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Abstract. We analyze the principle of a very general and conceptually simple method for manipulat- 
ing optical fields by coupling them into a matter waves Young double slit apparatus. The field, non 
resonant with the atoms, acts as a "phase-retarding" medium in one of the arms of the interferometer 
and shifts the atomic fringe pattern. The method constitutes a simple quantum nondemolition mea- 
suring scheme of the photon number. Non classical states such as Schr6dinger cats and Fock states 
of the field are generated in the measurement process. The analysis of the atomic interferometer with 
optical "retarding" fields provides a very simple and striking illustration of basic concepts of the 
quantum measurement theory and of the principle of complementarity. This scheme, which would 
be very difficult to implement in the optical domain, is equivalent to a more feasible and recently 
proposed Ramsey interference method to measure small microwave fields with beams of Rydberg 
atoms. 

PACS: 42.50.Dv, 03.65.Bz 

The manipulation of isolated and simple quantum objects 
has developed as an important new field in quantum op- 
tics. It is now possible to trap single atoms or ions and 
to study their interaction with light under various circum- 
stances. Conversely, it is also possible to prepare a single 
field mode containing a few photons in a high Q cavity and 
to study its coupling with atoms crossing the cavity one at 
a time. The development of these new "microscopic scale" 
experiments has shifted the perspective under which quan- 
tum phenomena were described in this field of physics. The 
emphasis was previously placed on the calculation of quan- 
tum mechanical mean values, because they were the relevant 
observed quantities in experiments performed on "macro- 
scopic" ensembles of atoms or photons. The quantum as- 
pects of the phenomena with their remarkable discontinuous 
jumps were essentially buried in the averaging procedure. It 
is now possible to focus on the simulation of single realiza- 
tions of a system "history", revealing its quantum jumps and 
taking explicitly into account the discontinuity introduced by 
the measurement process. The "mean value" point of view 
is of course retrieved by averaging over many such simula- 
tions. This change of perspective has been triggered by the 
amazing improvements of the experimental techniques mak- 
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ing experiments on isolated quantum systems possible, and 
by the parallel and no less amazing progresses in computing 
facilities which make it nowadays easy to perform lengthy 
Monte Carlo simulations of a "God playing dice experiment" 
on a desk top computer! 

This new class of quantum optics experiment, together 
with similar advances in condensed matter physics (single 
electron tunneling experiments for example) have revived 
interest in the discussion of fundamental concepts in quan- 
tum physics, related to the measurement theory, the comple- 
mentarity principle, the existence of macroscopic quantum 
mechanical superpositions etc. The fact that experiments to 
demonstrate in a direct way some of the less intuitive pre- 
dictions of quantum theory are no longer of the "gedanken" 
type, but become feasible, has undoubtedly stimulated a new 
reflexion on these concepts and clarified their interpretation. 

Among the various effects occuring in "microscopic" 
quantum optics, interference effects are particularly inter- 
esting to study. The detection of interferences is indeed a 
very general way of measuring physical quantities and their 
analysis, at the microscopic "one particle at a time" level, 
is very instructive for the deep understanding of quantum 
concepts. The fact that atomic interferometers can now be 
practically realized, with the prospect of large correlation 
lengths in the not too distant future, is a strong incentive 
to think about new kind of experiments probing the most 
fundamental aspects of the quantum theory. 
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Fig. la, b. Scheme of a Young double slit interferometer for optical fields, a Symmetrical apparatus with fields propagating in vacuum: the 
interference pattern has a "bright" fringe at the center of the photodetector array, b Same interferometer with a retarding plate in one optical 
"path": the fringes are translated by an amount proportional to the phase shift introduced by the plate 

In this paper, we discuss an experimental situation where 
an atomic interference effect is employed to manipulate a 
quantum field made of  a few photons and to acquire infor- 
mation on this system. This experiment, which combines in- 
terferometry with cavity quantum electrodynamics concepts, 
helps us elucidate basic quantum ideas in a very pedagog- 
ical way. Furthermore, it suggests that atomic interferences 
blended with microscopic quantum optics can be used to 
generate various non classical field states which may be of  
practical interest. The ideas discussed here originate from a 
recent letter [1] and from a detailed article to be published 
elsewhere [2]. In this presentation, we will discuss these 
ideas on a very simple model involving a Young double slit 
interference experiment. This model is probably too simple 
to describe a realistic situation with present state of  the art 
atomic beams and cavities. It has however the merit of  be- 
ing familiar to all physicists and is thus particularly well 
suited for a simple understanding of  the physical ideas un- 
derlying the more realistic experimental situation discussed 
in the above mentioned references. 

1 Dual Versions of the Young Double Slit Experiment 

In an ideal optical Young interferometer (schematized in 
Fig. la), a plane wave of  monochromatic radiation (wave- 
length and wave vector in vacuum respectively )t and k = 
27r/A) propagates along Oz  and impinges on an opaque 
screen presenting two small slits st and s2 parallel to Oy, 
having their centers aligned along O x  at distance a from 
each other. The light scattered by these slits is detected at 
a distance L from the screen by an array of  photon coun- 
ters aligned along the O x  direction. The probability 7r(x) 
of  detecting a photon at point x exhibits spatial oscilla- 
tions resulting from the interference between the two am- 
plitudes corresponding to the scattering of the light by st 
a n d  ,3 2. The fringe spatial period is 6x = A L I a  and there 
is a "bright" fringe at the center of  the photodetector array. 
A brief quantitative description of  this interference process 
will be useful for the discussion to come. The Huygfiens 
principle states that the field in the interferometer is the sum 
of two "cylindrical wave" contributions originating from vir- 

tual sources placed at sl and s2. For infinitely narrow slits 
and for z >> a, x ("far field" limit) the components emitted 
by the virtual sources take a simple form and the field in the 
interferometer is 

~ ( r )  = eikz eikX2 /2Z[e ikxa/2z + e-ikxa/2z]. (1) 

Assume now that a small volume in front of  the slits is 
filled by a transparent medium with a spatially inhomoge- 
neous index of  refraction ni(r). The fringe pattern is then 
altered in shape and/or position. The new pattern is quite 
generally obtained by solving, with the boundary conditions 
imposed by the slits, the Helmholtz equation determining 
the propagation of  the field in the medium 

A ~ ( r )  + n~(r)kZ~P(r) = 0. (2) 

A particularly simple case arises when the alteration merely 
consists in placing a retarding plate with a real index ni and 
a width g in front of one of the slits (e.g. sl, see Fig. lb). In 
this case, the amplitude corresponding to the photon scatter- 
ing through sl is dephased by an amount k(n~ - 1)g. The 
wave function in the interferometer is now, under the same 
assumptions as the ones leading to (1), 

k b ( r )  = eikzeikX2/2Z[eikxa/Zze ik(ni-1)e + e -ikxa/2z] (3) 

and the whole fringe pattern in the z = L plane is simply 
translated by the amount (ni - 1)gL/a. The measurement of  
such fringe translations is of  course the basis for a variety 
of  interferometric measurements of  lengths and indices of  
material media. 

Let us now exchange the roles of  matter and radiation and 
consider a situation we might call "dual" to the previous one 
(see Fig. 2). Monokinetic atoms of  mass m and velocity v 
propagating along Oz constitute a matter-wave (with wave 
number k = m v / h )  which replaces the light wave of  the 
first experiment. This wave impinges on a screen which is, 
as in the optical case, pierced by two small slits at distance 
a from each other. The atoms are in a quantum state g, 
supposed for simplicity to be non degenerate, which is either 
a ground or a metastable level. They are detected by an 
array of  counters placed at distance L behind the screen. 
Spatial oscillations in the probability of  detection along O x  
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Fig. 2a, b. Scheme of a Young double slit experiment for atomic matter-waves, a Symmetrical apparatus with atoms propagating in vacuum: the 
interference pattern exhibits a "bright" fringe at the center of the atomic counter array, b A non resonant field, acting as a "phase-retarding" plate 
for the de Broglie wave is introduced behind the slits with an antinode facing sl and a node facing s2: the fringe pattern is shifted by an amount 
proportional to the field intensity 

are also obtained in this case, as recently demonstrated in 
an experiment performed with metastable helium atoms [3]. 

To carry on the analogy with the optical experiment, a 
small volume close to the screen can be "filled" with non- 
resonant light which is not absorbed by the atoms, but which 
shifts the energy of state 9 and dephases the atomic wave 
function. This volume "filled" with light can be described as 
a medium with an inhomogeneous index for the matter-wave 
which alters the interference pattern on the screen. This al- 
teration depends of  course on the field intensity, i.e., on its 
photon number. It is possible to conceive a field distribution 
which alters the phase of  the matter-wave component "go- 
ing" through sl, without perturbing the one "going" through 
s2. Figure 2b represents such a situation, which replicates 
for matter-waves the retarding plate configuration of  Fig. lb. 
A small cavity of  the Fabry-Perot type placed close to the 
screen has its axis aligned along Oz. The standing wave 
mode of this cavity presents an antinodal line aligned along 
Ox in front of Sl and a nodal line in front of s2. If  the slits 
width is small enough compared to the optical wavelength, 
the perturbation on the atomic wave can be considered as 
nearly homogeneous in front of  sl, and practically negligi- 
ble in front of  sa. We thus expect that the component of 
the matter-wave going through sl will be dephased by an 
amount proportional to the number of  photons in the cav- 
ity, without alteration of  the phase of  the component going 
through s2. This effect is the basis of  the phenomena we in- 
tend to analyze in detail in this article. We start this analysis 
by describing a very simple situation in the next section. 

2 Matter-Wave "Retarded" by an Optical Field 
Having a well Defined Intensity 

Suppose that the cavity represented on Fig. 2b stores a non- 
resonant field with a well defined number of photons n (Fock 
state). We do not address here the question of  the prepara- 
tion of  this field, which will be considered below. To make 
the analysis as simple as possible, the atoms are supposed 
in this section to be sent one by one through the apparatus, 
the interference pattern in the detection plane being recon- 
structed by a statistical averaging over a large number of 
single particle events. Moreover, the cavity is assumed to 

have a very large quality factor Q, so that the photon num- 
ber does not decrease appreciably during the time required 
to record an interference pattern on the detector array (the 
field is of course assumed to be decoupled from its source). 
These assumptions are obviously very difficult to achieve 
simultaneously in practice, but we are concerned here only 
with questions of  principle (we will discuss at the end of  this 
article the importance of these restrictions and the possibility 
of relaxing them in more realistic experiments). 

The electric field distribution in the cavity is defined by 
a dimensionless function f(r). The cavity mode frequency aJ 
is supposed to be close enough to the Bohr frequency cocg 
of the transition linking g to an excited atomic level e so 
that all other levels can be ignored in the estimation of the 
light shift produced on level 9. The energy shift ~/n(r) for 
an atom at point r can be expressed as 

a~ IDgcl 2 
~ n ( r )  = n - If(r)- %¢l 2. (4) 

a~ cog~ 2C0Ycc~v 

In this equation, Dg~ is the magnitude of the atomic elec- 
tric dipole matrix element between 9 and e, eg~ is the unit 
vector defining the polarization of  the transition and ~av = 
f ]f(r).%cl2dSr is the "effective volume" of the cavity mode. 
Equation (1) is a simple perturbative result, valid provided 
t~;~(r)] remains always much smaller than laJ - wg~ 1. This 
"off-resonance" condition means that real absorption of  a 
photon cannot occur in the cavity. 

~4n(r) appears as a spatially inhomogeneous "optical po- 
tential" for the atoms whose spatial wave function k~(n; r) 
obeys the SchrSdinger equation 

Ag~(n; r) + 1 - h - ~  ~4,~(r) k2k~(n; r) = 0. (5) 

The analogy with the light-wave case is striking (compare 
with (2)). It allows us to define an effective inhomogeneous 
index of refraction for the matter-wave: 

~/ 2m m 
ni(r) = 1 - ~ ~ n ( r )  = 1 - h - - ~ n ( r ) .  (6) 

The simplifying expansion made in the above equation is 
justified if we assume that I~n( r )  I << h2k2/2m for all r 
values, which means that the light forces acting on an atom 
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are a small perturbation to its motion. The introduction of 
this potential results in a fringe pattern alteration quite sim- 
ilar to the one discussed above in the light-wave case. The 
important point for our analysis is that the q~,~(r) potential - 
and the resulting index - are proportional to the photon num- 
ber, so that a determination of the fringe alteration yields a 
direct information on n. 

The atomic wave function in the interferometer is deter- 
mined by solving (5) with boundary conditions accounting 
for the presence of the opaque screen and the two slits in 
the z = 0 plane. This might be a very complicated problem 
to solve which, fortunately, the optical analogy allows us in 
simple cases to bypass. In the configuration of Fig. 2b, the 
dephasing Aqo(n) produced by the cavity field on the com- 
ponent of the atomic wave function "going" through sl can 
be written as 

Aqo(n) = f [ n i ( r ) -  1]kdz 
x=a/2 

~,, m f qdn(r)dz. (7) 
- -  h z k  

, i ,  

x=a/2 

In this equation, the integral is carried along the line x = a/2 
parallel to Oz. The integral of If(r) • ege] 2 across the mode 
defines an effective "cavity length" gcav= f If(r)" ege[ 2dz 
and Aqo(n) is finally equal to n~0 where ~0 is the "phase 
shift per photon" induced on the component of the matter- 
wave crossing the field antinode: 

eca v 03 lDg~{___~_ 2 (8) 
~0 = - h--v-- x - -  x 2¢0~ccav" 03 -- 039 e 

We recognize in £oa~/v the characteristic atom-cavity cross- 
ing time and the dephasing nqo0 essentially appears as a 
phase shift accumulated on one component of the atomic 
wave function during the "crossing" of the field antinode. 
Carrying further the optical analogy, we finally find an ap- 
proximate expression for ~(n; r), valid for z << x, y, a: 

kV(n; r) = ~ eikze ikx2/2z [eikxa/2Ze in~°° + e-ikxa/2z]. (9) 

.J~ is a normalization constant. This result assumes of course 
translational invariance along Oy. In a more realistic situ- 
ation, the length and width of the slits are finite and the 
above expression must be corrected for diffraction effects, 
which we will neglect here since we are concerned only with 
questions of principle. Equation (9) shows very clearly that 
the probability amplitude of detecting an atom at point x in 
the z = L plane results from the interference of two con- 
tributions, one of which depends upon the photon number 
in the cavity and the other not. As a result, the statistical 
interference pattern on the screen is shifted with respect to 
its position in the absence of photons by an amount propor- 
tional to n. Of course, the analogy between the light- and 
matter-waves experiments is not fortuitous. It is well known 
that light shifts are the counterpart on atoms of the disper- 
sive propagation effects which are desribed on the field by 
the index of refraction. The fact that the field has to be 
non-resonant in the second experiment is equivalent to the 
statement that the retarding plate is transparent in the first 
one. 

3 Matter-Wave "Retarded" by an Optical Field 
Presenting Intensity Fluctuations 

This "experiment" becomes really interesting if we consider 
the more complicated- and more realistic-situation where the 
initial field in the cavity is not in a photon number state but 
rather exhibits fluctuations of n values. For sake of simplic- 
ity, we restrict our analysis to "pure" field states expressed 
as  

n 

with p(n) = [cO[ 2 being the probability for the field to 
contain n photons. As an example, let us recall that a quasi- 
classical field with complex classical amplitude a is a su- 
perposition of n states with quantum mechanical amplitudes 
C ° given by a Poisson law: 

cO e-C~2/20Ln 
v ~ ! "  (11) 

This field has a mean photon number fi = {a[ 2 and a char- 
acteristic photon number dispersion A(n) = ~1/2. Its phase 
¢ is defined with a precision A¢  = 1/A(n). Such a field 
can be prepared by coupling the cavity to a classical current 
source which is "switched off" before the atomic interfer- 
ence "experiment" begins. Here again, we assume that the 
relaxation time of this field in the cavity is much longer than 
the duration of the interference recording. 

As a consequence of photon number dispersion, the phase 
shift experienced by the matter-wave during the cavity cross- 
ing becomes now also a fluctuating quantity. The situation 
looks at first sight analoguous to a light-wave Young double 
slit experiment with a retarding plate presenting width (or 
index) inhomogeneities. From this analogy, we would expect 
to observe an interference pattern with a somewhat reduced 
fringe contrast if the photon number dispersion is not too im- 
portant, and a complete "washing out" of the fringes when 
the atomic phase dispersion qo0An is of the order of 7r. De- 
pending upon the experimental conditions - to be specified 
below - this prediction may or may not be right. The analogy 
with an inhomogeneous retarding plate is indeed too simple 
or too naive since it overlooks an important point. Whereas 
it is legitimate to assume that an optical retarding plate is 
a classical object whose fluctuations are uncorrelated to the 
light wave, this is not the case for the matter-wave-retarding- 
cavity-field. Its fluctuations, of an intrinsic quantum nature, 
are intricately correlated to the state of the atom interacting 
with the apparatus and are strongly affected by the atomic 
position measurement process. 

Using (10) and exploiting the linearity of quantum me- 
chanics, we readily obtain the quantum state of the single 
atom+field system in the interferometer 

Z Co fffk~(n; r)ln; r>d3r, (12) I~'atom+,eld> 
n 

where {n : r> represents the atom at point r(x, y, z) with n 
photons in the cavity and g'(n; r) is the matter-wave function 
introduced above, which takes a simple form for an inter- 
ferometer with narrow slits, in the far field limit [see (9)]. 
The combined atom + field system described by (12) is ob- 
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Fig. 3. Change of the photon number distribution 
produced by the first detected atom in the Young 
interferometer. The initial distribution, displayed in 
a), con-responds to a coherent field with ~ = 10. 
It is multiplied by the fringe function Ikv(n; r)[ 2, 
represented versus n in b), for two positions of 
the detected atom (~0 = 7r/2). We have chosen 
two values r~ and r2 separated by about half the 
fringe spatial period. In the resulting distributions, 
shown in c), photon numbers closest to the "dark" 
fringes have been "decimated". These numbers are 
"complementary" in these two realizations 

viously in an "entangled" state presenting strong correlations 
between the matter and field parts. 

The postulates of quantum mechanics allow us to make 
the following basic predictions: (i) the probability density 
7r(r) of detecting at point (r) an atom interacting with the 
interferometer containing a field described by (10) is 

= I c ° l  2 I (n; r)}2; (13) 
7Z 

(ii) moreover, once the atom has effectively been detected 
at a given point, say rl ,  the state of the atom+field sys- 
tem "collapses" into the decorrelated state (defined within a 
normalization constant) 

I~a(after detection) \ 
tom+field / ~ ~ cO~(n; rt)[n; rl>. (14) 

T~ 

It represents the atom at point rl  (obviously) and the field 
in a state described by the new amplitudes 

1 0 
= 711.c  (n; r l )  (15) 

with ~/1" being the normalization constant: 

./J/l" = @ n~~ 'C° 12 '~(n; r 1),2. (16) 

Coming back to the specific geometry of the Young double 
slit experiment (amplitudes k~(n; r) given by (9)), we see that 
the initial field amplitudes have been essentially multiplied 
by the fringe function characteristic of the interferometer, 
computed at the position where the atom happens to have 
been detected. Interpreted as a function of n, the multiply- 
ing quantity is an oscillating function with zeros close to 
some n values (dark fringes) and maxima close to others 
(bright fringes). The n-position of these minima and max- 
ima depends of course on the r-position of the detected atom. 
Figure 3 shows the changes of the photon probability distri- 
bution when the atom is detected at a point rl or a point 
r2, these positions being separated by about half the fringe 
spatial period. The initial field is coherent, with g = 10 and 
cp0 = 7r/2. Different photon numbers are efficiently "dec- 
imated" for these two detection outcomes, the state of the 
field being in any event strongly modified. This decimation 
process is, as we show below, the basis of a very simple 
quantum nondemo!ition measurement method for the field 
intensity. 

4 Photon Decimation and QND Measurement 
of Field Energy 

The main feature of the process we have just outlined is that 
the probability amplitudes C,,~ are multiplied after each de- 
tection event by a function of n presenting strong minima. It 
is also important to realize that the position of these minima 
is random and depends upon a quantum mechanical "dice 
casting" since the position at which any atom is detected 
cannot be known for sure in advance. Moreover, the proba- 
bility of finding atom number m +  1 at a given point depends 
upon the state of the field left in the cavity by atom number 
m, i.e., upon the outcome of the previous atomic detections. 
In other words, the "dice casting" process has a "memory" 
More quantitatively, after a sequence of atoms has been de- 
tected at points r~, r2 , . . ,  rra the new field amplitudes have 
become 

1 
]-I  g'(n; r i)C°, (17) 

= S/r; L<i<m 

where S ~  is the normalization constant. According to (13), 
the conditional probability that the (m + 1) th atom will be 
detected in turn at point rm+l is 

7r(r~+l) = ~ ]Cnrr~]2 X ]~ (n ; r r a+ l ) l  2 

fb 

1 
- j ~ 2  ~ ( 1_<~_<~ +1/O(n; rd l2)  1C°12. (18) 

It is easy to simulate this process numerically. At each stage, 
a computer determines the probability distribution for the 
position of the next atom in the detection plane, then "de- 
cides" where this atom is actually found by making a random 
choice according to the corresponding probability law. Once 
the new r value has been obtained, the computer determines 
the new C~ amplitudes, from which the probabiltiy distri- 
bution for the next atom is obtained and so on. Figure 4a 
shows a typical sequence of photon number probability dis- 
tributions obtained after 1, 10, 30, 50, 100, and 2000 atoms 
have been detected in the case where the initial field is a 
coherent state with g = 10. The value of ~p0/Tr is chosen 
to be 0.312. After about 50 atoms have been counted, the 
field is "reduced" into a pure photon number state (here 
n = 8). Another sequence will converge, after a comparable 
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Fig. 4a, b. Evolution of  the photon number distribution with the number 
of detected atoms in one simulation of the Young atomic interferom- 
etry experiment (~0/Tr = 0.312). The initial distribution (top frame) 
corresponds to a coherent field with g -- 10. The field collapses, in 
this case, into the fi = 8 Fock state after about 50 detected atoms and 
remains in this state thereafter, b Evolution of the distribution of the 
positions of  the detected atoms in the same simulation. The fringe pat- 
tern is "revealed" at the same time as the photon number is reduced 
to a single value. Another simulation would converge to another Fock 
state, with a different phase spatial for the fringes 

number of steps, towards another n value and the distribu- 
tion of Fock states obtained by repeating a large number 
of times this procedure reconstructs the Poisson law of the 
initial field photon number distribution. The mechanism of 
the field state "reduction" in this process is simple to under- 
stand. Since each stage of the process results in the random 
elimination of some photon numbers from the p(n) distri- 
bution, it is clear that this decimation will generally go on 
until one photon number only is left. 

The speed of the convergence process depends upon the 
"size" of the field (initial width of the p(n) distribution) and 
upon the P0 value. We can define this speed as the minimal 
number ~min of atoms required to produce a Fock state. The 
numerical simulations show that, for a given initial field, 
mmin diverges for cp0 = 0 (for obvious reasons) and, more 
generally, for values of the "phase shift per photon" such 
that ~0/2~r is an exact rational fraction p/q, with q smaller 
than the total width of the initial distribution of n values. It 
is clear that, in this case, any two photon numbers nl and n2 
whose difference is an integer multiple of q will correspond 
to the same fringe pattern. The information obtained from 
the fringe observation will then be insufficient to allow us to 
discriminate between these numbers and the field will end 
up in a mixture of n states, and not in a unique Fock state. 
In the case of small fields, for which the initial n is known 
within a few units, the divergent values of ~0/27r are multi- 
ples of unity and of simple fractions such as 1/2, 1/3, 1/4 etc. 
If we avoid these "pathological" situations, T/'bmi n becomes 
essentially independent of the actual choice of the "phase 
shift per photon", provided cp0Zl(n) _> 7r. For fields contain- 
ing about 10 photons (which is the situation we considered 
in the numerical simulations and in Fig. 4a), this means that 

we have to choose ~0 _> 0.3. We then have mmin of the 
order of 50. The simulations also show that mmin increases 
logarithmically with the dispersion A(n) of n values in the 
initial field. 

The Fock state reduction process desribed above has all 
the features of a quantum nondemolition mechanism. The 
photon number in the cavity is not modified by real pho- 
ton absorption or emission, which are forbidden by the off- 
resonance condition. In fact, the photon number distribution 
is changed only because information is acquired on the field, 
in a photon-non-destructive way. Once a Fock state It@ has 
been produced, no more information can be obtained and 
this state remains obviously stable under subsequent atomic 
interactions, since a ~(n - nl) distribution cannot be altered 
by the multiplication with any ]O(n;r)l 2 function. These 
properties are quite different from those of ordinary pho- 
ton detection mechanisms based on resonant photon-atom 
interactions. In these processes, a Fock state is by essence 
unstable since it is then necessary to absorb photons in order 
to detect the field! 

It is interesting to notice that the converging decimation 
process we have just analysed in quantum mechanical terms 
can also be justified by arguments of pure classical statistical 
mechanics, provided we ignore the initial coherences exist- 
ing between the different Fock states. Assume that, instead 
of containing a coherent field, the cavity is filled with an in- 
coherent field containing a well defined number of photons 
for each field realization, this number changing randomly 
from one realization to the next. The initial information we 
have on this field provides us only with the probability p(n) 
for this number to be equal to n in any given realization. The 
argument would be essentially the same for a box filled with 
any kind of particles, supposed to be indestructible (no cav- 
ity relaxation in this problem). We then proceed to acquire 
more information on a given field realization by sending 
atoms one by one through the interferometer and registering 
their position in the z = L plane. Each detected atom "tells" 
us that some photon numbers are "incompatible" with the 
result of this particular measurement (those corresponding 
to "dark fringes" at the detected position). After a few tens 
of such detections have been registered, only one n value 
remains compatible with all the collected information. The 
n value for this field realization has been "pinned down". 
It is important to notice that we do not have changed n but 
we have only precised its initially unperfectely known value. 
This statistical approach is of course the natural one when 
the field is initially described by a density matrix diagonal in 
the Fock state representation. When the field is coherent, we 
must a priori use the quantum approach developed above. 
That these two approaches yield identical results is not for- 
tuitous. It is due to the fact that the evolution of the field 
energy is independent of the quantum mechanical coherences 
between n states, which is related to the field phase. As long 
as we are only interested in measuring field intensities, it is 
not important to know whether the field is coherent or not. 
All happens "as if'', in each realization of the experiment, 
there were in the cavity a well defined number of photons 
"waiting to be pinned down". 

We have assumed so far, to make the argument simpler, 
that the atoms were detected one by one. A sequence of 
events is indeed easier to analyze by computer- and by 
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human mind- than an experiment in which the atoms are 
bunched together in the interferometer. It is, however, im- 
portant to notice that the "one atom at a time" assumption is 
not essential at all in the above arguments. Clearly, the state 
reduction process we have invoked is an "instantaneous" 
one and the detection events in our analysis can be arbitrar- 
ily close to one another. In fact, the order of detection is 
irrelevant. Any two sequences of atomic detections differing 
only by the ordering of the r values has the same overall 
probability and results in the same final field state reduc- 
tion. This follows directly from the commutative property 
of the products in (17) and (18). It is equally possible to 
consider that a measurement consists in the "simultaneous" 
detection of a bunch of m atoms. Just before their detection, 
the many-atom+field system is in the entangled state 

Ik~m-at°ms+field) : Z COn iS... i r k~(n;ri)] 
n [. l < i ~ m  J 

x In;rlr2...r,~)d3rtd3r2...d3r~ (19) 

which, after measurement, ?collapses" into the final state 

]k'~final) ~--- Z n  C ° [  l</<mH k~(n;r/)J l.;rlr2...Fro). (20) 

Only one irreversible state reduction has to be invoked in 
this case, which obviously yields the same result as the "one 
atom at a time model". Of course the whole argument is 
based on the fact that the atoms do not interact mutually in 
the interferometer (the system state must be a tensor product 
of one atom wave functions; see (19)). 

Let us finally make a remark about the atomic quan- 
tum statistics in this experiment. By assuming a plane wave 
impinging on the screen, we consider in fact atomic wave 
packets with a large extension, covering the whole interfer- 
ometer. This means that the atoms coexist in the apparatus, 
which is possible only if they are physically distinguishable 
(for example by other degrees of freedom such as their spin 
state) or if they are bosons. Since the many-atom wave func- 
tion given by (19) is symmetrical by atom exchange, it does 
describe correctly a Bose gas and there is thus no difference 
in our analysis between distinguishable atoms and bosons. 

5 Visibility of the Matter-Wave Fringes 
and the Principle of Complementarity 

Let us now come back to the question of the fringe visi- 
bility in the matter-wave Young experiment with a photon 
number-fluctuating field in the cavity. The fringes are of 
course reconstructed by accumulating results over a large 
number of single atom detection events. There are two very 
different ways in which this averaging may be performed. 

(i) Ensemble of experiments with systems "reset" to the 
same initial field state: First, it is possible to send atoms one 
at a time through the apparatus and to perform an ensemble 
average on a large set of identical systems, in each of which 
the "retarding" cavity field is prepared in the same quantum 
state described by (10). A simpler way to realize practically 
this ensemble averaging on a single interferometer consists 
in sending atoms through the apparatus at a very slow rate 

I a) 

b) ~ t a h ~  

n x 
Fig. 5. Distribution of positions of detected atoms corresponding to 
two simulations in which the field is reset between atoms to the initial 
state (coherent field with g = 10). The number of detected atoms is 
2000 in both cases, a) Fringe pattern with reduced contrast obtained 
for qo0/Tr = 0.156. b) The interferences are completely "washed out" 
for ~0/rc = 0.312 

letting enough time to reset the field to its initial value be- 
tween consecutive atoms. In this case, the cumulated signal 
on the array of detectors reconstructs by definition the proba- 
bility distribution given by (13). We thus expect to observe a 
superposition of fringe patterns, weighted by the p(n) prob- 
abilities, each pattern being shifted along Ox by an amount 
proportional to n. In other words, we retrieve in this case 
the "naive" result described in Sect. 2, namely the fact that 
the fringes contrast is reduced for qo0A(n) < rc and the in- 
terference pattern is fully "washed out" for ~o0A(n) _> rr. 
Figure 5 represents the patterns obtained for two T0 values 
corresponding to these two situations. 

(ii) Experiment realized on a single field "history": An al- 
ternative way of accumulating points on the detector array is 
to send atoms through the same interferometer at a rate larger 
than the reciprocal of the "retarding" field damping time (it 
is supposed to be infinite here, but this is of course only 
an idealization of a real situation in which the cavity Q is 
finite). In this case, we perform exactly the same experiment 
as the one described in Sect. 4, but instead of focusing our 
attention on the evolution of the photon number probability 
law, we are interested in the atom count distribution along 
Oz. The computer simulation described above allows us to 
"follow" a single realization of the optical field "history" and 
to compute step by step the fringe pattern appearing on the 
detector array. Figure4b shows the fringes as they appear 
during the field "history" followed on Fig. 4a. Each frame 
in the b) column corresponds to the facing photon number 
histogram in the a) column. 

The physical interpretation of this simulation is quite 
clear. The first detected atom (here on the right part of the 
detector array) results in the decimation of several photon 
numbers in the initial photon number Poisson distribution. 
After ten atoms have been detected, we obtain a p(n) dis- 
tribution which is already well concentrated around a single 
peak (here n = 8) and the corresponding points on the de- 
tector array are scattered in a way which is compatible with 
this n value, although it is still too early to recognize a well 
defined fringe pattern. After 30 and 50 atoms have been de- 
tected, the field evolves with less and less uncertainty into 
the n = 8 Fock state and at the same time, an unambigu- 
ous atomic fringe pattern does emerge. This pattern remains 
stable thereafter, since n can no longer change. More atoms 
only improve the signal to noise ratio (see the histograms 
corresponding to m = 100 and 2000). The position of the 
bright fringes on this pattern are of course determined by 
the value of n obtained in this particular realization of the 
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experiment. Another realization would lead to another Fock 
state, with a fringe pattern translated with respect to the pre- 
vious one. Of course, the phase of the emerging pattern is 
impossible to be predicted beforehand. If  we repeat the same 
experiment over and over, the sum of all the patterns finally 
reproduces the average pattern obtained in the experiment 
where the field is reset to its initial value between atoms 
(reduced visibility or complete washing out of the fringes 
depending on the qooA(n) value). Finally, we should also 
remember that the results of the experiment are the same 
whether the atoms succeed each other in the apparatus or 
are detected in a single "snapshot". In short, we might say 
that all happens in this experiment "as if" the unknown pho- 
ton number in the cavity were suddenly "revealed" by the 
appearance of the fringe pattern on the detector array, in a 
way quite similar to the "revelation" of the picture of a real 
object made by a camera when enough photons are collected 
on the photographic plate. 

It is interesting to discuss the fringe visibility in the 
atomic Young interferometer in terms of the complemen- 
tarity principle of quantum mechanics. We can say that in 
the first version of the atomic intefferometry experiment de- 
scribed above, the atoms behave as "waves" if ¢oA(n) < 1 
and as "particles" if ~poA(n) _> 1. On the other hand, in the 
second version of this experiment, they eventually behave 
like interfering "waves". We remember from text book dis- 
cussion of wave-particle dualism that the wave aspect domi- 
nates if, once the detector has been activated, nothing in the 
experiment allows us to determine through "which path" the 
particles have propagated from the screen to the detector. 
The particle aspect is of course dominant in the opposite 
case. In other words, the fringe observation is incompati- 
ble with any information telling us unambiguously through 
which slit the atom has been scattered. Whether this informa- 
tion is actually collected or not is irrelevant. The mere fact 
that it is virtually possible to acquire it is enough to make the 
fringe visibility vanish. In our experiment, the only way to 
learn about the atom trajectory is to "interrogate" the field 
left in the cavity after the atom detection. With this basic 
idea in mind, let us analyse in turn the two versions of the 
atomic interference experiment. 

In the first experiment, the field is reset in the same co- 
herent state la) = ~ C°ln) after each atom. Assume that 

n 

we close slit s2. Then the atoms have to pass through Sl, 
resulting in a phase shift n~0 for an n photon field, so that 
the classical state la) becomes ~ C~ e i~'° In) and the co- 

n 
herent state is merely phase shifted by the angle ~0. If we 
had closed slit 81 instead, the atoms would all have to pass 
through s2 and the field in the cavity would obviously be un- 
altered. Thus, the complementarity argument tells us that the 
fringes will vanish if we can in principle recognize that the 
cavity field has undergone a phase shift 9%. We thus have to 
compare this shift with the phase indeterminacy of a coher- 
ent state, which is of the order of 1/A(n). If ~0 -- 1/A(n), 
the phase shift is observable and the fringes should vanish. 
If, on the other hand, ~0 < 1/A(n), the phase shift is too 
small to be measured, it is not possible to tell through which 
slit the atom has passed and the fringes are observable. We 
retrieve here the conclusions reached by the direct argument 
exposed above. 

In the second experiment, the main point is that the atoms 
reduce first the field into a Fock state. Once this state has 
been produced, the field in the cavity does not contain any 
more phase information. It thus becomes impossible to rec- 
ognize through which slits subsequent atoms have passed 
and the fringes are always observable in this case (although 
the phase difference between the two paths is a random num- 
ber, which makes the fringe position also random). 

The complementarity arguments developed here are simi- 
lar to the ones discussed in a recent paper presenting possible 
atomic interference experiments in which the atomic beams 
are crossing micromaser cavities [4]. In these experiments 
however, the atom-field coupling was supposed to be reso- 
nant and photons were exchanged between the atom and the 
field. The "which path" information was then a change in 
the photon number and not an alteration of the field phase. 
As a result, the conclusions about the fringe visibility were 
reversed: a Fock state in the cavity is much more sensitive 
to a change in n value than a coherent state superposition. 
Thus, fringes were more likely to be blurred with a Fock 
state field than with a coherent one. 

6 Evolution of the "Retarding" Field Phase 
in the Matter-Wave Interferometer 
and Generation of "SchrOdinger Cat" States 

This study would be incomplete without a brief analysis of 
the field phase evolution during the atomic interferometry 
experiment leading to the "reduction" of the field into a Fock 
state. The "back action" of the field intensity measurement 
affects indeed the conjugate physical quantity, namely the 
field phase. This phase has a well defined value in the initial 
field state and it ends up to be completely undetermined in 
the final Fock state. The way in which this phase scrambling 
occurs is particularly simple to analyse in a "one atom at a 
time" experiment. After the first atom has been detected, the 
field is projected into the state defined by (14). Assuming 
that the initial field is a coherent one with a complex am- 
plitude a and taking for k~(n; r) the asymptotic form of (9), 
we recognize in (14) the state 

~fi(1) \ ,~ eikxta/2r iozei~0) + e-ikXla/ZL i0~) (21) 
e l d /  

which appears as the linear quantum superposition of the 
initial field and another coherent field classically dephased 
with respect to the initial one by the angle ~0. The relative 
phase difference between the two amplitudes of this quan- 
tum superposition depends upon the position where the atom 
happens to have been detected and is thus a random vari- 
able. If the atom has been counted near a "bright" fringe 
of the light-unperturbed interferometer, the two amplitudes 
have nearly identical phases and wet get (within an irrelevant 
overall phase factor) a field "reduced" into the superposition 
[oL) --}-Iozei~°0). If, on the other hand, the atom is detected near 
a "dark" fringe of the light-unperturbed interferometer, the 
two amplitudes are nearly opposite and the field is reduced 
into the superposition la) -]acid°0). 

The quantum superpositions described by (21) are known 
as "Schr6dinger cat states" [5]. They correspond to highly 
non-classical fields whose phase can take two "macroscop- 
ically" distinct values, the alternative between these val- 
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ues being of a quantum mechanical nature. As analysed in 
Sect. 5, each of the two possible phases of the field can be 
associated to a specific atom history in which it is scattered 
by one or the other of the slits. The mechanism producing 
this "Schr6dinger cat" can be described as a "replication" of 
the atomic coherence into the field. The matter-wave is split 
into two mutually coherent parts which interact differently 
with the field, after which a non-unitary detection "collapse" 
of the system wave function occurs. As a result of this event, 
the coherence is no longer carried by the atom, but instanta- 
neously "replicated" into the field. Similar "Schr6dinger cat" 
generation mechanisms involving the nonlinear coupling of 
two fields followed by a detection process have been anal- 
ysed in the literature [6]. Atomic interferometry provides a 
very simple way of preparing these states by making the ini- 
tial coherent field interact with a single atom. The property 
of these states and various ways of detecting and studying 
them in atomic interferometry experiment involving Ramsey 
fringes are presented in reference [2]. 

The "Schr6dinger cat" produced by the first atom in the 
cavity still contains a lot of phase information. The mea- 
surement of this phase can yield two possible values. Since 
this measurement will, if ~o0z~(n) > 1, remove the trajec- 
tory ambiguity, we have seen in Sect. 5 that the first atom 
may indeed appear at any point along Oz. In this respect, 
we can say that the first atom "behaves as a particle" in 
the interferometer. The second atom detection at point x~ 
then results in another mtdtiplication of the C~ amplitudes 
by a new "fringe" function (see (17)) and the field evolves 
into a "second generation" Schr6dinger cat state which ap- 
pears now as a superposition of three coherent states with 
the phases 29~0 , ~0 and 0: 

1/I(2)~ field/\ = e ~  lae 21q~0) + 2cos }-~ lae i~° ) 

- -  ik(xl +x2)a 
+ e ~L !a).  (22) 

This second generation "Schr6dinger cat" contains obviously 
less phase information than the previous one and a measure- 
ment of the field phase will no longer tell us unambiguously 
through which path the second atom has travelled (there are 
three possible phase values and only two paths). We under- 
stand easily that, as a result of such successive multiplica- 
tion processes and provided ~0 is not a rational multiple 
of ~r, the phases components will eventually uniformly fill 
the whole 0-27r interval and the field phase will be totally 
scrambled. This is exactly what we expect to occur in the 
final Fock state. This analysis gives a very direct illustra- 
tion of the intensity-phase uncertainty. It also explains how 
the "wave nature" of the atom can progressively establish 
itself and win over the "particle" aspect in the interferome- 
ter. As more and more atoms cross the apparatus, the field 
phase gets progressively "scrambled" and with it the only 
information which might have been used to pin down the 
atomic trajectory. We can now give another expression of 
the complementarity principle in this experiment and state 
"that the wave and particle aspects of the atoms and the field 
are mutually exclusive". If  the field in the cavity behaves as 
a wave (i.e., has a well defined phase), then the atoms in the 
interferometer act as particles (they do not "interfere"). If, 
on the contrary, the fieId has a particle like character (Fock 

state), then the atomic wave nature manifests itself. We thus 
witness during the atomic interferometric measurement of 
the intensity of a classical coherent field a progressive ex- 
change between the atom and field particle-wave characters. 
The field starts as a wave and turns into a phaseless "particle 
like system" whereas the atoms start as particles and pro- 
gressively manifest a wave nature. Of course, the argument 
has been phrased here for convenience in a chronological 
language. What we mean in fact is that we need a large 
enough number of atoms (irrespective of their order) to ob- 
tain a wave like behaviour of the atoms and to "impose" a 
particle like behaviour to the field. 

7 Conclusion: Is all this Really Feasible? 

Generalizing a novel idea we had first proposed in the con- 
text of microwave experiments [1, 2] we have analysed in 
this paper interferomeU'ic methods for manipulating optical 
fields with matter-waves in a Young double slit apparatus. 
The method is based on the fact that the volume filled by the 
light field behaves as a transparent medium with a position- 
dependent "index of refraction" in which the atomic matter- 
wave propagates. The analysis of the fringes produced in the 
Young interferometer allows us to measure this index and, 
consequently, the number of photons in the field. The process 
is a subtle one which illustrates in a striking way the postu- 
lates of quantum mechanics and the wave-particle comple- 
mentarity concept. We have shown that it is in principle pos- 
sible to prepare in this way Fock states of the field with no 
intensity fluctuations, or else macroscopic quantum superpo- 
sitions of classical fields with different phases (Schr6dinger 
cat states). Obviously, the method described here can be ex- 
tended and generalized to other interferometric designs. A 
matter-wave Mach Zender or Michelson interferometer with 
a "retarding" optical field acting in one of the arms could be 
used instead of the Young design. An optical grating con- 
sisting of a light standing wave could also be employed to 
scatter an atomic beam along directions depending on the 
photon number in the field, as has been recently proposed 
in [7]. 

For sake of simplicity, we have discussed here an ideal 
experiment involving perfectly monokinetic atoms (i.e., 
monochromatic matter-waves) scattered by infinitely long 
and narrow slits. We have also assumed perfect 
atomic counting efficiency and disregarded the effect of un- 
read atoms on the process. More realistic conditions can be 
simulated with only slight complications to the model. Lon- 
gitudinal velocity dispersion of the atomic beam will result 
in a decrease of the fringe contrast (since k depends upon v) 
and will make the phase shift per photon a random variable 
(since ~0 also depends upon v, see (8)). Finite slit dimen- 
sions and transverse atomic velocity dispersion will also alter 
the response function of the interferometer, further reduc- 
ing the fringe contrast and restricting the number of visible 
fringes to a few units. These effects will merely increase the 
number of detected atoms required for the field reduction. 
Unread atoms, which do not bring any information on n, 
will have no effect on this reduction, other than lengthening 
further the fringe contrast build up and the practical time 
required to perform the experiment (note that unread atoms 
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have on the other hand a strongly perturbing effect on the 
optical field phase). 

The most restrictive conditions of our model are else- 
where. The optical experiments discussed above are indeed 
conditioned by the answer to two fundamental questions: 

(i) is it practically possible to achieve a large enough 
"phase shift per photon" and avoid at the same time signifi- 
cant photon absorption in the wings of the atomic transition 
line? 
and 

(ii) is it possible to achieve cavity Q factors large enough 
for the photons to survive the time required to carry out a 
measuring sequence? 

These two questions are not independent. Equation (8) 
shows indeed that a way to increase ~0 without getting too 
close to a resonance is to decrease the cavity volume, which 
is obviously done at the expense of the cavity Q. Another so- 
lution is to decrease the atomic velocity but we then lengthen 
the duration of the experiment and put more stringent lim- 
its on an acceptable cavity Q value. The ideal experimental 
parameters must thus realize a compromise between con- 
tradictory requirements. With this in mind, let us dicuss in 
turn the phase shift per photon and the cavity damping time 
questions. 

(i) Optimizing the phase shift per photon. This parameter 
can of course be increased to a point by making Iw - cage] 
small (see (8)). There is a limit to this simple solution, which 
is that no photon absorption can be tolerated. In fact, it is 
easy to show that the probability for an atom to absorb a 
photon during its cavity crossing time is of the order of 
~¢pof'/lw- a;ge] where F is the spontaneous emission rate 
on the e ~ 9 transition. Let us assume for simplicity that 
~qo0 ,.o 1. If we do not tolerate more than a 10 -3 photon 
absorption probability, which is a minimal "photon nonde- 
molition" requirement for a process involving at least a few 
hundred atoms, the atom-cavity detuning must be not smaller 
than 103 F. In order to achieve not too small phase shifts per 
photon with such a large detuning, it will be necessary to 
use a beam of slow atoms (to increase the 1/v term in (8)) 
interacting with small optical Fabry Perot cavities (to maxi- 
mize the 1 / ~ v  term). On the other hand, as noticed above, 
these parameters cannot be too small, least the cavity damp- 
ing time problem becomes untractable. A good compromise 
might be to choose sodium atoms at v ,-~ 1 m/s  coupled to 
the sub-millimeter size cavities described in [8]. We then find 
typical ~0 values of the order of 10-1 for F/]W-Wge [ = 10 -3 
(note that this is compatible with ~qa0 N 1 for fields contain- 
ing about ten photons). With such ~0 values, a reduction of a 
small field into a Fock state will require about 100 detected 
atoms in an ideal interferometer, i.e., an average absorption 
photon loss of about 10 -1 per measuring sequence. Due to 
the system unavoidable imperfections and to limited atomic 
detection efficiency, it will - even in this ideal case - be 
very hard to avoid some photon demolition to occur. 

(ii) Optimizing the cavity damping. The relaxation time 
of an n Fock state being Tcav/n, where Tcav = Q/w is the 
cavity damping time [9, 10], it is obvious that we do not have 
much time to take the atomic wave "snapshot" revealing the 
existence of this state in the cavity. The minimal duration 
required for the experiment is the atom-cavity crossing time 
gcav/V, which for the typical field waist value of the small 

Fabry-Perot cavities considered above (gcav = 50gm) and 
for an atomic velocity v = 1 m/s  is 5 × 10 -2 s. With these 
parameters, the preparation of a n = 10 Fock state would 
thus theoretically require a cavity having a Toav of the order 
of 10 -5 s at least, i.e., a Q in the 10 l° range. This is about one 
order of magnitude above the Q factors presently achievable 
in these small cavities [8]. 

The obvious conclusion of this discussion is that the ex- 
periments discussed in this article, although possible in prin- 
ciple, are still very far away from present state of the art 
technology. The bottom line is that we need to observe an 
atomic interference pattern in a very short time. Knowing 
that the first Young atomic interference signals have required 
integration times of the order of hours [3], we realize the im- 
provements which have still to be made. 

Even if the minimal requirements we have just discussed 
are met, it is important to notice that the field which we 
would have "reduced" in a Fock state would be "dead" long 
before we would be aware of its short term presence in the 
cavity (the travel time of the atoms to the detectors, typically 
located at a distance L = 0.1 m to 1 m from the slits, will 
be of the order of 0.1 to 1 s). In other words, it will already 
be very hard to generate Fock states - or Schrrdinger cat 
states of an optical field (for which the time requirements 
are the same) - and it would be even harder to conserve 
these fields "alive" long enough to manipulate them and 
study their evolution in a continuous way. For example, it 
would be a fascinating experiment to follow in real time the 
photon number change in a very weakly relaxing cavity. As 
photons would successively disappear in the cavity walls, 
the fringe pattern would suddenly shift along Ox by finite 
steps, revealing in a striking way the field quantum jumps. 
These experiments would require field damping times in the 
fraction of a second range which is quite unrealistic in the 
predictible future in the optical domain. 

On the other hand, such long relaxation times are quite 
achievable in the microwave domain with superconducting 
cavities. Then, the cavity size and the typical field spatial 
variation lengths fall in the millimeter wave domain in- 
stead of the micron one and it becomes exceedingly dif- 
ficult to build matter-wave interferometers physically sepa- 
rating matter-wave paths at this scale. It may seem that we 
have traded an impossible task for another, unless we realize 
that interferences do not necessarily require spatially distin- 
guishable trajectories. After all, a birefringent plate in optics 
is also an interfering device. A photon polarized along a 
linear superposition of the two plate principal polarizations 
propagates through the medium along the same path, but 
at two different phase velocities, in a quantum superposi- 
tion of two distinct states. The probability of detecting this 
photon with an analyser at an angle with the principal po- 
larization directions is the squared sum of two amplitudes 
which exhibits oscillations as a function of the plate width. 
In the dual version of this effect, the light beam becomes 
an atomic matter-wave and the photon polarization is re- 
placed by the atom quantum state preparation. Assume we 
prepare the atom in a linear superposition of two energy 
distinct states, which undergo different phase shifts as they 
cross, along the same trajectory, a macroscopic supercon- 
ducting cavity non resonant with the atoms and containing 
a microwave field. The detection of this state snperposition 
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at cavity exit will exhibit oscillations as a function of the 
photon number in the cavity which, in essence, are not basi- 
cally different from the ones we have studied in this article. 
The way to prepare these states superposition and to detect 
them is to perform two short microwave pulsed excitations 
on the atoms, one at cavity entrance and the other at cavity 
exit, on a transition linking the two states (i.e., a transition 
which is not resonant with the cavity field). The probabil- 
ity of  detecting downstream the atoms in either one of  the 
two levels will then exhibit oscillations versus n quite ana- 
loguous to the ones obtained in a Young interferometer. We 
have described here a Ramsey type experiment, which is 
the context in which we have first discussed these atomic 
interference effects. All the ideas discussed in this article on 
the very simple Young double slit scheme can be reformu- 
lated, mutatis mutandis, in the Ramsey fringe language. A 
complete theory of the microwave version of  these experi- 
ments can be found in [2], where we take explicitely into 
account finite time cavity relaxation by describing the field 
evolution in the density matrix formalism. This paper also 
contains estimates of  orders of  magnitudes for experiments 
involving beams of  circular Rydberg atoms. The advantage 
of the microwave over the optical versions of  the atomic 

intefferometer is that experiments, in which exotic electro- 
magnetic fields such as Fock or Schr6dinger cat states could 
not only be generated, but also manipulated and observed 
over long periods of  time, are no longer a distant dream but 
become really feasible. 

References 

1. M. Brune, S. Haroche, V. Lef'evre, J.M. Raimond, N, Zagury: Phys. 
Rev. Lett. 65, 976 (1990) 

2. M. Brune, S. Haroche, J.M. Raimond: Phys. Rev. A, to be pub- 
lished (1992) 

3. O. Carnal, J. Mlynek: Phys. Rev. Lett. 66, 2689 (1991) 
4. M.O. Scully, B.G. Englert, H. Walther: Nature 351, No. 6332, 111 

(1991) 
5. E. Schr6dinger: Naturwissenschaften 23, 807; 23, 823; 23, 844 

(1935) [English translation by J.D. Trimmer: Proc. Am. Phys. Soc. 
124, 3235 (1980)] 

6. B. Yurke, D. Stoler: Phys. Rev. Lett. 57, 13 (1986) 
7. M.J. Holland, D.F, Walls, P. Zoller: Phys. Rev. Lett. 67, 1716 

(1991) 
8. G. Rempe, R.J. Thompson, R.J, Brecha, W.D. Lee, H.J. Kimble: 

Phys Rev. Lett. 67, 1727 (1991) 
9. L. Ning: Phys. Rev. A40, 1707 (1989) 

10. J. Jansky, T. Kobayashi: Phys. Rev. A41, 4074 (1990) 


