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Abstract. We investigate the atomic scattering from a standing-wave light beam in the Bragg 
regime. Here momentum conservation requires the scattering to flip between two allowed 
directions only. In this limit an adiabatic approximation allows us to obtain analytic expressions 
for the flipping. The various orders of such resonances are compared with the multiphoton 
resonances observed in radio-frequency spectra, when they are interpreted in terms of 
Dopplerons. In addition to the main frequency of flipping, we find a modulation of the whole 
beam, which is seen when the scattered beam interferes with some differently prepared 
component of itself. We integrate the coupled equations numerically and find that the adiabatic 
approximation gives a good description of the processes over a large range of parameter values. 

PACS: 42.50.Dv, 42.50.Vk 

When an atomic beam traverses the beam of a mono- 
chromatic standing wave, the internal quantum states 
may absorb and emit photons assuming that the laser is 
tuned nearly into resonance with some atomic transition. 
Momentum conservation requires that the photon 
momentum is manifested in a change of the translational 
state of the atom. If the standing wave is decomposed into 
its travelling wave components, the atom may hence be 
deflected in the direction of wave propagation by any 
integer number of photon momenta; the physical situa- 
tion is shown in Fig. 1. Another point of view assigns the 
momentum spreading to the umklapp processes deriving 
from the periodic potential offered by the standing wave 
to the atom. The process is equivalent with the Kapitza- 
Dirac effect for electrons, but with atoms the scattering 
can be enhanced by the resonant nature of the energy 
transfer. In view of the recent interest in atomic inter- 
ferometric configurations, the diffractive atomic 
scattering has aquired new actuality. 

The first experimental investigations of atomic beam 
spreading by a standing wave were carried out by 
Arimondo and Oka [1] and Grinchuk et al. [2]. However, 
these works lacked the resolution to see the individual 
diffraction peaks in the scattering. These were first seen 
by Pritchard and his collaborators [3]. They have also 
been able to follow the phenomenon into its various 
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regimes [4]. The simplest theory assumes the time evolu- 
tion to be entirely unitary, but relaxation processes have 
been introduced into the theory in [5-7]. Experimentally 
the transition regime has been investigated by Pritchard's 
group [8]. 

In the optical regime one always performs the rotating- 
wave-approximation and only consecutive excitation- 
deexcitation processes are possible. In a standing wave, 
however, these can utilize photons from both travelling 
wave components, which implies that the atom may 
return to the ground state with twice the Doppler shift 
characteristic of the one-photon process. For strong fields 
many translational states become superimposed which 
causes diffractive scattering. The Doppler shifts can be 
accumulated in an additive fashion, when absorption- 
emission sequences use photons from alternate travelling 
wave components. When the laser is detuned, these can be 
utilized to compensate the energy mismatch between the 
photon and the atomic transition. Thus, in an N photon 
process, we may pick up N units of Doppler shifts to 
achieve a resonant transition. In [9] we used this fact to 
introduce a fictitious particle, the Doppleron, carrying 
the energy of one Doppler shift. The situation is 
analogous to that in radio-frequency spectroscopy, where 
one must include the counter-rotating term in the 
interaction. This allows the possibility to achieve multi- 
photon resonant transitions by the absorption of several 
quanta of the radio-frequency field. To reach the upper 
state an odd number is required. Such calculations were 
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Fig. 1. Geometric configuration showing the conservation of 
momentum in atomic Bragg scattering from a standing light wave 
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Fig. 2. Dipole transitions induced in a two-level atom interacting 
with a classical field 

first carried out by Winter [10] and pursued systematically 
by Cohen-Tannoudji [11] and Haroche [12]. 

Atomic scattering from a standing wave can  be 
classified into two main parameter regimes, the Raman- 
Nath and the Bragg regime. In the latter, energy 
conservation plays an essential role and restricts the 
possible deflection angels just as in X-ray scattering from 
a crystal. In this regime, the scattering displays the 
pendell6sung phenomenon [13], which is known from 
neutron scattering, too. 

In this paper we point out that the various orders of 
scattering in the Bragg regime display an analogy with the 
multiphoton resonances in radiofrequency spectroscopy, 
when the processes are interpreted in accordance with the 
Doppleron analogy. The original treatment [9] did not 
include atomic recoil, and hence, we have to generalize the 
treatment to satisfy energy conservation. This is done in 
Sect. 1, where we derive the basic equations to be used in 
the paper. 

In Sect. 2 we discuss the Bragg regime and the 
multiphoton interpretation of the resonances. Asymptot- 
ically, the phenomena can be discussed in an adiabatic 
approximation, which gives an analytic expression for the 
oscillation frequency of any pendell6sung behaviour. It 
turns out, however, that another frequency emerges out 
of the treatment, which modulates the state vector of the 
atom. If only the different orders of momentum deflec- 
tion are monitored, this factor is not observed, but as 
soon as the atomic beam interfers with some differently 
prepared component of itself, this frequency will be seen. 
In the different orders of scattering, the two frequencies 
scale differently with the strength of the light field, and 
hence, they appear in different ways in different ob- 
servables. 

We have also carried out numerical computations to 
check the validity of the analytical treatment, and in 

Sect. 3 these two approaches are discussed and compared. 
There, the special features of the two types of frequencies 
encountered receive additionally illumination. Finally, 
the work is summarized and discussed in Sect. 4. 

1 Formulation of the Problem 

The system under investigation is going to be represented 
by the two-level atom shown in Fig. 2. Its Hamiltonian 
can be written in the form 

H =  Tatom Jr-hco2112> < 2 1 - D "  E(x). (1) 

Here Zatom is the kinetic energy of the center-of-mass, the 
field E(x) is assumed to be classical, and the dipole 
coupling operator is defined by 

D. ~=h#21(11 > <21+ 12> <11). (2) 

We write an ansatz for the state of the atom including its 
center-of-mass motion in the form 

t ~T/> =W2(x) e-~°'tl2> +tpl(x) ll > • (3) 

The laser field E(x) is assumed to be monochromatic 
enough to be characterized by the single frequency co. 
Using (3) and (1) we obtain the Schrrdinger equation 

= 2m Ox 2 #21d°(x) rlp2(x)] 

h a ~ [ L~(x)J" 
(4) 

The rotating wave approximation introduces the field 
amplitudes ¢(x) as the coefficients of the exponentials 
e -+ i,o,; for simplicity they are assumed real. A = o921 -co  is 
the detuning. For a simple standing wave we have 

~(x) = ¢0 cos qx, (5) 

but our treatment is easily extended to more complicated, 
possibly 3-dimensional configurations. However, in this 
paper we are going to restrict the treatment to the one- 
dimensional case given by (5). 

The momentum exchange structure induced by the 
simple standing wave (5) is most clearly displayed by an 
expansion in momentum eigenstates. The field in (5) then 
acquires the form 

~f(x)=½8oexp - q ~ p  +h.c. .  (6) 

Starting from an initial atomic momentum P0, the 
operator (6) mixes in only the components po+nhq, 
where n is any integer. For the coefficients in the ansatz (3) 
we introduce the momentum expansion 

~(x)  = exp [i  (-PhX 2mh p~ t) l  (7) 

x ~ einqxC~(n); 
n = o o  

when the atom enters in the lower level, the sum changes 
to even values of n for i=  1 and odd ones for i= 2. The 
prefactor is a Galilean transformation to the frame 
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moving with the initial momentum Po in the direction of 
the laser beam. It is included because it simplifies the 
equations. 
Inserting (7) into (4) we obtain 

d 
i dt Cl(n)=(W°n+en2)  Cl(n) 

- ½#2~ go[ C2(n + 1) + C2(n-  1)], 

d 
i ~ C2(n ) = (Won + en 2 + A) C2(n) 

--½/121 #o[C~(n + 1) + C , ( n -  1)l. (8) 

We have introduced the initial Doppler shift of the atomic 
motion 

Wo = P o q = qVo (9) 
rn 

and the single photon recoil energy is 

h2q 2 
h~- (10) 

2m 

When e is neglected, the n-dependence of (8) is analogous 
to that of a harmonic motion with frequency Wo. This is 
the basis for the interpretation of the expression (7) as an 
expansion in terms of n-particle states called Dopplerons. 
They were introduced in [9] and have recently been 
explored experimentally [14]. 

The simplest case of diffractive scattering can be 
achieved when the recoil energy is smaller than the Rabi 
frequency coupling the two levels 

/~ ~ ~r-~ ~ ½~A21 ~'~0" (11) 

This limit is called the Raman-Nath regime. When e is set 
to zero and the atom is tuned to resonance, A = 0, we can 
obtain the analytic solution for (8) (see [15]) 

(i= 1 or 2 for even or odd n, respectively). Here J,  is the 
n - t h  Bessel function. This represents the diffractive 
scattering into the many momentum components 
Po +nhq of the periodic potential offered by the standing 
wave. Experimental verification of scattering in this 
regime has been given in [4]. 

2 Multiphoton resonances in the Bragg Regime 

Efficient use of a standing wave as a beam splitter or a 
deflector presumes that the atomic beam can be directed 
into one or a few directions only. This can be achieved in 
the so called Bragg regime which is complementary to the 
situation of (11) 

e>> ~c~= ½/~21 ~0 • (13) 

In this case, conservation of the kinetic energy becomes 
important in contrast to the situation in the Raman-Nath 
regime, which considers only momentum conservation. 
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Now only those diffractive scattering processes, where 
energy is conserved together with momentum can be 
realized. For an interaction time of At, energy is 
conserved to within the uncertainty h/A t. The situation is 
depicted in Fig. 1, where we can see that the scattering 
events with 

Pout = Pin --  nhq (14) 

conserve the momentum of the atom. At resonance for 
the atomic transition (A = 0), conservation of the kinetic 
energy requires that ]Pout I= [Pin l. In the equations of 
motion (8) this assumes that we have resonances between 
the two solutions of the equation 

Won A- en 2 = 0 .  ( i  5) 

The solution n = 0 corresponds to the incoming beam, and 
the other one 

Wo 2po 
n = - no = - (16) 

e hq 

gives the scattered component conserving energy and 
momentum. Looking at Fig. I we find that the projection 
of the incoming and outgoing momenta must satisfy 

hq 
po = ~- n (17) 

which corresponds to the Bragg condition in X-ray 
scattering from crystals. 

In the set of secular equations (8) two zero oscillational 
frequencies occur on the diagonal of the Hamiltonian 
matrix. These signify multi-photon resonances between 
the two corresponding scattering directions. This is 
similar to the multiphoton situation encountered in 
radio-frequency spectroscopy [16]. In the present case, 
the photons are also real, but in the rotating wave 
approximation they carry only the Doppler energy h W0. 
They are Dopplerons. 

When the resonance condition (16) is satisfied we can 
introduce the integer no into (8) and write the coupled 
equations in the form 

i C2(1)=e(no+l) C2(1)-(2 [C1(2)+C~(0)], (18a) 

i all(o)= - ~  [c2(1)+ c 2 ( -  1)1, (18b) 

i C2(-  1) = - e ( n 0 - 1 )  C2(1)-f2 [C1(-2  ) -k- C,(0)] (18c) 

etc. 
For n = - no, we find the second vanishing of the diagonal 
term in the equations; this occurs for C~ if no is even and 
for C2 if no is odd. Let k denote the value i or 2 if no is even 
or odd, respectively, andj  is correspondingly 2 or 1. Then 
we find the equations 

i C j (  - no  + 1 ) = - e ( n  o - 1 ) C j (  - n o + 1)  

--f2[Ck(--no+2)+Ck(--no)], (19a) 

i dk(--no) = --f2 [Cj( - -no+l)+Ci(- -no-- l )]  , (19b) 

i C j ( - n o - 1 ) = e ( n o + l )  C j ( - n o -  1 ) 

--f2[Ck(--no--2)+Ck(--no) ] . (19C) 
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In the limit when e is much larger than 0,  any 
nonvanishing diagonal element will dominate the time 
evolution. The corresponding amplitudes can be 
eliminated adiabaticaly [17] and we find that the 
probability will oscillate between the two amplitudes 
with n = 0  and -no ;  this is a generalization of  the 
pendell6sung discussed earlier [13]. To obtain the correct 
result to lowest order in O, we need to decouple the 
equations for n = 1 and - ( n o  + 1); amplitudes outside 
this range acquire but little probability and can be 
neglected. 

In the Bragg limit, we can consequently neglect all the 
terms underlined in (18) and (19). Inserting the solutions 
into the amplitude equations (18b) and (19b) we find the 
same frequency expression on the diagonal 

0 2 ( 1  1 )  2~ 2 
D -  - - -  = (20) 

no + 1 n o -  1 ~(n~- 1) 

The diagonal terms are of the form en(no+ n) and hence, 
going from n = 0  to n = - n o ,  we accumulate ( n o - l )  
factors of  e and two factors of  ( n o -  1)!; one set growing 
from n = 1 and the other one decreasing from (no - 1). We 
use no steps and hence we get no factors of  f2, each one 
switching the sign. The coupled equations we obtain are 
thus (no > 1) 

d 202 
i ~ C , ( -  no) = e(n2 ° _ 1----~ Ck(-- no) 

( -  0),0 

+ e,o_ 1 [(no_l)!]2 CI(0),  

d 202 
i=  G(0)= G(0) ~(no2-- l) a t  

(21) 

( -  f2),o 

+ e "°- l[(n o - 1) !] 2 Ck( - no). (22) 

Only the lowest order in O is retained in the coefficients. 
These equations are of  the form 

i Ck=D Ck-½KC1 

and 

i C1 =D C 1 --½KCk (23) 

with the solution 

Cl ( t ) = e-iot cos(½ Kt) 

and 

Ck(t) = i e-i°~ sin(~ Kt), (24) 

where the initial condition C1(0)=1 at t = 0  has been 
used. In the probabilities the phase factors cancel and 
only the flipping at the frequency 

20 no 
IKI = e. o_ 1 [(no - 1)!] 2 (25) 

can be seen. However, when the diffractive pattern is used 
in an interferometric configuration, the outgoing beams 

may be mixed with some other component of  the atomic 
beam which allows one to observe, e.g., the component 

S oc cos q~ R e [ C ( -  no)] + sin q~ I m [ C ( -  no)] (26) 

dependening on some angle ~o of  the mixing beam. Then 
the oscillation frequency D of (20) will show up, too. This 
is always of  second order in 0,  whereas the order of  the 
flipping frequency K is of  higher order in the parameter 
(O/e) as soon as no > 2. Because this factor is small in the 
Bragg regime, we find the flipping frequency to be slow 
compared with the oscillation frequency D. 

The case no = 1 is a special situation not included in 
(21) and (22). Following the same procedure as above we 
find the coupled equations 

~'-~2 
i  1(o) = - - -  G ( o ) - o c 2 ( -  1)  

2e 
and 

f22 
i C 2 ( -  1) = - - -  6 '2 ( -  1) - OC~(0). 

2e 
(27) 

These are of  the form (23), but now the flipping frequency 
equals O and the oscillation frequency D is but a small 
modulation. The resonances are found at (O_+ O2/2e). In 
this case, as for all the odd cases, the resonance occurs 
between the ground state population (C1) and the excited 
state population (C2). Because the latter will decay by 
spontaneous emission, it may be difficult to observe such 
resonances in experiments. 

The lowest order resonance between two ground state 
populations is the case no = 2. This is a special situation 
because both D and K are of  the same order and combine 
to give 

Cl(O)=exp ( - i  202 ) 3e t cos(OZt/Q 

= ~  exp i3~  ,/ -~0 - t  , 

C 1 ( - 2 ) = i  exp ( - i 2 0 2 ~  t) sin(O2t/e) 

exp i t - e x p  ~ - i  t . (28) 

For  no > 2 the frequency K is always less than D in the 
Bragg limit. 

3 Properties of the Multiphoton Resonances 

In order to investigate how distinctly and easily the 
multiphoton resonances can be seen, we have written a 
computer program that integrates the (8) numerically for 
any values of  the parameters. In Fig. 3 we show the case 
W o = l . 5  f2, when the momentum distribution spreads 
out and reassembles itself approximately after the time 
(2n/Wo), see (12). from this expression we can also 
estimate the maximum momentum excursion to be 
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Fig. 3. Kapitza-Dirac scattering of  atoms: The distribution of the 
probabifities [C~(n)l a starting with the time t=(1/~2) at the bottom. 
Going upwards we show the distribution at time intervals spaced by 
(1/~). The parameters are e=0.01~? and Wo=l.5~?. The 
distribmlion has reassembled itself at the time (5/~) close to the 
theoretical value (2~/Wo). The initial distribution ICa(n) lZ=,~., o at 
t = 0 is not shown 
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Fig. 4. Kapitza-Dirac scattering of atoms for the special case of 
orthogonal incidence, Wo =0. The other parameters are as in Fig. 3 
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Fig. 5. The populations IC~(n)1~ of the momentum states as functions 
of  the interaction time for a moderately adiabatic situation (e = 2 t2). 
In this case the rapidly oscillating non-resonant amplitudes are still 
discernible in addition to the slowly oscillating probabilities of the 
two resonant states with n = - n o  = - 5  and n = 0 
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(4~2/Wo)-~2.7, which agrees with the numerically 
obtained result. 

In Fig. 4 we show the situation where the atoms hit the 
laser beam orthogonally (Wo=0). In this case, (12) 
predicts a linear spreading of the momentum distribution 
in accordance with the numerical result shown in Fig. 4. 
However, this trend will be broken by the accumulated 
Doppler shift when ~ >0, but our integration has not 
been extended that far. 

After the momentum distributions had been computed 
we Fourier-transformed them to obtain their spectral 
components. In the Bragg limit (13), the adiabatic 
approximation procedure presented above gives simple 
analytical results. In the interference variables (26) we 
expect to see the two frequencies (D+½K); here we 
choose ~o =0 and investigate the real part only. In the 
occupation probabilities for the states we find the 
frequencies ± K, because the phase disappears and the 
frequency becomes doubled in the squares of the 
occupation probabilities (24). 

We have investigated the first three resonances, n o = 1, 
2, and 3 for various values of ~/~2, which is the adiabaticity 
parameter. In addition, we have looked at one higher 
order resonance with no=5. In this case, the two 
frequencies differ by several orders of magnitude and 
some of the numerical results become less reliable as is 
discussed below. The general idea of Bragg flipping 
between the two resonant states is, however, still clearly 
discernible. Figure 5 shows the occupation probabilities 
of the momentum states for no = 5 and e = 2~2. The two 
resonant states clearly display sinusoidal oscillations 
whereas all other probabilities remain insignificant as 
demanded by the adiabatic approximation. The main 
flipping frequency Kemerges and all other oscillations are 
seen to be much faster. 

In Fig. 6 we show the spectrum for no = 1 and e = 20. 
This value is only marginally in the adiabatic regime, but 
the simple Bragg regime behaviour is still clearly seen. Of 
the frequency pair (D +_ K/2), one becomes negative and 
crosses to the other side of the zero frequency, see Fig. 6a. 
Figure 6b shows directly the frequency K and also the 
zero component resulting from the squares of the 
trigonometric functions in (24). 

Figure 7 shows the spectra for no = 2 and e = 10 ~2. The 
adiabatic behaviour is well developed, and again, one 
component of the spectrum (Fig. 7a) crosses the zero 
frequency. Figure 8 shows the same result for the case 
no=3 and ~= 14 ~2. The adiabatic behaviour is clearly 
seen and the frequency K can be obtained from the 
spectrum in Fig. 8b. This flipping frequency here is small 
as compared with D and causes only a small splitting 
around it as seen in Fig. 8a. 

For the case no -- 5, we find the frequencies D and Kto 
be of different orders of magnitude because of the factor 
(~2h)4/(4!) z seen in (25). We show the spectra for 8 - 6~ in 
Fig. 9. The ratio of the two frequences here is about 10 4 

and no splitting of the frequency D is visible in Fig. 9a. It 
is consequently not possible to obtain a value for K from 
such a spectrum. The frequency K can, however, be 
determined from Fig. 9b, where the dependence on D is 
canceled. 
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Fig. 6. a The power spectrum of Re[C~(-no)] and b that of [Ci(n)[2. The frequency is given as a multiple of f2. The parameters are no = 1 
and e=2f2 
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Fig. 7. The power spectra as in Fig. 6 for no =2 and e = 10 f2 
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The results of  our calculations are summarized in 
Table 1. We denote the two frequencies (20) and (25) by 
Do and Ko; these are the values obtained from the 
adiabatic approximation. The values denoted by D 1 and 
Kt are obtained from the spectra of  the real parts, i.e., 
Figs. 6a, 7a, 8a, and 9a. As already mentioned, no value 
for/<1 can be obtained for no = 5. The spectra in Figs. 6b, 
7b, 8b, and 9b give another estimate for the flipping 
frequency, here denoted K 2. The values are given as a 

multiple of  f2 and the accuracy of  the numerically 
obtained results is approximately one unit in the least 
significant digit given in the Table; it decreases rapidly 
with growing order no because of  the increasing difference 
between D and K. 

From Table 1 we can conclude that the adiabatic 
behavious is very easy to observe. For  all cases 
investigated the agreement with the adiabatic theory is 
rapidly improved when (e/O) increases. Already s = 612 
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Fig. 9. The power spectra as in Fig. 6 for no = 5 and e = 6 f2 

Table 1. Summary of  results. All values are given in multiples of f2. 
D O and K o follow from adiabatic theory. D a and K1 follow from the 
spectrum of Re [C( - no)]. K 2 follows from the spectrum of 
tC( "no)[ 2. 

g 

2 6 10 14 
f2 

n o = l  D o 0.250 0.083 0.050 0.036 
D x 0.250 0.082 0.051 0.039 

K0 2.00 2.00 2.00 2.00 
K1 1.87 1.98 1.98 1.98 
K 2 1.88 1.98 1.99 1.99 

D o 0.333 0.111 0.067 0.048 
D 1 0.213 0.103 0.065 0.047 

Ko 1.00 0.333 0.200 0.143 
/(1 0.75 0.316 0.195 0.141 
K2 0.75 0.317 0.196 0.141 

D O 0.125 0.042 0.025 0.018 
D 1 0.190 0.042 0.025 0.018 

Ko 0.125 0.014 0.005 0.0026 
K1 0.133 0.014 0.005 0.0025 
1£2 0.142 0.0•4 0.005 0.0025 

D O 0.042 0.014 0.0083 0.0060 
D 1 0.042 0.014 0.0083 0.0059 
Ko 0.220 x 10-3 0.027 x 10-4 0.03 x 10 -5 0.01 x 10 - s  
K 1 * * *  * * *  * * *  * * *  

K2 0.21×10 -3 0 . 0 2 7 x 1 0 - g 0 . 0 3 x 1 0  -5 O.OlxlO -5 

no:2  

n o : 3  

no=5 

***= the value has not been obtained with sufficient accuracy 

gives nearly perfect results. For s= 140 all cases give 
excellent agreement. 

4 Discussion and Conclusion 

In the discussion of atomic interferometric configurations 
the standing wave has become something of a prototype 
example. It does provide the atomic optics realization of 
gratings, beam splitters, and deflecting mirrors. In this 
paper we have discussed the various orders of scattering 
in the Bragg regime and compared their treatment with 
the multiphoton resonances seen in radio-frequency 
spectra. This analogy can be supported by the Doppleron 
interpretation introduced earlier in laser spectroscopy. 
The conservation of the kinetic energy of the atoms 
introduces the recoil energy as a frequency shift which 
gives the Dopplerons an anharmonic energy spectrum, 
see (8). 

We have also carried out a numerical investigation to 
see how well the intuitive picture of flipping between 
resonant momentum states emerges from the exact theory. 
The conclusion is that the analytically obtained picture is 
very good in all parameter ranges investigated. The 
results are Summarized in Table 1. 

The order of the resonances is here determined by the 
integer no defined in (16). When n o is odd, the one 
resonating state corresponds to the atom in its upper 
energy level and its detection may be hampered by the 
inevitable spontaneous decay out of this state. On the 
other hand, this decay may be utilized to observe the very 
process we are interested in. For even values of no, both 
resonating states correspond to the lower level; if this is a 
ground or metastable state it can be detected far away 
from the interaction region. 

In this paper we have investigated only the case of 
resonant tuning of the laser. For a nonvanishing detuning 
A, the situation differs somewhat. If the integer no of (17) 
is even, the resonance occurs between two ground state 
amplitudes and our treatment remains valid. A large 
value of A only aids in the adiabatic elimination of the 
upper state amplitudes. However, there appears the 
possibility to have other resonances, where the change of 
kinetic energy compensates the detuning. From (8) we 
find this to happen for 

1 
n+_- 2~ (Wo+ ~/Wff -4Ae). (29) 

For e-- 0, these were the Doppleron resonances discussed 
in [9]. When one value n+ becomes an integer, a 
resonance occurs. Even both may be integers, and it is 
possible that no is an integer for the same parameters. 
Thus we may have two or three resonant amplitudes 
occurring simultaneously, and then the treatment 
becomes more involved than the one presented in this 
paper. The adiabatic elimination program can still be 
carried out, and judging from the results of the present 
work, the adiabatic apprqximation is expected to be good 
in these cases, too. 

In this paper we have regarded the electromagnetic 
field as a classical quantity. In most experimental 
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situations, this is the appropriate limit and the 
phenomena we have explored here are not  influenced by 
the quantum nature of  the field. In fact, it is perfectly 
straightforward to extend our  treatment to the case of a 
quantized standing wave. The coupling constants in (8) 
will become functions of  the occupation number N of  the 

photon states, viz. f2 oc V ~ .  The adiabatic elimination 
procedure can still be carried out, see [16], for the 
analogous radio-frequency case, and the powers of  f2 in 
(21) and (22) will be replaced by products of  differing 
values of  N. Only when no becomes comparable with the 
number of  photons in the beam, quantum effects will 
become observable. This may, on the other hand, be an 
interesting region to investigate owing to the insights it 
can give into the nature of  the quantized fields, cf. [18]. 
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