢ 

, i , , , , , , , , , i , , , , , 

F(-1) = 1.016931 

(10169171) 

o v ,~ev ,ex~,W . . . . .  t '~z,~',~-'- '~---~--- . . . . . . . . .  i 

. . . .  , . . . . . .  , , ,  . . . . . . . . .  , ,  . . . .  I , , , , , ,  F 

0.96 0.98 1.00 1.02 1.04. 

Fig. 4. Port ion of  the Fourier 
spectrum. The values in brackets 
are theoretical ones. F is frequency 
in units o f  coo, F ( A n )  = co,mo/e~o, 
A n  ~ n - - n 0  



Synchronization of Raman Transitions in Highly Excited 351 

C l o s e  [ 2> / 
States]l> / / 

// 
/ / / Tran~ition_~ 

/ / 

Fig. 5. Typical scheme of an interaction between an atom and a 
short light pulse. If the transition [0) ~ I1, 2) is a forbidden one, 
then a two- or multi-photon process is assumed for its excitation 

forbidden transitions, and the method is free from power 
broadening. 

At first sight, the method considered here seems very 
similar to methods such as time-Fourier Raman spec- 
troscopy [7], the photon echo in the Rydberg atom [8], the 
time-delayed Raman detection of Rydberg wave packets 
[5] and some others. To understand the major differences 
between our method and other known laser spectroscopic 
methods, we give a brief analysis of the excitation of two 
nearby atomis states 11) and 12) from the ground state 
10) by a short light pulse (Fig. 5). The total number of 
final excited states may be more than two. Such a scheme 
is typical for the methods mentioned above [7, 8, 5] and 
differs from the scheme of Fig. 1 due to the excitation of 
atomic oscillations at optical frequencies co10, co20 which 
are much higher than z -1, o921. Thus the interaction be- 
tween the atom and the second light pulse will be effective 
if this second pulse is coherent with the high-frequency 
atomic oscillations and has an optical phase coinciding 
with the phase of the first light pulse. The following 
quantitative consideration confirms this. 

For z < co~]1, after the interaction with a single light 
pulse, the excited atomic state will be the superposition 

[~) = all1) + a212), 

where ak = i(Edko/h)G(cokO- co), k = 1, 2; G(x) is the 
spectral density of the optical field, and a0 ~ 1. The 
interaction with the second pulse delayed by time T 
gives 

t~ r )  = ~ ak[1 + exp(i~o + iAkT)] Ik), 
k=l,2 

where q~ is the phase difference between the two light 
pulses, Ak = co --cokO, and we assume that the pulse in- 
tensities are equal. The individual probability of detecting 
the atom in the excited state Ik) is of the form 

Wk(T) = I(kl 7JT)I 2 = lakl2[1 + cos(q~ + AkT)]. (10) 

We see that the individual probability contains the phase 
cp + ( co -  cok0)T, in contrast to the pure atomic phase 

co,,0 T appearing in our method; see (9) and also [2]. 
The result (10) is the same as in the method of time- 
or space-separated fields. The second light pulse in this 
case probes the high-frequency dipole moment dko(t), and 
thus it is the difference of the atomic phase COk0 T and the 
optical phase of coT + q) that appear in (10). This makes 
direct measurements of time impossible. 

The pure atomic phase co21 T appears only in the total 
probability W = W1 + W2 of detecting the atom in any 
excited state, but a term with this phase is multiplied by 
a term with the laser phase: 

A W ( T )  oc cos(co21T/2) cos[q) + (A1 + A2)T/2]. (11) 

This result corresponds to probing at time T the usual 
quantum beats between two dipole moments dlo(t) and 
d2o(t). These beats in real time may be detected by ob- 
serving the fluorescence from the states I1) and 12) [9] or 
by stimulated light scattering [5, 7]. From (11) we see that 
in order to observe atomic oscillations at the frequency 
co21 the light pulses should be mutually coherent and also 
coherent with the optical oscillations at co~0 or co20. 

On the other hand, the method of synchronization 
of quantum transitions is based on oscillations at nat- 
ural frequencies in individual population probabilities of 
states. These oscillations do not occur in real time, the 
probabilities depend on the pure atomic phases co,,0T 
parametrically, and one may detect this dependence at 
any time after the perturbation of an atom by a pair of 
pulses during the atomic lifetime. The total probability 
(8) consists of the individual probabilities (9), and each 
of these is independent of the optical phases. 

6. Conclusion 

The results and analysis given here represent a new 
method for measuring the Rydberg constant. The method 
may also be used for frequency and time measurements 
in molecules. 
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