

Enrichment of ¹³C by IRMPD of CBr₂F₂

K. Sugita¹, P. Ma², Y. Ishikawa³, and S. Arai³

¹ The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01, Japan

² Qinghai Institute of Saline Lakes, Academia Sinica, Xining, Qinghai, P.R. China

³ Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Received 12 October 1990/Accepted 5 December 1990

Abstract. The CO₂-laser-induced infrared multiple photon decomposition of natural CBr₂F₂ in the presence of oxygen has been examined as a function of pulse number (30–1500), reactant pressures (CBr₂F₂, 10–150 Torr and O₂, 5–90 Torr), laser line [9P(8) – 9P(32)], and laser fluence (1–3 J cm⁻²) to optimize irradiation conditions for ¹³C-enrichment. CF₂O was the main carbon containing product and afterwards was converted into CO₂ via hydrolysis. A small amount of C₂Br₂F₄ was detected only under extreme conditions, for example, at high laser fluences or wavenumbers close to an absorption band. The ¹³C-atom fraction of the final product CO₂ was found to be 20–80%, depending on experimental conditions. The two-stage IRMPD process proposed previously has been examined in further detail in the present study. First, CBr₂F₂ containing about 30% of ¹³C was prepared in the ¹³C-selective IRMPD of natural CHCIF₂ in the presence of Br₂. The second-stage IRMPD of the CBr₂F₂ in the presence of oxygen under selected conditions resulted in the high enrichment of ¹³C beyond 90%.

PACS: 82.50

Infrared multiple photon decomposition (IRMPD) of freon compounds has been extensively studied to elucidate fundamental multiple photon excitation and decomposition mechanisms as well as to develop a practical enrichment process of ¹³C (natural abundance of ¹³C, 1.1%) [1,2]. Of a number of freon compounds examined, CHClF₂ shows a high decomposition yield and excellent ¹³C-selectivity in IRMPD [2–4]. In the initial step of IRMPD, CHClF₂ decomposes into a CF₂ radical and a HCl molecule and, subsequently, two CF₂ radicals dimerize to form C₂F₄. The final product C₂F₄ has been found to have a ¹³C-content of up to 96% under optimized experimental conditions. However, advanced studies have demonstrated that the enrichment of ¹³C beyond 90% via single IRMPD process is energetically inefficient.

In previous papers we proposed an efficient twostage IRMPD process, which consists of the ¹³C-selective IRMPD of CHClF₂ in the presence of Br₂ and the subsequent IRMPD of CBr₂F₂ in the presence of O₂ [5, 6]. The CBr₂F₂ for the second stage was supplied from the first-stage IRMPD. The enrichment at the first stage was suppressed at 40% or less to obtain a sufficiently high yield rather than high selectivity. In the previous paper we have examined the first-stage enrichment, i.e., the IRMPD of CHClF₂/Br₂ mixtures under various conditions [6]. The present paper describes a detailed study of the second stage, i.e., the IRMPD of CBr_2F_2/O_2 mixtures, where CBr_2F_2 has either natural abundance or 30% atom fraction of ¹³C. The observed results show that CBr_2F_2 decomposes at a high yield and high selectivity. In addition, the IRMPD of ¹³C-enriched CBr_2F_2 easily produces CF_2O with a ¹³C-atom content as high as 90%.

1. Experimental

The experimental apparatus and procedures are the same as previously described [5, 6]. A Lumonics 103 CO₂ TEA laser was operated at a repetition rate of 0.7 Hz using a mixture of He and CO₂ ([He]/[CO₂] = 3/1) as a lasing medium. The laser beam was truncated with a circular iris (diameter, 2.0 cm) and focused by a BaF₂ lens (focal length, 170 cm). The focal point has an area of 0.33 cm². The main part of the reaction cell consisted of two Pyrex glass tubes (inner diameter, 2.0 cm) connected together in a cross shape. KBr windows were attached to the four tube ends. The distance between windows along the direction of laser irradiation was 10 cm and that along the direction of infrared spectroscopy was 5 cm. The cell and photolysis volumes were 48.9 cm³ and 3.3 cm³, respectively. The reaction cell was placed in the vicinity of a focal point along the laser beam. The fluence distribution inside of the reaction cell can be regarded as uniform, because the cell length is much shorter than the focal length. The pulse energy was adjusted by inserting one or more polyethylene films into beam path. A Scientech 362 power meter with a Scientech 36001 detector was used to monitor an output of a laser pulse.

After laser irradiation, sample gases were passed through two traps cooled with liquid nitrogen, while oxygen was pumped out. The condensable portion was exposed to an excess of water vapor at room temperature. The water used was boiled sufficiently long to purge CO₂. The condensable portion, after drying with P₂O₅, was analyzed using a Shimadzu GC-7A gas chromatograph combined with a NEVA TE-150 quadrupole mass spectrometer. This portion consisted of CO₂, C₂Br₂F₄, and a large amount of unreacted CBr₂F₂. Isotopic compositions were determined for CO₂ flowing out from a gas chromatograph. The column was a 9 m Gasukuropack 55 (a porous styrene-divinylbenzene polymer; column diameter, 3 mm; column temperature, 140° C; a flow rate of He, 60 ml min⁻¹).

 CBr_2F_2 was purchased from PCR Research Chemicals Inc., and purified by low-temperature distillation.

2. Results and Discussion

We begin by explaining some technical terms used in this paper.

It has been generally accepted in IRMPD that the depletion of a decomposing molecule fits the following exponential equations:

$$[{}^{12}\text{CBr}_2\text{F}_2]_n = [{}^{12}\text{CBr}_2\text{F}_2]_0 \exp\{-(V_p/V_c)^{12}P_dn\}, \qquad (1)$$

$$[{}^{13}\text{CBr}_2\text{F}_2]_n = [{}^{13}\text{CBr}_2\text{F}_2]_0 \exp\{-(V_p/V_c)\,{}^{13}P_dn\}.$$
 (2)

Fig. 1. Effects of pulse number on decomposition probabilities ${}^{12}P_{d}$ and ${}^{13}P_{d}$, and selectivity S. $P(CBr_{2}F_{2})$, 50 Torr; $P(O_{2})$, 10 Torr; laser

line, 9P(28) at 1039.37 cm⁻¹; fluence, 2.3–2.7 J cm⁻²

 $[{}^{i}CBr_{2}F_{2}]_{0}$ and $[{}^{i}CBr_{2}F_{2}]_{n}$ are partial pressures of ^{*i*}CBr₂F₂ before and after the irradiation with *n* laser pulses, respectively, where *i* is the mass number of carbon and *n* is the pulse number. V-c and V-p are the volumes of a reaction cell and a laser photolysis zone, respectively. ${}^{12}P-d$ and ${}^{13}P-d$ are the so-called decomposition probabilities of ¹²CBr₂F₂ and ¹³CBr₂F₂, respectively. Selectivity S is defined as a ratio of ${}^{13}P - d$ to ${}^{12}P - d$. A content of ¹³C in a product or a reactant is expressed by ¹³C-atom fraction, ${}^{1_3}f(M) = 100 \times [{}^{1_3}C](\%)/([{}^{1_2}C] + [{}^{1_3}C])$, where M is either a product or a reactant. A relatively yield of CO₂, Y(CO₂) is defined as $100 \times [CO_2](\%)/([CO_2] +$ [unreacted CBr_2F_2]). When an appreciable amount of $C_2Br_2F_4$ is produced, $Y(CO_2)$ is $100 \times [CO_2](\%)/([CO_2]+$ $[C_2Br_2F_4] + [unreacted CBr_2F_2]$). The carbon-containing products observed for the IRMPD of CBr_2F_2/O_2 mixtures were mainly CF₂O and a trace of C₂Br₂F₄. The latter product was detected in the vigorous photolysis at the 9P(8) or 9P(12) line or at high fluences. CF₂O is

$$CBr_2F_2 + nhv \rightarrow CBrF_2 + Br$$
 (3)

easily converted into CO₂ via hydrolysis. The mechanism

 $\operatorname{CBr}F_2 + \operatorname{O}_2 \rightarrow \operatorname{CF}_2\operatorname{O} + \operatorname{BrO}$ (4)

$$2 \operatorname{BrO} \to \operatorname{Br}_2 + \operatorname{O}_2 \tag{5}$$

 $2 \operatorname{Br} + M \to \operatorname{Br}_2 + M \tag{6}$

$$CF_2O + H_2O \rightarrow CO_2 + 2 HF.$$
 (7)

The isotope selectivity in the photophysical step (3) is brought into the final product CO₂.

2.1 Effects of Pulse Number

is as follows:

Figures 1 and 2 show effects of pulse number on ${}^{12}P_d$, ${}^{13}P_d$, S, Y(CO₂), and ${}^{13}f$ (CO₂), where mixtures of 50 Torr

Fig. 2. Effects of pulse number on relative yield of CO₂, $Y(CO_2)$ (a) and ¹³C-atom fraction of CO₂, ¹³ $f(CO_2)$ (b). Experimental conditions same as Fig. 1

268

Fig. 3. Effects of partial pressure of O_2 on decomposition probabilities. *P*(CBr₂F₂), 50 Torr; laser line 9*P*(28); fluence, 2.2–2.7 J cm⁻²; pulse number, 500

CBr₂F₂ and 10 Torr O₂ were irradiated with the CO₂ laser radiation at 1039.37 cm⁻¹, i.e., the 9*P*(28) laser line and at fluences of 2.3–2.7 J cm⁻². When (1) and (2) hold over a wide range of pulse numbers, both decomposition probabilities should have constant values. However, there seems to be a tendency for ¹²*P*_d and ¹³*P*_d to decrease with increasing pulse number, although the plots are scattered. The decreases may be due to the back reaction between a CBrF₂ radical and accumulating Br₂, as the photolysis proceeds:

$$\operatorname{CBr}F_2 + \operatorname{Br}_2 \to \operatorname{CBr}_2F_2 + \operatorname{Br}.$$
 (8)

The back reaction should compete with reaction (4). The final product CO₂ has ${}^{13}f(\text{CO}_2)$ of 60–70% in this pulse number region.

2.2 Effects of O₂ Pressure

Effects of oxygen on the IRMPD of $\text{CBr}_2\text{F}_2/\text{O}_2$ mixtures are presented in Figs. 3 and 4. The partial pressure of oxygen $P(\text{O}_2)$ was varied from 5 Torr to 90 Torr, while that of CBr_2F_2 was 50 Torr in each mixture. The laser was tuned to the 9P(28) line and the fluence was in a narrow range of 2.3–2.7 J cm⁻². All the CBrF₂ radicals produced react with O₂ even at $P(\text{O}_2) = 5$ Torr, because the variation of $P(\text{O}_2)$ does not appreciably change ${}^{12}P_d$, ${}^{13}P_d$, $Y(\text{CO}_2)$, or ${}^{13}f(\text{CO}_2)$. The results also suggest that oxygen does not deactivate vibrationally excited CBr_2F_2 molecules during and after multiple photon excitation.

2.3 Effects of CBr₂F₂ Pressure

Figures 5 and 6 present the effects of a partial pressure of CBr_2F_2 , $P(CBr_2F_2)$ on the IRMPD of CBr_2F_2/O_2

Fig. 4a, b. Effects of partial pressure of O_2 on relative yield of CO_2 (a) and ¹³C-atom fraction of CO_2 (b). Experimental conditions same as Fig. 3

Fig. 5. Effects of partial pressure of CBr_2F_2 on decomposition probabilities. The ratio of $P(CBr_2F_2)$ to $P(O_2)$, 2:1; laser line, 9P(28); fluence, 2.3–2.5 J cm⁻²; pulse number, 1000

mixtures, where the ratio of $[CBr_2F_2]_0$ to $[O_2]_0$ is always 2 : 1. Both decomposition probabilities decrease rapidly with increasing $P(CBr_2F_2)$ except for ¹³ P_d below 50 Torr, as shown in Fig. 5. This fact means that CBr_2F_2 itself deactivates highly vibrationally excited parent molecules very efficiently, because $P(O_2)$ does not affect ¹² P_d and ¹³ P_d .

 $Y(CO_2)$ decreases very rapidly with increasing $P(CBr_2F_2)$ in parallel with ${}^{12}P_d$ and ${}^{13}P_d$. The ${}^{13}C$ -atom fraction of CO₂ increases with an increase in $P(CBr_2F_2)$,

Fig. 6. Effects of partial pressure of CBr_2F_2 on relative yield of CO_2 (a) and ^{13}C -atom fraction of CO_2 (b). Experimental conditions same as Fig. 5

Fig. 7. Effects of laser wavenumber on decomposition probabilities. $P(CBr_2F_2)$, 50 Torr; $P(O_2)$, 30 Torr; fluence, 1.7–1.8 J cm⁻²; pulse number, 500

and reaches a plateau value of about 70–80%. The slight decrease of ${}^{13}f(\text{CO}_2)$ at high pressures may be caused by the dilution of the product with the natural CO₂ contained in CBr₂F₂ as an impurity. The impurity contribution becomes larger at higher pressures because of diminishing $Y(\text{CO}_2)$.

Fig. 8. Effects of laser wavenumber on relative yield of CO₂ (a) and 13 C-atom fraction of CO₂ (b). Relative yields of C₂Br₂F₄ were 5.2% at 9*P*(8) and 4.3% at 9*P*(12). Experimental conditions same as Fig. 7

2.4 Effects of Laser Wavenumber

Figure 7 shows laser wavenumber effects on ${}^{12}P_d$ and ${}^{13}P_d$, where mixtures of 50-Torr CBr₂F₂ and 30-Torr O₂ were irradiated with different laser lines at a fluence of 1.7–1.8 J cm⁻². ${}^{13}P_d$ has a shoulder at the 9P (20) line, while ${}^{12}P_d$ decreases very rapidly with decreasing wavenumber. However ${}^{13}f(CO_2)$ has the maximum value at 9P (24), as shown in Fig. 8. Although vigorous decomposition occurred at 9P (8) and 9P (12), no meaningful isotope selectivity was observed for the IRMPD at these lines. The significant formation of C₂Br₂F₄ suggests that CBrF₂ radicals are densely populated in the photolysis zone.

2.5 Fluence Effects

Figure 9 present fluence effects on ${}^{12}P_d$ and ${}^{13}P_d$. As generally observed for IRMPD, ${}^{12}P_d$ and ${}^{13}P_d$ increase with increasing fluence, while the selectivity decreases. However, ${}^{13}f(\text{CO}_2)$ at 1.4 J cm^{-2} is lower than that at 1.6 J cm^{-2} in Fig. 10. Since $Y(\text{CO}_2)$ decreases considerably with decreasing fluence and CBr_2F_2 contains a small amount of CO_2 as an impurity, the contribution due to the impurity may become larger at 1.4 J cm^{-2} , resulting in a decrease in ${}^{13}f(\text{CO}_2)$.

2.6 IRMPD of ¹³C-Enriched CBr₂F₂

In the two-stage IRMPD process proposed previously for the high enrichment of ${}^{13}C$, the first stage is the ${}^{13}C$ -

Fig. 9. Effects of laser fluence on decomposition probabilities. $P(CBr_2F_2)$, 50 Torr; $P(O_2)$, 30 Torr; laser line, 9P(28); pulse number, 1500

Fig. 10. Effects of laser fluence on relative yield of CO_2 (a) and ^{13}C -atom fraction of CO_2 (b). Experimental conditions same as Fig. 9

Fig. 11. Infrared absorption spectrum of 13 C-enriched CBr₂F₂. The scale above 2000 cm⁻¹ is different from that below 2000 cm⁻¹

Fig. 12. Infrared absorption spectrum of irradiated ¹³C-enriched CBr₂F₂ in the presence of O₂. $P(CBr_2F_2)$, 10 Torr; $P(O_2)$, 5 Torr; laser line, 9P(28); fluence, 2.2 J cm⁻²; pulse number, 1500. The scale above 2000 cm⁻¹ is different from that below 2000 cm⁻¹

selective IRMPD of natural CHClF₂ in the presence of Br₂ to form ¹³C-enriched CBr₂F₂ [$^{13}f(CO_2) = 30-40\%$] [5,6]. A relatively large amount of such enriched CBr₂F₂ was prepared using a large CO_2 laser and a flow reaction system. The irradiation cell was 3 m long cylindrical Pyrex tube (inner diameter, 3 cm), equipped with NaCl windows (diameter, 5 cm) at both ends. A Lumonics CO₂ 822 TEA laser, one of the largest CO2 lasers commercially available, was operated at an output of 8 J pulse^{-1} and at a repetition rate of 3 Hz. The mixture of CHClF₂ and Br_2 ([CHClF₂]/[Br₂] = 2.0) flowed into the cell at a total pressure of 100 Torr. The flow rates were 0.81 min⁻¹ for CHClF₂ and 0.41 min⁻¹ for Br₂ (at 760 Torr and room temperature). The laser beam was focused into a center of a reaction cell by a BaF₂ lens with a focal length of 2.1 m; the focal point has an area of 1.0 cm². The line used was 9P(22) at 1045.02 cm⁻¹. CBr₂F₂ [¹³ $f(CBr_2F_2) = 29.6\%$] was produced at a rate of 8.1 mmol h^{-1} (total amount, about 40 mmol) under these conditions.

Figure 11 shows the infrared absorption spectrum of the CBr_2F_2 . The peaks at 830, 1090, and 1150 cm^{-1} are due to ${}^{12}CBr_2F_2$ while those shifted to the lower energy side by 24 cm⁻¹ are due to ${}^{13}CBr_2F_2$. Since plentiful samples were not available, we have examined the second-stage enrichment of the CBr₂F₂ using a small CO2 TEA laser and a 10-cm long reaction cell. The laser was tuned to the 9P(28) line at 1039.37 cm^{-1} . Figure 12 shows the infrared absorption spectrum after photolysis, where a mixture of 10-Torr CBr₂F₂ and 5-Torr O₂ was irradiated with 1500 pulses at a fluence of $2.0 \,\mathrm{J}\,\mathrm{cm}^{-2}$. The comparison between the spectra before and after irradiation indicates that ¹³CBr₂F₂ decomposes selectively under the present conditions. The bands due to ${}^{12}CBr_2F_2$ do not decrease in intensity. The new bands at 940, 1210, and 1890 cm^{-1} are ascribed to ${}^{13}\text{CF}_2\text{O}$ [11]. The small shoulders at 1250 and 1930 cm⁻¹ are ascribed to the other isotopic molecule ¹²CF₂O. We could estimate conversion yields of ¹³CBr₂F₂ from infrared absorption spectra before and after laser irradiation as well as from the amounts of ${}^{12}CO_2$ and ${}^{13}CO_2$ after the hydrolysis of ¹²CF₂O and ¹³CF₂O. The results on the second-stage IRMPD are summarized in Table 1. A small amount of

P(CBr ₂ F ₂) [Torr]	P(O ₂) [Torr]	Ø ^b [J cm ⁻²]	n ^c	$^{12}P_{\rm d}$ [pulse ⁻¹]	$^{13}P_{\rm d}$ [pulse ⁻¹]	S ^d	Y(CO ₂) [%]	$1^{13}f(CO_2)$ [%]
10 °	5	2.1	200	1.0×10^{-3}	4.1×10^{-2}	40	13	93
10	5	2.2	500	7.2×10^{-4}	3.0×10^{-2}	42	20	92
10	5	2.1	1000	4.2×10^{-4}	2.9×10^{-2}	69	27	93
10	5	2.2	1500	4.1×10^{-4}	2.6×10^{-2}	64	30	91
10	5	2.3	1500	4.1×10^{-4}	$1.4 imes 10^{-2}$	35	25	89
2	1	2.1	200	$9.8 imes 10^{-4}$	3.2×10^{-2}	33	11	92
4	2	2.0	200	1.1×10^{-3}	3.6×10^{-2}	34	12	92
7	3.5	2.0	200	1.4×10^{-3}	$4.4 imes 10^{-2}$	31	14	91
10 ^e	5	2.1	200	1.0×10^{-3}	4.1×10^{-2}	40	13	93
10 ^e	5	2.1	200	1.0×10^{-3}	4.1×10^{-2}	40	13	93
10	5	1.6	200	6.2×10^{-4}	2.7×10^{-2}	44	9.3	94
10	5	1.3	200	3.3×10^{-4}	$8.3 imes 10^{-2}$	25	3.3	91
30	15	1.5	200	5.6×10^{-3}	2.1×10^{-2}	3.8	12	59

Table 1. IRMPD of ¹³C-enriched CBr₂F₂/O₂ mixtures ^a

Laser line, 9P(28) at 1039.37 cm⁻¹

b Ø, fluence

n, pulse number

d S, selectivity

Same run

C₂Br₂F₄ was detected in each sample. However, the compound may not be produced photochemically, because enriched CBr₂F₂ contains C₂Br₂F₄ as an impurity. The isotope selectivity apparently decreases at higher fluences. Therefore, the fluence was set at about $2 \,\mathrm{J}\,\mathrm{cm}^{-2}$ or less. $P(O_2)$ and $P(CBr_2F_2)$ were 5 and 10 Torr, respectively. When $P(CBr_2F_2)$ exceeded 10 Torr, ${}^{13}f(CO_2)$ was lower than 90%.

2.7 Comparison of CBr₂F₂/O₂ and CHClF₂/Br₂

In the IRMPD of a natural CBr_2F_2/O_2 mixture we obtained a large decomposition yield and a high ¹³Cselectivity, the values of which are comparable to those for a CHClF₂/Br₂ mixture. Typical results for these systems are presented in Table 2. Since product yields and ¹³C-atom fractions depend strongly on a number of experimental parameters, it is difficult to obtain reproducible results. We found similar values for the yield of 13 CBr₂F₂ per pulse (CHClF₂/Br₂) and for the yield of $^{13}CO_2$ per pulse (CBr₂F₂/O₂), as shown in the last column of Table 2. We have irradiated CBr₂F₂/O₂ mixtures

with the 9P(24) line, which gave the maximum ${}^{13}f(CO_2)$ in Fig.8b. The decomposition fluence for CBr₂F₂ is considerably lower than that for $CHClF_2$. This fact means a larger photolysis volume for CBr_2F_2/O_2 than CHClF₂/Br₂ in a focused irradiation geometry and, therefore, a higher product yield in CBr_2F_2/O_2 .

The present study demonstrates that CBr_2F_2 is one of the most promising candidated for the efficient enrichment of ¹³C by means of IRMPD. However, CBr₂F₂ has the disadvantage that the price is higher than that of CHClF₂. Our previous studies have already suggested some two-stage IRMPD processes starting from natural CBr_2F_2 and leading to high enrichment of ¹³C [7–10]. The CO_2 laser irradiation of CBr_2F_2 in the presence of HI results in the production of ^{13}C -enriched CHBrF₂ in the first stage and the subsequent decomposition of the CHBrF₂ to form CH_2F_2 as a final product in the second stage. The two-stage ¹³C-selective IRMPD occurs in a single irradiation procedure at the same laser wavenumber and fluence. The other process consists of the first IRMPD of a CBr₂F₂/Cl₂ mixture to give ¹³C-enriched $CBrClF_2$ and the second IRMPD of the $CBrClF_2$ in the presence of O_2 .

Table 2. Comparison between CBr_2F_2/O_2 and $CHClF_2/Br_2$ mixtures

Mixture [Torr]	Laser line	Ø [J cm ^{−2}]	n	Y (product) ^a [%]	¹³ f (product) ^a [%]	y (¹³ product) ^b [% pulse ⁻¹]
CBr_2F_2 50	9P(24)	2.6	150	0.53	58	2.0×10^{-3}
$\begin{array}{ccc} O_2 & 25 \\ CBr_2F_2 & 50 \end{array}$	9P(24)	2.6	200	0.98	39	$1.9 imes 10^{-3}$
O ₂ 25 CHClF ₂ 50	9P(22)	3.6	100	0.49	44	2.2×10^{-3}
Br_2 5	·· (22)	2.0	200	0.12		2.2 × 10

The product for CBr_2F_2/O_2 is CO_2 and the product for $CHClF_2/Br_2$ is CBr_2F_2 The relative yield of ¹³CO₂ per pulse for CBr_2F_2/O_2 , and that of ¹³CBr_2F_2 for CHClF₂/Br₂. Y (product) \times ¹³f (product)/(100 \times n)

Acknowledgements. The authors would like to express their thanks to Drs. Shohei Isomura and Hayato Kaetsu of the Institute of Physical and Chemical Research for producing ¹³C-enriched CBr_2F_2 .

References

- 1. V.S. Letokhov: Nonlinear Laser Chemistry. Springer Ser. Chem. Phys. Vol. 22 (Springer, Berlin, Heidelberg 1983)
- 2. A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B 36, 63 (1985)
- 3. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B 28, 43 (1982)

- M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B 35, 173 (1984)
- 5. S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett. 151, 516 (1988)
- S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Appl. Phys. B 48, 427 (1989)
- 7. P.H. Ma, K. Sugita, S. Arai: Chem. Phys. Lett. 137, 590 (1987)
- 8. P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 49, 509 (1989)
- 9. P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 50, 385 (1990)
- P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 51, 103 (1990)
 A.H. Nielsen, T.G. Burke, P.J.H. Woltz, E.A. Jones: J. Chem. Phys. 20, 596 (1952)
- 12. P.H. Ma, S. Arai: Chin. Sci. Bull. 35, 14 (1990)