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Abstract. We present new methods and formulae for calculating the image amplitude and image spa- 
tial power spectral density produced by monochromatic point-source illumination of a finite (and/or 
infinite) periodic complex transmission grating. At specific finite-width r e s o n a n c e s  the image ampli- 
tude is seen to display periodic complex amplitude self-imaging of the grating, with interlaced alias 
images. The finite width grating resonances (as a function of spatial frequency) are broadened (from 
zero width) and displaced in frequency relative to those produced by an infinite grating, although the 
finite resonance width relative to illumination wavelength variation persists with infinite gratings. In 
the Fresnel domain the self images are generalizations of the Talbot and von Lau effects, while in the 
Fraunhofer to Fresnel transition domain, our formulae demonstrate the formation of these structures 
from Fraunhofer diffraction order side-lobes. Using these results, design criteria are provided for 
constructing lens-free three-grating interferometers with spatially diffuse illumination and detection. 
Such interferometers have a wide variety of applications for both X-rays and matter-waves, includ- 
ing a phase sensitive imaging device and/or narrow-band interference filter. For wavelengths in the 
Angstrom to sub-Angstrom range they feature high throughput and ease of fabrication. Experimental 
results using light with such an interferometer are presented. Our results conclusively demonstrate 
interference and image aliasing in such a device with spatially diffuse illumination and detection. The 
experiment is readily reproducible in any undergraduate physics laboratory. 

PACS: 07.60.Ly, 42.10.Hc, 42.80.Bi 

The calculation of a diffraction pattern produced by a trans- 
mitting object is a standard problem in physical optics and 
quantum mechanics. The first step in the calculation is to 
reduce the governing wave equation (e.g., Maxwell's equa- 
tions, Schr6dinger's equation, etc.) to the Helmholtz equa- 
tion by factoring out the time dependence. A solution to the 
Helmholtz equation is then given by the Huygens-Fresnel- 
Kirchhoff diffraction integral, which allows the image Co be 
calculated in terms of a superposition integral involving the 
complex grating transmission function and the Green's func- 
tion for the propagation, sometimes called a propagator or 
kernel. 

When the incoming and outgoing wavefronts have neg- 
ligible curvature, the Fraunhofer (first order) approximation 
simplifies the integration, and the image is given by the 
Fourier transform of the object's complex transmission func- 
tion, evaluated at spatial frequencies proportional to the lat- 
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eral position in the image plane [1, 2]. When wavefront cur- 
vature cannot be neglected, the Fresnel (second order) ap- 
proximation is usually required. However, its use introduces 
quadratic phase factors which typically yield intractable inte- 
grals. These may be evaluated numerically. For binary trans- 
mission functions associated with an opaque object with one 
or more apertures, a common procedure is to first calcu- 
late the amplitude produced by each edge of the object via 
Fresnel integrals which are readily evaluated numerically. 
Next, the amplitude of the whole object is calculated by 
summing the integrals associated with all of the edges. Un- 
fortunately, analytic approximations for the Fresnel integrals 
are available only in asymptotic domains. Furthermore, this 
procedure fails for objects with complex and/or non-binary 
transmission functions, and a direct numerical integration of 
tile diffraction integral is usually required [3]. 

Despite the inherent complications associated with qua- 
dratic phase factors, when the object is periodic, surprising 
yet simple periodicities are manifest in the resulting im- 
age [17]. In some situations the periodicities give rise to 
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self-imaging effects for gratings. That is, a grating will pro- 
duce an exact image of itself at specific image distances. A 
pair of spaced similar gratings thus produce Moir6 patterns 
(and/or patterns intermediate between Moir6 and sinusoidal) 
in a manner that intimately involves wave interference. Two 
such self-imaging effects were discovered experimentally 
by Talbot and von Lau. The scaling of the Talbot effect 
was first explained by Rayleigh. These effects (discussed in 
Appendix A) are intimately associated with non-vanishing 
wavefront curvature and are not produced in the Fraunhofer 
limit. Indeed, Jahns and Lohmann [4] have pointed out that 
the Talbot and von Lau effects are reciprocals of each other. 
They also give a simple geometric construction that allows 
the effect to be understood as the action of a generalized 
quadratic Fresnel zone plate in the von Lau geometry with 
infinitesimal slit widths. 

The intractability of the integrals has been attacked in 
various ways using a variety of mathematical techniques to 
elucidate (in ways that numerical technique can not) the reg- 
ularities of the image produced by a periodic structure [5]. 
Cowley and Moodie [6] used a Fourier series technique to 
treat the problem of Fresnel diffraction by an infinite breadth 
periodic amplitude transmission object. Their work thus ex- 
plains some of the basic periodicities (and 180 ° phase shifts) 
of the Talbot and von Lan effects. Appendix B summarizes 
their result. 

It is noteworthy that the Cowley and Moodie treatment 
is problematic in that it only yields results for objects with 
infinite extent, but in this limit the second order Fresnel 
approximation, itself, fails. Unfortunately, their derivation 
is not readily generalized to the treatment of finite breadth 
gratings. More important, although additional naturally oc- 
curring periodicities are manifest in the Cowley and Moodie 
formulae, these periodicities are not self evident, and indeed 
their existence was missed by them [7]. Gori [8] and Sudol 
and Thompson [9] identified additional image periodicities 
in the von Lau effect. Sudol and Thompson showed the exis- 
tence of the intermediate images in the yon Lau geometry by 
calculating the intensity distribution resulting from an infi- 
nite grating. Gori showed that intermediate images will exist 
for a grating composed of a finite number of slits, experi- 
mentally demonstrated this effect, and presented qualitative 
arguments to show that the finite extent of the gratings lim- 
ited the multiplicity of the intermediate images. 

Despite the work listed above, no general analytic method 
is at hand for determining the image amplitude, along with 
its periodicities and other interesting features that result from 
Fresnel diffraction by a finite periodic complex structure. As 
a result, the detailed structure of and reasons for the inter- 
mediate images is obscure. It is the purpose of this paper 
to present such analytic methods, and further, to point out 
some of the amazing properties and rich spectroscopy that is 
latent in a rather innocent looking integral. In Sect. 1 we pro- 
vide a whole family of equivalent formulae, each of which 
provides the exact image amplitude (at least to the limits 
set by the Fresnel approximation and the Huygens-Fresnel- 
Kirchhoff integral). In Appendix C, we use a method similar 
to that of Sect. 1 to provide a generalization of Jahns and 
Lohman's zone plate discussion to the Cowley and Moodie 
geometry. 

In the remainder of Sect. 1 we show that for an increas- 
ingly large finite number of grating periods, each having 

a complex amplitude transmission function, the image am- 
plitude for both the primary (Talbot-von Lau) images and 
the intermediate (aliased) images become exact replicas of 
a single period's complex amplitude transmission function, 
except for an extraneous quadratic phase factor. For infi- 
nite gratings, our resulting formulae give results in agree- 
ment with those derived earlier (reviewed in Appendix B) 
by Cowley and Moodie. For a modest number of grating 
periods, the individual image periods become rounded and 
are limited by a finite extent envelope. Our formulae also 
elucidate the wiggles seen on images of diffraction patterns 
observed at the transition between the Fraunhofer and Fres- 
nel regimes. In Sect. 2 we investigate the spectral properties 
of the image intensity and find a regular spectrum of finite 
width "resonances" for both finite and infinite numbers of 
periods, and display the spectrum in closed form for the case 
wherein each period has the form of a simple rectangular slit. 

Since the dimensions associated with grating self-imaging 
are rarely interesting for applications in the optical domain, 
the subject of Talbot and von Lau self-imaging is almost 
never discussed in physical optics textbooks [18]. On the 
other hand, Fresnel diffraction by transmission gratings as- 
sumes great importance at short wavelengths, such as those 
encountered in matter-wave and X-ray interferometry. As an 
application of our results that is useful to these arts, in Sect. 3 
we describe lens-free grating interferometers that employ a 
diffuse (spatially incoherent) monochromatic source (uncol- 
limated sodium discharge lamp), and diffuse detector, cal- 
culate their spectral properties, and experimentally confirm 
their operation. Such an interferometer is readily reproduced 
by a few hours effort in any undergraduate optics laboratory. 

1 Amplitude for Fresnel Diffraction 
by a Finite Periodic Structure 

Consider the two dimensional geometry depicted in Fig. 1. A 
point source at z = z0, z = z0 emits monochromatic waves 
with unit amplitude at unit distance from it. The waves are 
passed by a planar, finite extent, infinitesimally thick, pe- 
riodic transmitting object (grating) located in the z = Zl 
plane, with its axis of symmetry located on the z-axis. We 
seek the amplitude ~(za) of the waves on the z = z2 plane 
at the point (m2, Z2). Let /~1 = zl - z0 be the spacing be- 
tween the source and grating plane, and let/~2 = z2 - Zl 
be the spacing between the grating plane and detector plane. 
The path length between the source point at (:Co, z0) and the 
point :Cl, zl) on the grating plane is given by 

(zl-zo) 2] 
Sl  = ,/2V~ ~ @ (:Cl --  :C0) 2 = R1 1 + 2R 2 j , (1) 

where the second expression results from applying the Fres- 
nel approximation. Similarly, the path length between the 
point at (zl, zl) and the point at (z 2, z2) is given by 

$2 = 1/2,¢R @ (372 -- Z l )  2 '~' R2 1 ~- (2) 

Let us now define the quantity A as the path length increase 
that is due to the lateral displacements (:cl - z o )  and (:C2-Zo). 
It is given by 

A ~_ S1 -]- $2 --  R1 -- R 2 . (3) 
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Fig. 1. Layout of the two-dimensional geometry 

Combining (1)-(3) and completing the square of the result- 
ing expression, we can write this as 

( 1 x2 20 
a : a0(x2, x0) + ~ Xl - -  , (4) 

where we have defined the reduced radius 0 as 

R1 R2 
cOX R1 + R 2  ' 

the magnification M as 

RI + R2 R2 
M ~  - -  -- 

R1 0 

the lateral displacement x20 of a point on the z2 plane sym- 
metrically opposite the source point (through grating center) 
which then is the image centroid as 

-/{2 
X20 ~ --~'lX0 

the lateral displacement of an image point ~2 from its cen- 
troid as 

YC2 ~ X2 -- X20 

and the residual path length A0(x2, x0), that does not depend 
on the integration variable Xl, as 

(X 2 -- X0) 2 
A0(X2, X0) 

2(R1 + R2) ' 

If the complex transmission function of the object on the zt 
plane is defined as t(xl), then the amplitude ¢(22) of the 
wave at the point (x2, z2) is given via the Huygens-Fresnel- 
Kirchhoff diffraction integral [19]. For scalar waves as 

~(~2) - ¢(x2) 

--(iAR112)l/2 ]dxit(x')exp (i2-~ A) 
- - O O  

ei¢° i 
-- (AR1R2)W 2 dx l t ( x l )  

- - f X )  

[i~o ( M )  2] x exp X 1 -- , (5) 

where we further define the extraneous phase factor as 

2re rr 
4~o=-x-Ao 4 

and shift the origin of the image amplitude to the pattern's 
centroid. (For a source point on the z-axis and the grating 
centered on this axis, then ~} = ~p). The exonential factor 
under the integral sign is the Fresnel Green's function. 

For large gratings (5) is well known to yield geometric 
shadows in the small A&limit and Fraunhofer diffraction in 
the large he-limit. Our purpose is to evaluate it at interme- 
diate wavelengths for finite periodic gratings. We thus pre- 
scribe t (x l )  to represent a finite periodic structure, centered 
on the z-axis. We denote its period as the distance a and 
its complex transmission for a single period as s(xl),  acting 
only on the interval - a / 2  < xl  < a/2,  with s(xx) = 0 hold- 
ing outside of this interval. Suppose that the grating consists 
of N periods. The grating transmission function t (x t )  is then 
given by [10] 

(N-l)/2 

= E s(xl - j a ) .  t(xl) (6) 
j=(1-N)/2 

We now use the sifting property of &functions 
OG 

/ ,  

s(~) = / d~'s(~ ' )6(~-  ~'), (7) 

- - D O  

to write the grating transmission function as 

_ _  ( N - l ) / 2  .~  

t (x t )  - j=(l~N)/2Go d~' s({r)5(Xl - j a  - ~'). (8) 

Substituting (8) into the expression of (5) for ¢(x2), we have 

7 7 ;Y ~(:C2) = (A_R1R2)I/2 dxl d~'s(~') 
-oo J=( -  )/2-~o0 

x 6(Xl - j a  - ~')exp Xl - . (9) 

Reversing the order of integration, performing the integra- 
tion over xl, and using the enforcement by the delta function 
that 

xl = j a  + ~' (10) 

holds, we have for the amplitude at (xz, z2), 

ei¢° 7 (N- 1 )/2 
~(:C2)- (~R1R2)l/2 d dE' E s(~,) 

-oo j=(1-N)I2 

 )21 xexp ~ j a + ~ ' -  . (11) 

We now introduce the dimensionless length u by the relation 

au --= ~' :c2 (12) 
M '  

whereupon (1 l) becomes 

aei¢° 7 ( ~-~-2 ) 
@(:~2)- (AR1R2)I/2 dus au + 

- -  ( X 3  

( N - i ) / 2  [. AT R , ] 
x E exp [ ,~ - -~ - tu  + j)2j , (13) 

j=(1-N)/2 
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wherein we have introduced the Talbot-Rayleigh wavelength 
(Appendix A motivates our choice of name) defined as 

ATR =-- a2/Q. (14) 

The single summation in (13) may be converted to two in- 
terleaved summations by the self evident formula 

(N-l /2  (n-l)/2 @-1)/2 

f(J) = ~ Z f(np + q), (15) 
j=(1-N)/2 q=(1-n)/2 p=(1-r)/2 

where the positive integer, n is a divisor of N, and where 
the integer r is the ratio 

N 
r = --. (16) 

n 

Using (15), the summation in (13) may then be written as 

exp = Z exp [irr-~---t,, + q)2 
j=(I-N)/2 q=(1-n)/2 

(r-l)/2 /" ATR 2 2"~ 
exp~ l rTnP  ) 

p=(1-r)/2 

/~TR x exp{i27r-~-[np(u+q)]}. (17) 

Let us now define the real number # as 

)~TR 
# = n  A ' (18) 

or equivalently, via the definition of (14), 

) ~  ~ a 2 n  . (18a) 
/z 

We will eventually focus our attention on cases where # 
is approximately an integer. Equivalently, we will focus on 
cases wherein Ava/A is approximately equal to a ratio of 
positive integers m and n [20], as per 

ATR m /, 
. . . .  + s = - ,  (19) 

A n n 

where the integer n, introduced above, is a divisor of N 
and, where the absolute value of the remainder e is small 
(see Sect. 1.3). Using (19), the sum over j of (17) may be 
expressed as 

(N-l)/2 (n-l)/2 

e x p [  ] =  ~ e x p [ i r r ~ ( u + q )  2] 
j=(1-N)/2 q=(1-n)/2 

(r-l)/2 ( . m n )  
x Z exp x2rcp-~- 

p=(1--v)/2 

x exp(ircen2p 2) 

x exp[i2rr#p(u + q)], (20) 

where, in reducing this expression, we have used the iden- 
tity exp(iTrmnp 2) = exp(iTrmnp), that is true because the 
products (mnp) and (mnp 2) are both even or odd integers 
simultaneously. 

Collecting terms, we have for the amplitude at the point 
(x2, z2) 

(X3 

a e i ~ ° f  ( M )  ¢(5:2) ~ (ARIR2)l/2 du s au + 
- - C O  

(n- 1)/2 

r. expEi++ >' 1 
q=(t-n)/2 

x ~ exp 12rrp--~-- exp(irren2p 2) 
p=(l-r)/2 

x exp[i27r#p(u + q)]. (21) 

We can simplify this expression by moving the summa- 
tion to include the factor s, by changing the variable of 
integration to 

v = - # ( u  + q) (22) 

and by using the definitions of 0 and ATR, whereupon (21) 
may be written as 

(n/#)~/2 e ~eo f dvG(v)t,( M av) (23, 
~(:C2) m (R1 + R2) 1/2 /z ' 

--OG 

for which we have defined a modified n-period grating trans- 
mission function t' as 

(n-l)/2 
1 tl(x) - Z s ( x -  aq), (24) 
n 

q=(1-n)/2 

and further introduce the dimensionless Green's function 
G(v) as a product of two functions 

O ( v ) =  E ( v ) P ( v - - ~ ) .  (25) 

The first factor, E(v), is an aperiodic function defined as 

E(v) =exp ( irrv2~ , (26) 
\#n 7 

which we shall refer to as the envelope factor. The second 
factor, P(v), will be recognized as a Fourier series, and thus, 
as a periodic function with unit period for r odd and period 2 
(with a symmetrically inverted second half period) for r 
even. It is defined as 

(r-l)/2 

P(v) = ~ exp(irren2p 2) exp(-i2rcpv). (27) 
p=(l-r)/2 

It is noteworthy, however, that even though the function 
P(v) is periodic, the function G(v) is not. For a given choice 
of n, (23)-(27) yield an exact result (at least to the limits 
set by the Fresnel approximation and the Huygens-Fresnel- 
Kirchhoff integral). 

Our formulation of the Fresnel diffraction problem pro- 
vides a solution, (23), in a particularly simple form that ex- 
hibits important features that were previously obscure. The 
image's periodicities are provided by the functions t and G, 
while the envelope is determined by the function E. In a par- 
allel to the usual result the image is calculated in terms of a 
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superposition integral involving the complex grating trans- 
mission function and a Green 's  function for Fresnel propaga- 
tion. Indeed, for the case n = N,  the formulae are essentially 
the same. However, for the M/" - 1 cases for n ¢ N (where 
S is the number of  distinct divisors of  N)  our J r ' -  1 forms 
are notably different from the n = N result. The superpo- 
sition integral now involves the Green 's  function G(v), and 
a shortened n-period grating tl(x) (with the argument ex- 
hibiting the geometric magnification). Moreover, periodicity 
is shifted from the grating function to the function P(v). 
When the various grating period self-images do not overlap 
and the phase advance rate that is due to the envelope fac- 
tor E(v) is slow, the phase introduced by the factor E(v) 
causes no interference and the intensity displays the peri- 
odicity associated with the periodic function P(v). It is this 
change in structure that now allows image periodicities to 
be self-evident. 

1.1 Choice of n and Form of P(v) for Small [e[ 

A natural question to ask is which of the A/" values for n 
should we choose, since all choices lead to valid formula- 
tions. From the numerical point of  view the choice may be 
only a matter of  taste or expedience. However,  the motiva- 
tion for formulating the result as we have done is that when 
the choice is made so that p is nearly an integer m,  then 
the formulae reduce to a particularly simple form. Let us 
thus consider the periodic function, P(v), given by (27) and 
examine situations wherein # ~ m (and thus e ~ 0) holds. 
For small [e[, the factor exp(iTrenZp2), effects only the terms 
in the summation with large [p[, which, in turn, is limited 
by the sum to the domain ]p] < r/2. Thus, whenever the 
inequality 

2 2 
[e] < r2n~ -- N2 (28) 

holds (readily achieved for a modest number of  periods), 
the dephasing of the various terms of the summation by this 
factor is less than 7r/2, whence the factor may be omitted. 
Thus, when (28) is satisfied, we may approximate P(v) as 

(r-1)/2 

P(v) ,~ E exp(- i27rpv) .  (29) 
p=(1-r)/2 

Equation (29) represents the sum of a geometric series that 
evaluates as 

sin(Trrv) 
P(v) ~ - -  (30) 

sin(Try) 

Since r = N / n  is an integer, we recognize P(v) in the 
present form as the periodic interference function that re- 
sults from Fraunhofer diffraction by a periodic structure [2]. 
It has the form of an infinite series of spikes with period 
one or two. When r is an odd integer, then all spikes are 
positive and the function has period one; when it is even, the 
spikes have alternating sign and the function has period two. 
When r is large (i.e., when the number of grating periods 
N is large), then each spike approaches a &function, and 
the function approaches a comb-function (or sum of two lat- 
erally displaced opposite sign comb-functions). These near 
&functions then give rise to grating amplitude self-imaging. 

The choice n = N,  r = 1 yields a constant for P(v) 
and, correspondingly, yields an expression identical to our 
original form (5), providing nothing new. For the form of 
(30) to be useful we desire a small value for n to be cho- 
sen, or equivalently, a value for r = N / n  >> 1. A second 
question thus arises concerning the uniqueness of any given 
choice for n. Suppose we have two choices n and n l, thereby 
defining ra and m / and remainders e and e'  by (19) as 

,~TR m 77Zl 
- -  + e = + e / ( 3 1 )  

A n ~ ' 

where m and m t are integers chosen to respectively mini- 
mize e and d .  By the triangle inequality and (28) we have 

- = ] e -  e'[  < N---~-. ( 3 2 )  

Multiplying by nn I (32) can be rewritten as 

2n 2n / 
Iron ' -ra 'n  I < - ~ - - ~ -  << 1, (33) 

where the last inequality is due to our restriction n, n / << N.  
But the quantity Iron r - mini is a non-negative integer and 
thus must be zero. Hence we have m / n  = m ' /n  I and the 
choice for n is thus unique, except to a common factor of  
m and n. 

1.2 Periodic Grating Self-lmaging for Finite N 

To get a feeling for the solution, consider a particularly sim- 
ple case in the limit as N ~ oc and e --+ 0, with m = 1, 
n = 1, r = N ,  and N odd. In such case the function 
P (v - ½) becomes an infinite periodic string of &functions 
on the half-integers, and the function E is a constant, E = i. 
The function t'(x) has only one period and reduces to s(x). 
The superposition integral then produces an image that is 
a periodic string of magnified single periods, all with the 
same phase (except for an extraneous quadratic phase fac- 
tor), i.e., an exact magnified image of the original infinite 
grating. The image is offset, however, from the position of 
the geometric shadow of the grating by one half period be- 
cause of the term ran~2 = 1/2 in the argument of p .  The 
image is thus periodic with period Ma, multiplied by the 
extraneous quadratic phase factor exp[iq~0(x2, x0)]. 

Let us examine the argument of  the n-period grating 

f u n c t i o n t ' ( M  ~ ) .  When N i s  finite a n d e i s  still 

sufficiently small that (28) holds, then the central part of  
the image is given by a convolution of this function with 
a string of spikes that is periodic with unit period, except 
for a different phase of  each spike. The convolution of each 

spike of P ( v - - ~ )  with each period of the function t '  

produces a geometrically magnified image of a single grat- 
ing period. The n periods of  the function t '  produce n such 
images. When # = m holds then some of the various im- 
ages may lie exactly on top of each other. Depending on the 
phase they may either cancel or reinforce each other. In gen- 
eral, when the fraction rain is not reduced to lowest terms, 
destructive interference occurs. When the single period func- 
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tion is negligible everywhere except for an isolated feature 
of width s < (a/#) (as in the case of a grating composed of 
narrow slits) then the contributions from neighboring spikes 
will not overlap and the phase variation from one spike to 
the next will be inconsequential. In such case the integration 
produces an image that is (except for phase and envelope) a 
periodic string of magnified single period images. 

The image period is Ma/#. That is, the image has /z 
periods per geometric shadow period Ma. We thus call the 
quantity/z ~ ra the alias multiplicity. We note that the Cow- 
ley and Moodie result (Appendix B, (B6)) indicates an image 
whose period is Ma. When/z  = m is an integer, then the 
period Maim is commensurate with the period Ma and is 
compatible with the Fourier series of (B6). However, when 
# is not an integer, then the periods Ma/# and Ma are 
incommensurate and our solution provides a frequency shift 
from that of Cowley and Moodie. It is noteworthy that a 
new feature arises here with finite gratings of modest extent 
that was not present in the infinite grating case treated by 
Cowley and Moodie. (Spectral properties of the image will 
be discussed in Sect. 2). 

Next, consider a second simple case with m -- 2, n = 1, 
r = N,  and N odd, in the limit as N --+ oc and e ---+ 0. 
Since the term mn/2 is now integral, the lateral half-period 
shift that was due to this term vanishes. However, there will 
be images of the original magnified single period both in the 
position of the geometric shadow as well as aliased images 
half-way in between the shadows. 

Let us examine further the half-peiod shift. To do so, 
consider another illustrative simple case with m = 1, n = 3, 
r = N/3, and N even, again in the limit N ~ ~ and 
e ~ 0. Since mn/2 is half integral, there will be a half- 
period shift via the argument of P.  The grating ( now has 
three periods, spaced in v at integral values of YCz/(Ma), i.e., 
spaced with the same interval as the period of the function 
P. Thus, the three images produced by each of the three 
periods of the shortened grating function t r will coincide. 
However, these three periods occur on integral values of v, 
while the geometric shadows of the original grating occur 
on half-integral values of :~a/(Ma). A Second half-period 
lateral shift of the image is thus introduced. The two lateral 
shifts will cancel and the images will lie on the positions of 
the geometric shadows. 

We have noted two sources of half-period shifts of the 
image. When the product mn is odd, the spikes occur at 
v equal to half integer values, while when it is even, they 
occur at integer values. Whenever n is odd but r is even, 
the positions of the grating periods in the function t will 
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be offset from those of the original grating function t by an 
additional half-period. Otherwise, the positions of the grating 
periods in the function t~ will coincide with those of the 
original grating function t. In some cases, the shifts cancel. 
The various possibilities are summarized in Table 1. 

1.3 Form of P(v) when lel is not Small 

When the number of periods N is large, then (28) sets rather 
stringent limits on the variation of lel and demands a careful 
matching of )~TR/)~ to m/n  for the function P(v) to take 
the form given by (30), which, in turn, has the form of a 
periodic series of narrow spikes, each of which approaches a 
G-function in the N --+ ~ limit. However, the function P(v) 
displays remarkable properties. Even when (28) is strongly 
violated, the function P(v) in a convolution still acts with 
the same effect. Thus, (28) does not represent a requirement 
for self-imaging to occur. 

Figure 2a-d show a numerical evaluation of the modulus 
and phase of one period of P(v) as a function of v for 
various values of e for the case n = 1 and r = N = 75. 
As anticipated above, when (28) holds, each period has the 
form of a real spike. For small tel such that (28) holds and 
the full width of each spike, from (30), is given by 

2n 2 
Z~Vspik e = ~ -  = ~ .  (34) 

However, as le[ increases above the limit set by (28), the 
function becomes complex. The modulus of each spike be- 
comes a narrow square topped plateu. The phase is stationary 
at the platean's center and increases quadratically outward. 
The full width of the plateau is approximately given by 

2n 
ZaVp~a,ea° ~ NnleJ + -~.  (35) 

(Actually, this Formula will slightly underestimate the pla- 
teau width, depending upon how the width is defined.) By 
considering the form of the Fresnel integrals, we note that in 
the convolution with a slowly varying function the effective 
spike width will be determined not by the plateau width, 
but by the quadratic phase factor, which then provides a 
narrower effective spike width. Indeed, a self-image cannot 
display features of a single period (such as a slit of width s) 
narrower than a AVphas e given approximately by 

AVphas e ~, 3 ~ - ~ -  2fb ~ -  (36) 

Table I. N n r 

Odd Odd Odd 
Odd Odd Odd 
Even Even Odd 

a This case does not occur in practice since Even Even Odd 
the ratio m/n is not reduced to lowest terms, Even Even Even 
and as mentioned in the text will cause de- Even Even Even 
structive interference and vanish Even Odd Even 
b This displacement is due solely to dis- Even Odd Even 
placement of the shadow positions 

m m n  j q Offset 1/2 period 

(6) (15) 
P t ~ Image 

Even Even Int Int No No No 
Odd Odd Int Int Yes No Yes 
Odd Even 1/2 Int 1/2 Int No No No 
Even Even 1/2 Int 1/2 Int No No No 
Odd Even 1/2 Int 1/2 Int No No No 
Even Even 1/2 Int 1/2 Int No No No a 
Odd Odd 1/2 Int Int Yes Yes No 
Even Even 1/2 Int Int No Yes Yes b 
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Fig. 2a-d. Numerical evaluation of the modulus and 
phase of one period of P(v) as a function of v for various 
values o f e f o r n  = l a n d r  = N = 75. a s  = 0, 
b e = 1/(16N), c e = 1/(2N), d e = 1IN 

Thus each spike is still effectively narrow as long as the 
inequality 

1 
lel << n---N (37) 

holds. When (37) becomes an equality, then the plateau 
width has spread to one whole period, and is approximately 
constant for all v. For larger le[ the plateau abruptly disinte- 
grates and becomes oscillatory. For even larger lel such that 
#In  again closely approximates a ratio of different integers, 
(with n now a different divisor of  N)  then P(v) reforms into 
a new set of  spikes with a new multiplicity appropriate to 
the new n and nearest m. Although we have no ready proof 
for assertions (35) and (36), computationally they appear to 
be approximately true for all the cases we have evaluated. 
The limit set by (37) may be found by examining the results 
of  Sect. 3 in the limit as ~/a --+ O. 

The area for each period (evidently a spike and/or oscil- 
latory-phase plateau) of  P(v) is readily calculated. When r 
is odd, a term-by-term integration of the sum in (27) from 
v = - 1 / 2  to v = + 1 / 2  yields zero for all terms in the 
sum except for the one with p = 0, whose integral is one, 
independently of the value of r (odd), c, and n. When r is 
even, then p takes on half integral values and the integration 
is more complicated. A term-by-term integration of the sum 
in (27) from v = - 1  to v = +1  (or from - 1 / 2  to + 3 / 2 )  
yields zero for all terms, consistent with period 2 alternating 
sign spikes. For given values of  v, r, and e we may define 

( r - 1  ) r - l i n t e g r a  1 Po v, ~ ,  c =-- P(v) f o r r o d d ,  - - ~  

and similarly 

Pe v , T ,  g =----- P(v), 

r - 1  
for r even,  - -  half-integral. 

2 

It is then straightforward to show that 

( r - 1  ) 1 [  ( v  4 )  Pe v , - - - ~ , e  = ~  /Do ~ , r - - 1 ,  

r  38, 

holds, whereupon Pe exhibits alternating-sign spikes and all 
spikes with the same sign are periodic with period 2. Thus, 
Pe may be expressed as a difference of two periodic func- 
tions, one whose integral from - 1  to +1  is 1, and one whose 
integral is - 1. 

Thus, each spike 's  area is effectively constant. Since the 
effective width approaches zero as N ~ oo, the periodic 
function P(v) still acts like a periodic string of delta func- 
tions (with unit period) as long as # differs from an integer 

1 
by less than ~-~.  For large but finite N ,  (37) clearly al- 

lows a far wider range of e ¢ 0 over which near or filtered 
self-imaging (i.e., with rounded features) occurs than does 
(28). For infinite N,  exact self-imaging occurs only when 
e exactly equals zero. For N ~ oo and ¢ ~ 0, an alter- 
native choice for ra and n is thus required, although the 
resulting image multiplicity may be large. For wide single 
period features, the effect may result in piled-up (and thus, 
complicated) self-images. 

Thus, with [e[ within the limit set by (37) (much wider 
than the limit set by (28)), as N approaches infinity, the 
function P(v) maintains the form of an infinite-string of 
constant area spikes whose width approaches zero as N --+ 
oo. In the N --+ oo limit both (28) and (37) requi re / ,  to be 
an exact integer, in order for the function P(v) to become 
a periodic string of &functions. Since the periods Ma and 
Ma/ra are commensurate for # = ra, we note that this 
result is consistent with the N ~ cx~ Cowley and Moodie 
solution, summarized in Appendix B, which yields an image 
amplitude that is always periodic with period Ma. Thus, 
self-imaging then occurs for any # = m and n for which 
the multiplicity m is sufficiently small that the self-images 
do not overlap. 

1.4 Self-Image Envelope Width and the Effect of E(v) 

The infinite string of spikes would create an infinite number 
of  single period images, were it not for the action of the 
factor E(v) which gives rise to a finite envelope. At large v 
the factor E(v) will cause the phase of  the Green's  function 
to vary more and more rapidly. The phase ¢ shift introduced 
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by this factor is given by 

Try 2 
¢ -- (39) 

# n "  

For a grating displaced from the origin [in the v-space con- 
volution of (23)] to a value ~ given by 

Yc2# 
~ - -  (40) 

m a '  

the phase advance rate is then given by 

de _ 27r~ 27r:~2 
- -  - -  ( 4 1 )  

dv #n nMa 

The image amplitude produced by a given spike's contri- 
bution to the convolution will diminish at values of ~ for 
which the phase change provided by E(v) across its finite 
width is greater than 27v, or equivalently when 

de 
27r = AVspike~-~V (42) 

holds. The factor E(v), thus provides an envelope full-width 
given by 

AYe2 "~ M a N  and A~ ,.~ m N  (43) 

which, for # ,~ m, is just the magnified geometric-shadow 
grating width. Correspondingly, subsidiary maxima are also 
to be expected when the phase change across a spike is an 
odd multiple of 7v. 

will occur at angles spaced by 

u M a  -_. f ~___ (48) 
0Talb°t = /zR2 na " 

Consider our various equivalent formulae for the image 
amplitude. The smallest r Formula has r = 1, at n = N,  
whereupon the function P(v) is no longer periodic but in- 
stead constant (= 1), and the "spike" width is effectively 
infinite. This formula is the usual expression for Fresnel 
diffraction. The minimum value for the integer r, for which 
P(v) is a periodic function, is 2 (with n = N/2). It cor- 
responds to the widest spikes in P(v), since, by (27), this 
function takes the form of a cosine. 

The maximum value for the integer r is the largest divisor 
of N,  i.e., it is r = N,  itself, with n = 1. It, correspondingly, 
yields # = 5 / N  2 and Av~h.gr. = S / N  2. By (34) the largest 
r formula corresponds to the narrowest spike width, and by 
(45) the narrowest short grating width. For any r the ratio 
of short grating width to spike width is g- / (2r ) .  Thus, the 
maximum r formula minimizes this ratio. 

Fraunhofer diffraction orders are easily seen to be formed 
using the maximum r formula, whereas with the usual Fres- 
nel r = 1 formula, their presence is less immediately evi- 
dent. From (47) and (48) we see that for n = 1 and r = N 
the angles 0Fraunhofer and 0Talbot a re  equal. This value of n 
gives only one period to the short grating. We may now spec- 
ify "long wavelength" relative to 2w~/(N~) as determining 
the Fraunhofer regime, i.e., this regime now corresponds (for 
modest N)  to values of the parameter 5 ~ satisfying equiva- 
lent inequalities 

1.5 Diffraction Regimes and the Fraunhofer Limit 

Various diffraction regimes are specified by the wavelength 
and the geometry. To do so, a few definitions are needed. 
First, we define the grating effective full-width Wg as 

Wg = aN.  (44) 

Correspondingly, in v-space we define the shortened grat- 
ing's full width, AVsh.gr., which, by (23) and (24), may be 
written as 

AVsh.g:. = n# .  (45) 

We further define the dimensionless ratio .~- as 
2 

.U =_ wE = N 2 )~T~ = N 2_~ 

= N r #  = r2n# = r2Z~Vsh.gr. , (46) 

where the various evaluations of ~"  have used (16), (18a), 
and (44)-(45). In terms of . ~  the multiplicity is then given 
as # = . ~ / (Nr )  and the short grating width in v-space is 
given as AVsh.gr. = ~ / 7  "2. 

Fraunhofer diffraction orders always occur at diffraction 
angles spaced by 

0Fraunhore r = f ~ ,  (47) a 

where f is an integer. However, the discussion of Sect. 1.2 
indicates that generalized Talbot fringes [i.e., peaks in P(v)] 

~TR # I 
. ~  < N ;~ = n "~< --'2N (49) 

In such case the short grating will always fit within the 
central spike of P(v). For (49) strongly satisfied, the im- 
age amplitude will follow the form P(v), with its peaks at 
the Fraunhofer maxima, broadened but slightly by the finite 
width of the grating single period. Thus, there is no coinci- 
dence in our observation of Sect. 1.1 that the function P(v) 
reduces to the periodic interference function that results from 
Fraunhofer diffraction by a periodic structure. 

Consider next what happens when (49) is minimally vi- 
olated. Since the n = 1 case single period grating now 
has dimensions comparable to the spike, the image will be 
broadened proportionally to the grating's width. For (49) an 
approximate equality and # ~ 1 holds, then # is approxi- 
mately an integer. As we have seen, generalized Talbot-yon 
Lau fringes will form. Comparing (47) with (48), there will 
be n = N of these per order spacing. Indeed, the standard 
Fraunhofer interference function as in [2] predicts a side 
lobe period equal to the order spacing divided by N. In the 
near Fraunhofer regime, the fringes will appear as wiggles 
superimposed on the basic Fraunhofer order structure and 
will form with increasing .Y from remnants of the order 
side-lobes. 

Finally, consider what happens for even shorter )~, such 
that (49) is more strongly violated. Then, n may take on 
other integer values less than N, and/or # may take on in- 
teger values greater than one, whereupon n generalized/z, n 
Talbot fringes will form per Fraunhofer order separation. 
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Fig. 3a-f. Image intensity and associated geometric shad- 
ow patterns (symmetric about the Origin, horizontal- 
axis = 5:2, in units = 10 -6) showing the transition 
from Fraunhofer diffraction orders to generalized Talbot- 
von Lau fringes for various R1 and for a grating with 
N = 12 slits, .J/a = 1/3, R2 = 1, a = 10 -6, and 
fixed A = 0.5 x 10 -9. Fraunhofer orders occur at the 
major horizontal-axis divisions, i.e., at integral multiples 
of 500 × 10 -6, while the horizontal-axis subdivisions are 
at the order spacing N. a has R1 = w, tz/n = 0.002, 
and (49) satisfied, b has R1 = 0.0504, #In = 1/24, 
and (49) an equality, e has Ra = 0.0246, #In = 1/12, 
(49) violated, d-f correspond to cases with # = m = 1, 
with (52) violated and with n = 3 (R1 = 0.006), n = 2 
(R1 = 0.004), and n = 1 (R1 = 0.002), respectively 

Finally, consider what happens for even shorter A, such 
that (49) is more strongly violated. Then, n may take on 
other integer values less than N,  and/or/z may take on in- 
teger values greater than one, whereupon n generalized #, n 
Talbot fringes will form per Fraunhofer order separation. 

Examples of  these features are shown in Fig. 3a-f. Here 
we have numerically calculated the image intensity using 
the usual but equivalent r = 1 formula, from which none 
of  the above behavior is immediately evident. For all of  
these figures the calculation is for a grating composed of  
12 unit-transmission slits [21] of  width ~, with ~/a = 1/3, 
R2 = 1, a --- 10 -6, and A = 50 x 10 -9 held constant, thereby 
freezing the positions of the Fraunhofer diffraction orders at 
integral multiples of  500 x 10 -6. Among these figures we 
vary the value of  R1 and, correspondingly, vary the value of  
3- .  (For this geometric variation all alias images lie on top 
of  each other. If  instead we vary the wavelength, keeping 
the geometry fixed, then the positions of the Fraunhofer shift 
and aliases are evident.) 

Inequality (49) is satisfied in Fig. 3a, b, and well formed 
diffraction orders are evident. The modulating wiggle pe- 
riod (except at the orders themselves, wherein the associated 
spike width is twice the wiggle period) is the order spac- 
ing divided by n. Figure 3c corresponds to a case (n = N,  
/z = 1.0) wherein (49) is violated by only a factor of  two, 
with only a hint of  the order of  structure remaining. Fig- 
ures 3d-f, all correspond to cases with # = m = 1, with 
(49) violated, and with n = 3, n = 2, and n = 1, respec- 
tively. Figure 3d- f  each show n equally spaced well-formed 
fringes per order separation. 

In these calculations the number of  slits N is modest. 
Simpson's rule is employed for the integration using 51 
points per open slit portion. Hence, the self-images are 
rounded. Similar numerical calculations with larger num- 

bers of  slits (and/or greater numerical resolution) lead to, 
correspondingly, greater resolution in the self-images. For 
gratings composed of  simple slits (as in these examples) 
rectangular fringes with evident Gibbs phenomena are al- 
ways formed when self-images are expected. 

Finally, we note that (49) represents a generalized condi- 
tion for Fraunhofer diffraction to occur relative to the con- 
ditions presented in [2] (Chap. 8.3, (32)-(34), p. 384), which 
instead require R1A << W2g/4, and R2A << w~/4 to both hold 
[their Ineqs. (33)]. Physical optics of  finite periodic struc- 
tures now may be divided into the following sequence of 
four regimes with decreasing wavelength, each with its own 
rich structure: Fraunhofer, Fraunhofer-to-Fresnel transition, 
Talbot-von Lau, and geometric shadow. 

2 Spatial Power Spectrum for Fresnel Diffraction 
by a Finite Periodic Structure 

A knowledge of the spatial power spectral density in the 
image plane is useful for a calculation of  the net transmitted 
flux when a Moir6 is formed by placing a second periodic 
transmission grating in the image plane. We thus proceed to 
calculate the spectral properties of  the image intensity spatial 
distribution. Using (5) and the notation developed above, the 
image intensity is given by 

JJ i ~ ( ~ g 2 ) 1 2  __ 1 dx dy t(x)t* (y) 
AR1 R2 

} x LaZn[(X-M)  2- M---2) 2] (50) 

where the two Xl integrations use the dummy variables x 
and y. Upon expanding the squares, canceling terms, and 
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extracting a common factor within the exponent, the expo- 
nential factor may be simplified to 

exp{  i2rc___~(~_x_)[(y+X)n L\  2a J - ~2a ]}"  

The integration is more readily performed in a rotated and 
rescaled coordinate system, shown in Fig. 4, for which we 
define the transformation 

y+x y - x  
~ - - ,  r I ~ , (51) 

a a 

with a Jacobian a2/2. In this coordinate system we may 
write the intensity distribution as  2ff 
1@@2)12 - 2AR1R2 &l d~ 

- - 0 ( 3  - - 0 0  

.# 
x exp [ - 2 7 r l ; ~ ? ( ~  ]~2a) 1 . (52) 

Factoring the term in the exponential that is independent of 
{, (52) may be written as 

a 2 

1@@2)12 -- ARI~2 

x f drl[exp (2rri,~-~a) ]F01,, (53, 

- -OO 

where we define F(r/) as 

x exp ( - 7ri~7, ) . (54, 

For suitably renormalized Yc2, we recognize (53) as the in- 
verse Fourier transform of F(r/). Hence, the function F(r/) 
represents the spatial power spectrum of the image intensity. 

The single slit periods shown in Fig. 4 form a finite raster, 
periodic with the same period in both x and y. For such a 
raster the double integral may be represented as a finite dou- 
ble summation over the unit-cell double integral. When the 
single period function s(x) has a simple form, then both in- 
tegrals may be evaluated explicitly. For example, when the 
single period function s(x) has the form corresponding to a 
slit with a width ¢ less than half the period a, then the func- 
tion F(r/) can be represented as a finite double summation 
of unit-cell double integrals. (A similar procedure can also 
be carried out when a/a is greater than 1/2, however, it is 
more complicated.) 

Viewing the {-integral as a function of ~ in the rotated 
coordinate system of Fig. 4, we see that the power spectrum 
F is zero for values of r/ that slot diagonally between the 
now diamond-shaped raster elements and nonzero only for 
values of r~ that intersect the raster elements. Intersection 
occurs only for values of 77 within a/a of an integer. The 
raster thus renders the form of the power spectrum to be a 
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Fig. 4. Rotated and rescaled coordinate system used for performing 
the integration of the spatial power spectral density. The side of each 
square is 

set of spikes or interference "resonances". This assertion is 
true whether or not the number of slits is infinite. For a finite 
number of slits, there will be a finite number of resonances, 
and vice versa. For either a finite or an infinite number of 
slits the resonance full width (in "normalized" frequency ~1) 
remains finite and equal to Z;/a. Referring to Fig. 4, we thus 
let 

{ = 2 / + 9 ,  and r l=j+h , (55) 

where ~ and j are integers, and restrict b[ and 1hi to both 
be less than or equal to ~/a. The factor of two is introduced 
since a scan of ~ for fixed r/encounters raster elements half 
as frequently as does a scan of a line parallel to the ~ axis 
in the r/-direction. We denote the power spectral density of 
the jth resonance as a function of the displacement h from 
the resonance center j by Fj(h) = F(j + h). Using (55), 
simplifying further to a slit with unit real transmission at the 
period's center, and examining the form of the ~-integration 
(for both odd and even number of slits N), it may be written 
as 

N-l-M2 -~-Ihl e x p [  - 7ri~O+h)(21+9) 1 
Fj(h) = E f dg 2 

~= [J14-~ "-N Ihl-~ 

)] L/=li+~ -N exp ( -  2 rd~( j  + h)l 

x dgexp -Tri  ( j + h ) g  . (56) 

Ihl-~ 

The ~-integration has thus factored into a decoupled sum 
and integral, each of which may be evaluated independently. 
The integral is elementary and the sum is that of a geometric 
series. Thus, we may write the Fourier coefficient for the jth 
harmonic (for Ihl < ~/a) as 

x (57) 
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where the function sinc(x) has its usual definition 

sin(x) 
sinc(x) = (58) 

X 

The imaginary part of  the integrand of  (53) is anti-symmetric 
under the interchange ~7 +-+ -~7 (or equivalently, h ~ - h  
and j +-+ - j )  and cancels in the integration. Thus, with the 
substitutions of (55) and (18a), the inverse Fourier integral 
of  the power spectrum becomes 

N - I  / 
2# ~ dh 

1~3(x2)12 - n(R1 + R2) .= -aSgn(j) 

x c°s (err-~ (j + h) ~--~--2" / (59) 

where the function sgn(x) has its usual definition 

1 x > O  

sgn(x) =-- 0 x = 0 (60) 

- 1  x < 0 .  

For finite N our solution thus provides a finite number of  fi- 
nite width harmonics and a frequency shift, in sharp contrast 
to the infinite extent &function spectrum displayed by Cow- 
ley and Moodie ' s  solution. Limiting the number of  slits cor- 
respondingly limits the number of  resonances, and thereby 
limits the spectral extent. The multiplicity m is similarly 
l imited by N for self imaging to occur. 

2.1 N ---* oo Limit, Resonance Widths, and Frequency Shift 

In Appendix B, we review Cowley and Moodie ' s  result and 
find an image that is periodic with a period Ma, while in 
Sect. 1.2 we noted a basic image period shift to Ma/#. We 
further noted that when # = ra is an integer, then the period 
Maim is commensurate with the period Ma and is com- 
patible with the Fourier series of  (B6). However, when # is 
not an integer, then the periods Ma/# and Ma are incom- 
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mensurate, and the "broadened" Fourier series of  (59) has 
an inherent period difference from the "sharp" Fourier series 
of  (B6). How are we to resolve the apparent discrepancy? 

In the N ~ oo limit the solutions are indeed compati- 
ble. In this limit, we note that the Fraunhofer interference 
function (ratio of  sines) in Fj(h) approaches a comb func- 
tion (infinite string of  &functions) and the inverse Fourier 
transform becomes a convolution over h+j. The &functions 
occur for integer v a l u e s ~  = (3" + h)#/n, or equivalently, at 

n 
values h = f -  - j .  The sum then becomes an infinite sum 

/z 
over j ,  with the spatial frequencies of  (59) being the same 
as those of  (136). Terms in the summation for which there 
exist no integers j a n d j  such that the requirement ]hi _< ~,/a 
is satisfied will vanish. Making these substitutions and per- 
forming the integration over h, the intensity may then be 
written as 

1¢(~2)12- n(R1 .~ - " - j 

(2rr I. X2 "~ • r Vg) s,nc[>t,a- i ;-s )],(61) X COS 

where j is now whatever integer makes the absolute value 
less than or equal to x/a, and if  none exists, then the asso- 
ciated term in the series is to be taken as zero. 

Although not obvious from the forms of  either (B6) or 
(61), the finite resonance width evident in (57) and (59) 
leaves traces latent in these results. A variation of  k (or 
equivalently, a variation of  #) will make the &functions 
occur at different values of  h, which, in turn, will yield a 
variation of the Fourier coefficients of  the "sharp" Fourier 
series. To see this, consider the mult ipl ic i ty-m alias, whose 
dominant Fourier coefficient will be a t t ' =  m.  The associ- 
ated &function will have a value of  h given by the solution 
to the equations 

~ ( n + h ) = ( ~ + e ) ( n + h ) = m . n  (62) 
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Fig. 5a-e. The dependence of the various spatial power spectrum 
Fourier coefficients on A/ATR at N = oc. Geometry (R1 = R2 = 0.5, 
a = 10 5, ,~/a = 1/4, A~rR = 4 × 10 -1°, unit transmission slits) is held 
fixed while wavelength is varied, thereby displaying the finite-width 
resonance phenomena, a through e display, respectively, harmonic #1 
(fundamental) showing m = 1 resonances through harmonic #5 show- 
ing ra = 5 resonances. Tics mark associated n value a t  A//~TR : n/m. 
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Note the negative values for resonances with ran odd. Resonance 
widths are given by (65). a (ra = 1) resonance peaks correspond to 
Talbot-von Lau fringes. Cusps on d (n = 4) resonances are due to 
the flat image formed by a sum of 4 self-images of ~/a = 1/4 slits. 
e (ra = 5) resonances are due to piled up images for ~/a > lira. 
The resonances at A ~ 0 correspond to the geometric shadow pattern 
formed at n = 0 
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Furthermore, the mth Fourier coefficient will vanish by the 
requirement Ih] < ~/a, or equivalently at integral values of 
m and n for which the inequality 

]el < r~ 2 a (63) 

does not hold. Hence, in the N ~ ec limit the "sharp" 
Fourier coefficients of the intensity will display resonances 
for integral m and n for values of A satisfying 

ATR m 
- + e ,  (64) 

A n 

each with a full width as per [22] 

AA 2 
- (65) 

We demonstrate these assertions by a straight forward 
calculation. We have numerically evaluated (B6) for an in- 
finite grating composed of rectangular slits, calculated the 
intensity for a single period, and then calculated its Fourier 
expansion. Various Fourier coefficients are plotted as a func- 
tion of wavelength in Fig. 5. A string of coherent resonances 
is evident, each with a finite range of AA given by (65). Ad- 
ditionally, we have repeated the procedure while varying the 
number of Fourier coefficients Cj in (B6) from 20 to 80. The 
resonance shapes and widths are essentially independent of 
the number of Fourier coefficients chosen in describing the 
amplitude. 

3 T h r e e  G r a t i n g  L e n s - F r e e  I n t e r f e r o m e t e r s  

As an application of our results, we describe lens-free grat- 
ing interferometers that employ a diffuse (spatially incoher- 
ent) monochromatic source and a diffuse detector. These are 
lens-free generalizations of a Lohmann and Silva interfer- 
ometer [10] that works in a v o n  Lau geometry. Given the 
foregoing discussion, the principles of operation for such an 
interferometer are quite straightforward to understand. 

Three gratings with small ~/a and respective periods al, 
a2, and a3 are aligned with their slits parallel sequentially 
along an optic axis, with their planes spaced R1 and R2 
apart. For spatially incoherent illumination of the first grat- 
ing, consider the action of the middle (second) grating via 
our formulae with a = a2. For illumination with narrow- 
band light at a wavelength A such that # ~ m holds, then 
each point within a slit of the first grating acts as a source, 
incoherent from its neighboring source points. It produces 
a self-image of the second grating at the plane of the third 
grating, via the formulae given above. The third grating is 
selected to have a slit period a3 equal a rational multiple of 
Maz/ra, so that the transmission of the third grating forms 
a Moir6 pattern with the image, i.e., the third grating has 
open slits at the positions of the self-images, and closed slits 
elsewhere. Different source points on the first grating will 
produce images on the third grating whose intensities will 
add incoherently. The first grating is selected so that it has 
a slit period that is a rational multiple of Maz/(raM - ra). 
With these choices for al and a3 all incoherently illuminated 
source points will image to form substantially similar pat- 
terns on the third grating and thereby maintain the visibility 
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of the fringes on the third grating. Translation of any grating 
will then produce alternating bright and dark transmission. 
Any interspersed refractive elements, change in wavelength 
etc., will likewise cause a variation in the net transmission. 

Earlier we discussed an example of such an interferome- 
ter in which the grating planes are equally spaced (M = 2) 
and the first and last gratings both have twice the period of 
the middle grating [16]. Many other configurations are pos- 
sible. In the next section we give experimental results for 
another configuration. 

Using the results of Sect. 2, the fringe visibility as a func- 
tion of wavelength for fixed geometry, the visibility as a 
function of longitudinal grating displacement for fixed wave- 
length, or any other desired spectral property is readily cal- 
culated for such an interferometer. The effect o f  the first 
and last gratings on the intensity spectrum may be calcu- 
lated by an appropriate filtering of the single source point 
image pattern. 

3.1 Observation of Aliasing 
with Spatially Incoherent Light 
in a Lens-Free Three Grating Interferometer 

In this section we describe the operation of one such inter- 
ferometer discussed in the previous section. We thus report 
observation of aliasing using a lens-free interferometer em- 
ploying both an uncollimated (and thus, spatially incoherent) 
monochromatic source and an uncollimated detector. Our 
experiment is readily reproducible in any undergraduate op- 
tics laboratory. Its geometry is shown in Fig. 6. Three sets of 
transmission gratings are mounted sequentially on an optical 
bench with their slits vertical and with their planes crudely 
parallel. The third is mounted on an optical translator to al- 
low its horizontal displacement perpendicular to the bench 
axis, with its lateral position monitored by a machinist's dial 
gauge. The grating slits are aligned approximately parallel by 
shining a defocused, attenuated HeNe laser through the se- 
quence, sighting into the beam over, and/or through, the var- 
ious gratings, and then rotating the gratings about the optical 
axis so that the horizontal stripes produced by the grating's 
diffraction of the laser beam are visually parallel. A sodium 
vapor discharge lamp (borrowed from a UC-Berkeley under- 
graduate physics lab) is then placed close to the first grating. 
To minimize the effects of residual rotational misalignment 
of the gratings about the optical axis, the lamp's vertical 
extent is limited to 1.5 mm by masking the lamp with a hor- 
izontally oriented aluminum foil slit. The horizontal extent 
of the gratings and lamp is then about 25 mm. 

An observation consists of sighting the lamp (from a con- 
venient distance) through the three grating sequence and vi- 
sually monitoring its intensity as the third grating is laterally 

1.5cm 

I GI G2 G3, 
\ __1" _1" t' 
\ al = 50 %-1--55 %=5-0 
Na Lamp 

Fig. 6. Geometry of the experiment to demonstrate aliasing with spa- 
tially incoherent light in a lens-free three grating interferometer 
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translated. When the spacings between the grating planes are 
within about a millimeter of the positions predicted by our 
formulae (as measured by a meter stick), the visual appear- 
ance of the lamp's intensity will alternate between bright at 
the fringe maxima, and nearly extinguished at the minima. 
Given the logarithmic response of the human eye, the fringe 
contrast is thus very high. The dial gauge readings at these 
maxima and minima are then recorded. 

Each grating consisted of a pair of identical inexpen- 
sive Ronchi "rulings" (purchased from Edmund's Scientific). 
Each "ruling" consists of a glass slide with a set of parallel 
black stripes reproduced on one face to produce a trans- 
mission grating with ~/a ~ 0.5. To produce a grating with 
~/a < 0.5, the pair was held together with a rubber band 
with the emulsion sides in direct contact. We then rotation- 
ally adjusted the contacted gratings relative to each other 
to yield a uniform gray appearance, and then translationally 
adjusted their relative position to give the desired value for 
~/a. The resulting ~/a of the assembled grating was mea- 
sured by measuring the net transmission of light through the 
assembly. A second method was also employed for measur- 
ing ~/a and yielded the same value. It consisted of shining 
a HeNe laser through the grating and inferring ~/a from 
the measured positions of the single slit diffraction intensity 
nulls. 

The first and third grating had 50 stripes per inch (al = 
0.508 mm), while the second had 150 (a2 = 0.169 mm). The 
three gratings were adjusted to ~1/al = 0.006, ~ 2 / a 2  = 0.02, 
and ~3/a3 = 0.1, respectively. To obtain maximum fringe 
contrast, the thickness b of each glass slide had to be com- 
pensated by decreasing the axial grating spacings by a corre- 
sponding small amount equal to b/n, where n is the index of 
refraction of the glass (assumed ~ 1.5). After compensation, 
the effective spacing between the first and second gratings 
was R1 = 97.4 ram, and between the second and third was 
R2 = 194.7 ram, yielding O = 64.9 mm. These values were 
chosen to yield 

R1R2 4 a 2 M -  R1+ R2 _ 3 
P -  R1-1-R2 - -  3 ANa' R ~  ' 

R2 al 
- -  = 2 ,  - -  = 3 .  
R1 a2 

G ro, lo0 G rofn02 

L _,  R 2  

Fig. 7. The positions of the geometric shadows for our experimental 
arrangement. At our chosen wavelength and grating spacings there are 
three distinct images formed per geometric shadow period. A different 
choice of wavelength (and/or of R2 = 2R1) will form a different 
number of images per shadow period 

The positions of the geometric shadows for this arrangement 
are shown in Fig. 7 and have a spacing equal to a3 = al, 
which is that of a simple shadow Moir6, as well as that of 
the (m = 1) Talbot and von Lau effects. On the other hand, 
our formulae predict an alias multiplicity m = 3 and thus 
an image period of Ma2/m = a2 = a3/3, i.e., one third of 
the geometric shadow spacing. By choosing a third grating 
period a3 equal to al,  upon lateral translation of this grating 
the observed brightness will then vary with the same period 
as the actual image period, and these two cases are easily 
distinguishable. Our dial gauge readings of the positions of 
maximal apparent brightness of nine successive fringes yield 
an observed fringe spacing ~ ai/3, i.e., that of the aliased 
image and not that of the geometric shadow Moir6 or the 
(m = 1) Talbot and von Lan effects. 

4 Further General izat ions and Applicat ions 
to Matter-Wave Interferometry 

The analysis provided above may be extended to reflection 
gratings in a straightforward manner. It may also be gener- 
alized to allow the calculation of images produced by two- 
dimensional gratings as the analyses by Cowley and Moodie, 
and Winthrop and Worthington have done at # = rn = 1 and 
N = oc. Conceivably, it may also be extended to cylindri- 
cally symmetric gratings through the use of Bessel, Lommel, 
and Struve functions [2, Sect. 8.8]. 

An important application for lens-free three (and four) 
grating interferometers is to their use with matter-waves 
sand/or X-rays. Indeed, their use in atom interferometry pro- 
vided our primary motivation for our pursuit of this work 
[11]. Both matter-waves associated with low energy neu- 
tral atoms and X-rays have wavelengths (0.01-10nm) ide- 
ally suited for such devices using available micro-fabrication 
technology (micron to sub-micron range). If  MKS units are 
used for the examples of Figs. 3 and 5, the values are typical 
for a neutral atom matter-wave interferometer. 

Low energy atoms (and soft x-rays) have negligible trans- 
mission range through matter. Thus, the use of vacuum aper- 
tures provides an attractive option for the construction of 
aberration-free optics for these waves. Separated beam atom 
interferometry [12] current practice has a low throughput 
flux dominantly limited by its collimation requirements. Use 
of generalized Talbot-von Lau fringes and the interferometer 
geometries discussed herein remove these limits and promise 
very high throughput fluxes with arbitrarily wide collimators. 
Such interferorneters thus have a wide variety of applications 
for both X-rays and matter waves, including (with gratings 
periodic in 2D and/or 1D) a phase sensitive imaging device 
and/or a narrow-band interference filter. The grating dimen- 
sions required for the interferometers described herein are far 
easier (by more than an order of magnitude) to accommodate 
than those required for separated-beam atom interferometer 
configurations. Alignment of low velocity (long wavelength) 
interferometers is further facilitated by the presence of the 
high velocity (# ~ 0), geometric shadow Moir6. Conceiv- 
ably, given the slow dependence of the required grating pe- 
riod upon the wavelength, a oc )d/2, even hard x-ray inter- 
ferometry may be performed via the above techniques with 
gratings formed from suitably selected crystals (e.g., with a 
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homogeneous lattice, or with one composed of alternating 
high and low 2 species). 

For matter-wave interferometry, it is straightforward to 
show that long range potentials (such those due to gravity 
and rotation), when acting on the matter-waves associated 
with massive particles within an interferometer, simply shift 
the diffraction pattern by a classical displacement. Thus, our 
interferometers can be useful probes for measuring effects 
associated with such potentials. When the open topology 
of the propagation is also considered, quantum mechanical 
topological phase shifts will modify these effects and must 
also be accounted for. A consideration of these modifications 
will be the subject of future work [23]. 

Appendix A. The Talbot and von Lau Effects 

In 1836, Talbot made a remarkable observation [13]. A dia- 
gram of his apparatus is shown in Fig. 8a. In this experiment 
a beam of monochromatic light is focused parallel with a 
lens and directed through a coarse periodic binary transmis- 
sion grating (Ronchi ruling). A second identical grating is 
then placed in the transmitted light and aligned so that its 
slit plane and slits are parallel to those of the first grating. 
An observation consisted of varying the separation between 
the two planes and the lateral position of the second grat- 
ing (in a direction perpendicular to the grating slits) while 
monitoring the light transmitted by the pair. 

When the spacing between the gratings is zero (i.e., when 
they are in contact with each other), a simple Moir6 variation 
of the transmitted intensity (triangular in shape and readily 
explained) is produced by lateral displacements of the second 
grating. When the gratings are slightly separated, the Moir6 
transmission blurs. However, at grating spacings equal to in- 
tegral multiples of a characteristic length the Moir6 fringes 
reappear at full visibility! Moreover, at odd multiples of this 
length, the Moir6 fringe phase is displaced by 180 °. This 
effect remained unexplained until 1881, whereupon Lord 
Rayleigh identified the characteristic length to be given by 
2a2/A, where a is the grating period and A is the wavelength 
of the light [14]. 

In 1936, von Lau performed a different experiment [15]. 
A diagram of his apparatus is shown in Fig. 8b. In yon Lau's 
experiment an extended (spatially incoherent) monochro- 
matic source illuminates a separated pair of identical grat- 
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Fig. 8. a Diagram of Talbot's apparatus, b Diagram of yon Lau's 
apparatus. (Figures after Jahns and Lohmann) 

ings, one through the next. Light exiting the second grating 
then passes through a lens. At the focal distance of the lens 
a screen is used to observe thus magnified patterns thus pro- 
duced. Again, when the gratings are spaced at integral mul- 
tiples of a characteristic length, exact images of the gratings 
are formed on the screen. 

Appendix B. Treatment by Cowley and Moodie 

The treatment by Cowley and Moodie for N = ec is readily 
generalized to include complex transmission functions. In 
this Appendix, we review their argument using our notation. 
We simplify their treatment of two-dimensional gratings to 
our domain of one dimension. We start from (5), which we 
may write in terms of ]kTR via (14) as 

~(X2)--  aei¢° 7 
(/~R1 ~2)1/2 dut(au) 

--0O 

_ X2"~ 2 ] 
(B1) 

and where we have made the variable change u = xl/a. We 
specify the grating to be infinite in extent and periodic with 
period a, whereupon we express its amplitude transmission 
function by the Fourier series 

t(xl) = Cj exp . (B2) 
j = - - o ~  

Using (B2), we may write (B1) as 

~ ( X 2 ) -  (A]~1/~2)1/2 . 
3 = - 0 o  _ 0 O  

By completing the square of the argument of the exponential 
factor in (B3), the amplitude may be written as 

aei¢0 

@(x2) = (AR1R2)I/i 

X ~ C j e x p { - - i r c [ ~ R j 2 - - 2 J ~ ]  } 
j=--o~ 

x + ATR a-M/t J (B4) 
--OO 

wherein we have moved the factor that contains no u de- 
pendence outside of the integral. Upon making the variable 
change 

. ~2 (B5) 
u' = u + ~TR3 aM ' 
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the integration over u'  is recognized as a Fresnel integral 
and is immediately performed, yielding 

ei(~0+~r/4) 
~(~2) - 

(R1 + R2) 1/2 

j=--OO 

x exp i27rj ~ , (B6) 

our notation) whenever ~c2/M = (x2 - x20)/M = f / ( 2 m )  
holds. When N is odd, the jth slit is then spaced from the 
axis as x U = ja, where j is an integer. The difference in 
path lengths through slits j = f and j = 9 to a spot at x2 
is then given by 

a s - z~g - x ~ s  - : ~ g  
2~o 02f( ) 

= 2 0  f f -  - g  

where (as per (18) above) we use the definition A/ATR = 
n/#, and where the function sgn(j) has its usual definition 
as per (58). Since (B6) has the form of a Fourier series, the 
amplitude is a periodic function of  £%, with period Ma. 

Cowley and Moodie found special significance only in 
cases with # = 1. Then, when A/ATR is an even integer 
n, the first exponential factor is one, and the amplitude be- 
comes a magnified exact image of  the grating via (B2). When 
n is an odd integer, Cowley and Moodie recognized the re- 
suiting intensity to represent a magnified exact image of  
the grating shifted by one half period. What Cowley and 
Moodie missed in discussing this formula is that when # 
is any integer m, then the amplitude (except for an extra- 
neous quadratic phase factor) is a periodic function of  ~'2, 
with period Ma/m.  The existence of  m aliased interme- 
diate images for # = m ¢ 1 was recognized by Gori [8] 
and by Sudol and Thompson [9], and was experimentally 
demonstrated by Gori for a yon Lau configuration. None of  
these authors commented that the aliased image amplitudes 
would be exact self-image amplitudes of  an individual grat- 
ing single period complex amplitude transmission. Gori did, 
however, suggest that self-imaging will occur for slits with 
non-zero ~/a for a finite but unspecified range of  # ¢ m. 
The analysis presented above proves these assertions to be 
true and further specifies the range in detail [24]. 

Appendix C. Generalized Quadratic Fresnel Zone Plates 

Jahns and Lohman [4] have pointed out that the Talbot and 
von Lau effects are reciprocals of  each other in which the 
roles of  source and detector are interchanged. In the yon Lau 
geometry (i.e., for R2 = ec), they give a simple geometric 
construction that allows these effects to be understood as the 
action of  a generalized quadratic Fresnel zone plate. They 
consider the path lengths for light passing from a source 
point on the axis through each slit to a detection point on 
the axis. They note that at the Talbot-Rayleigh condition 
(m = 1) the path length through each slit is then equal 
to the square of an integer times the wavelength. Since the 
square of an integer is again an integer, focusing to a spot on 
the axis in a fashion similar to that of  a Fresnel zone plate 
is expected. Their simple picture is readily generalized to 
explain a full array of  aliased loci for n = 1, for any integer 
m (as defined by (18)), and for finite R1 and R2. We use the 
fact that the quantity j (mj  ~: J ) / 2  is also an integer when 
j is any integer, whenever the requirement holds that g is 
any odd integer when m is odd, and f is any even integer 
when m is even. A focusing/aliasing geometry results (in 

Rewriting (18a) for # = m and n = 1 as 

a 2 
- -  = raA, (C2) 

the path length difference becomes 

Af  _ Ag = A [ f ( ra f  -- f ) -  g(mg - f )  ] (c3) 

Thus, for the above restrictions on ¢' relative to ra, the path 
length difference is always a multiple of  the wavelength. 
The array of  foci and associated half-period shift are thus 
explained. The case where N is even follows similarly, since 
the slits are then spaced from the axis as yj = (j + 1/2)a, 
whereupon the the above result obtains as before, but with S 
decremented by one, i.e., with the iopposite requirement on 
f such that / is now any odd integer when m is even and f 
is any even integer when ra is odd. The situation for n ¢ 1 
is more complicated and evidently does not lend itself to 
this simple visualization in terms of  a quadratic zone plate. 
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