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Abstract. We present comprehensive results of numerical studies on the dynamical 
properties of a multimode ring laser under modulation of the population inversion in the 
bad-cavity condition. Incoherent properties of unstable oscillations in this system are 
investigated in detail as a function of two control parameters: the dc component of the 
population inversion and the modulation amplitude. Two kinds of optical chaos in two 
limiting regions reported in a previous paper are extensively studied to clarify their different 
characteristics from deterministic and stochastic points of view. The competition between 
their different origins is revealed. Statistical properties of their stochasticity are investigated 
to clarify their non-Gaussian natures. Comparison with analytical results for a single-mode 
laser with fluctuations is also made. 

PACS: 42.50.Tj, 42.55.-f, 05.45.+b 

The theoretical understanding of the dynamical prop- 
erties of lasers as dissipative nonlinear dynamical 
systems far from thermal equilibrium is relatively 
advanced. This has provided a basis for describing an 
irregular asymptotic evolution as deterministic chaos 
[-1, 2]. On the other hand, the spectral and temporal 
characteristics of lasers have also attracted interest of 
researchers in engineering and experimental fields: 
Ultra-high time resolution spectroscopy with tempo- 
rally incoherent laser light has been developed [-3-6]. 
The well-controlled optical chaos appears to be a 
candidate for an incoherent light source. Detailed 
information on the characteristics of the incoherent 
light is essential for the analysis of incoherent laser 
spectroscopy. In addition, we need to control the 
temporal coherency of laser light for various purposes. 
The quality control of the laser light has potential 
applications in many fields. 

Because the simplest model of a laser system with a 
few degrees of freedom is that of a single-mode 
unidirectional ring laser under cw pumping, this model 
has already been investigated extensively [2]. The 
multimode and/or modulated (nonautonomous) 

lasers, however, are still far from a full understanding 
with respect to their coherence and dynamical charac- 
teristics. The coupled nonlinear equations which de- 
scribe the operation of a multimode system are too 
complicated to be solved generally. Nevertheless, the 
multimode and/or modulated lasers are important 
from both the engineering and fundamental view- 
points, and are essential in obtaining ultrashort light 
pulses under the mode-locked operation. In addition, 
it is also interesting to clarify the relation between 
two kinds of optical chaos corresponding to the 
modulated and unmodulated systems, which are a 
characteristic of the nonequilibrium nonlinear system. 

The dynamics of lasers is characterized by three 
relaxation constants: the field decay rate K including a 
transmission loss through the cavity mirrors, the 
polarization (transverse) relaxation constant 7± and 
the population (longitudinal) relaxation constant ~ H" 
According to a linear stability analysis [7, 8] of the 
mean-field Maxwell-Bloch equations, the stability of 
cw laser operation depends on these constants: cw 
oscillation can be unstable under the bad-cavity 
(low-Q cavity) condition (K>TII +7±), while stable 
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under the good-cavity (high-Q cavity) condition 
(K <7 FI +7±)- In this paper, we pay attention to the 
former case to clarify the unstable phenomena. 

In our previous papers [9, 10], we employed the 
technique of population inversion modulation in a 
multimode system as a method for controlling the 
coherence. There we introduced the regular and cha- 
otic behavior of this system and their dependence on 
physical parameters. The modulation of the atomic 
inversion of a multimode ring laser induces large 
qualitative changes in the stability properties of its 
output laser field, depending sensitively also on the 
cavity Q-value (inversely proportional to K). In the 
case of a bad cavity (low-Q cavity, K>~TII,T±), an  
important feature was that optical chaos was observed 
in two limiting cases [10]: first, when the dc compo- 
nent of inversion is very large, and second, when the 
modulation is fairly strong but the dc component is 
weak. Chaos in the first region results from the intrinsic 
Lorenz instability [11], which occurs even in the case 
of no modulation. On the other hand, the second 
region of chaos is essentially caused by the strong 
modulation, where the mechanism has also been 
investigated in the single-mode laser with a low-Q 
cavity [12,13]. 1 These types of chaos coexist in a 
parameter space of the multimode system. 

The aim of this paper is to show that above two 
kinds of chaos have different characteristics with 
respect to ergodic and statistical properties. In par- 
ticular, the correlation dimensions of their chaotic 
attractors show a distinct difference. The competition 
between the different origins of instabilities in the 
multimode system, i.e., the Lorenz-type instability and 
the quasiperiodic instability, is also revealed for the 
first time. The former instability overcomes the latter in 
the large population inversion even under strong 
modulation. We also perform dimensional analysis 
and discuss the validity of the calculations in [10]. 
Moreover, we stress that the total electric field of both 
two kinds of chaos does not obey the complex 
Gaussian random process. Several characteristics that 
differ in the two cases are investigated from a statistical 
point of view. A distribution function of the electric 
field amplitude with a long tail is obtained in the strong 
pumping region, which was also predicted by an 
analytical study of the Fokker-Planck equation of the 
bad-cavity laser [14]. The main results of this paper are 
summarized as follows. 

1 The interaction between the longitudinal modes in a low-Q 
cavity is destructive and noncooperative. In the good-cavity 
system, on the other hand, strong modulation leads to a coherent 
pulsation, i.e., mode-locking phenomena [9]. This results from a 
cooperative interaction between the modes. This is an essential 
difference between these two systems from a phenomenological 
point of view 

1) Two unstable oscillations of the multimode 
laser with modulated inversion in the bad-cavity 
condition are studied to clarify their differences in 
terms of ergodic and stochastic natures. The compe- 
tition between two types of chaos originating in 
different instabilities is investigated: The quasiperiodic 
instability is suppressed by the Lorenz instability in the 
region of the, large inversion. 

2) The optical chaos in the limiting region of large 
population inversion (LC) has the following proper- 
ties: a) The correlation dimensions of attractors of the 
field amplitude are about 2.07+0.06-2.21 +0.06. b) 
The power spectral density of the field has a very broad 
profile and a power tail in frequency, c) The static 
probability distribution of the field amplitude has a 
long tail and is well characterized by the F-type 
distribution. Higher order statistical moments deviate 
from those calculated from the complex Gaussian 
statistics. 

3) The other type of optical chaos observed in the 
region of strong modulation and lower population 
inversion (QPC) is characterized by following facts: a) 
The correlation dimensions of attractors of the field 
amplitude are about 2.34+0.06-2.50+0.06. b) The 
power spectrum is exponential-like, c) The static 
probability density of the field amplitude is well 
described by a F distribution. 

4) The correlation dimensions of the chaotic at- 
tractor are calculated as a function of the sampling 
time interval (resolution time) to test the validity of the 
dimensional calculation of 1-10]. 

In Sect. 1, a general theoretical model for a multi- 
mode ring laser with population inversion modulation 
is reviewed. In Sect. 2,we survey the different character- 
istics of the two kinds of chaos in ergodic and statistical 
terms. The plausibility of the correlation dimension is 
discussed there. Non-Gaussian statistical properties 
are also revealed. A discussion is presented in Sect. 3. 

1. Multimode Laser Equation of Motion 

Conventional laser theory is based upon two coupled 
rate equations for the light intensity and the popula- 
tion difference obtained after adiabatic elimination of 
the atomic polarization. This treatment is not justified 
in our bad-cavity case where the Lorenz instability 
comes from three coupled differential equations. 
Moreover, phase dynamics are increasing in im- 
portance, not only in terms of fundamental interests, 
but also due to recent developments in optical com- 
munication and optical information processing [15]. 
Therefore, neither the adiabatic approximation nor the 
rate-equation treatment are justified in both the good- 
and bad-cavity cases. We must treat the coupled 
equations for the radiation field, the atomic polar- 
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ization, and the population difference in an exact 
manner without any adiabatic eliminations. 

We study the temporal behavior of a travelling- 
wave field interacting with a homogeneously broad- 
ened medium under sinusoidal modulation of the 
population inversion in a unidirectional ring cavity 
[-10]. The active medium consists of the two-level 
atoms with the relaxation constants 7± and 711 for the 
polarization and population, respectively. The interac- 
tion of the active atoms with the cavity field is 
described by the travelling-wave Maxwell-Bloch 
equations: 

[C~z + ~ l E ( z , t ) =  -r ,E +igP, (l.la) 

0 
~P(z ,  t)= -y±P +iAAP-igED, (lAb) 

~D(z,  t) = - 7 II D + 7 II D(O) 

+ 7 I1 ~ c°s C°mt + 2ig[EP* -- E*P], (1.1 c) 

where E is the complex total field envelope, P the 
atomic polarization envelope, and D the population 
difference. Here, tc is the decay rate of the field in the 
medium, AA the detuning of the carrier frequency of the 
field from the central atomic transition frequency, and g 
is the coupling constant. The population inversion is 
sinusoidally modulated from outside with the modu- 
lation frequency co m and amplitude ~ around its dc 
component D (°). Here, 60 m is chosen to be close to the 
longitudinal mode spacing 2rcc/L of the cavity with the 
length L chosen to give not only the temporally 
incoherent light but also the coherent mode-locked 
laser pulsation [,-16]. Consequently, the side modes as 
well as the central mode of the population difference 
are excited and they are coupled with each other 
through the nonlinear intermode interaction. This 
induces coupling between the adjacent modes of the 
electric field. 

Equations (1.1) are supplemented by the boundary 
condition of the unidirectional ring cavity: 

E(O, t)=RE(d, t -  At) exp(--i6~), (1.2) 

where R is the mirror reflectivity, d the length of gain 
medium, and 6¢ the phase difference due to cavity 
detuning. At is the delay time due to round trip: 
A t=(L-d)/c .  Taking into account the spatial de- 
pendence according to the boundary condition (1.2), 
the lasing threshold is given by 

Dth={XY±+~llnRl)(1+A])\ g2 72j  

L KT, ( A ~  
d g2 klq- 7~J '  (1.3) 

where K is an effective field relaxation constant 
including transmission losses through the cavity 
mirrors. 

With the aid of the "dressed-mode" transformation 
[10, 28], the boundary condition for the field (1.2) is 
reduced to a simpler periodic form. In addition, due to 
the spatial mode decomposition, we can eliminate the 
spatial differential O/& to obtain multimode laser 
equations in a natural manner. As a result, an infinite 
set of coupled ordinary differential equations are 
obtained for the mode-decomposed variables. 2 In this 
paper, we confine ourselves to the case of A a = t c = 0 .  
Then we can obtain the Maxwell-Bloch equations for 
the mode-decomposed components as 

d d 
e,(t) = - Ke, - inA men -1- ig ~ pn, (1.4a) 

d 
p,(t) = - 7 ±P, + ira°raP, - ig E Z ~kt,ekdt 

k l 

dd.(t)= 
x exp [ - i(k + l - n)COmt], 

- -  7 IP d, + inogmd . + 7 II G D(°) exp (inC°mt) 

+ 7 LI A. ~ exp [i(n - 1)COrot ] 

+ 2ig y. (ekp*-. -- ek Pk +.), 
k 

where 

1 - R  2 

~kl" = R 2 

(1.4b) 

(n=0, 1,2, ...), 

(1.4c) 

1 
2[lnR[ + 2zd(k + 1 - n)' (l.5a) 

1 - R  2 

r/, - 211nRI + 2nrd' (1.5b) 

1 - -  R 2 exp(icomA t) 
A, = 2[lnR[ + i (2nn-  COmAt ) ' (1.5c) 

2zcc 
Am- L --(Dm" (1.5d) 

Equation (1.4c) has the source term for the (n -1) th  
mode component of the population difference (the 
fourth term of the right hand side of the equation) due 
to the pumping modulation whose frequency is close to 
the mode spacing. This is an essential difference from 
the models of [-28, 29] where a free-running operation 
is considered. The efficiency of the modulation is 

2 Although the transformed electric field always satisfies the 
periodic boundary condition, the transformed polarization and 
population do not. Nevertheless, we employ the spatial Fourier 
expansion for them by assuming their periodic nature. Therefore, 
we should pay attention to the fact that the solutions of the 
multimode equations lie only in a subspace of those of the original 
Maxwell-Blocb equations 
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measured by the coefficient A, given by (1.5c). Here 
note that d,(t)=d*,(t) because of the real-valued 
nature of the population difference. These multimode 
equations contain the rigorous form of the cavity 
boundary condition (1.2) describing the propagation of 
the field. We stress again that our relevant model (1.4) 
has been derived without the uniform-field approxi- 
mation. Spatial dependencies of these variables are 
described through the expansions in terms of the 
spatial eigenmodes. Their temporal characteristics are 
followed through the time development of the expan- 
sion coefficients in addition to the Fourier compo- 
nents. Thus we can obtain reliable and exact informa- 
tion about the temporal evolution of this system by 
using this model (1.4). 

The Maxwell-Bloch equations in the mode- 
decomposed forms (1.4) are useful when a small 
number of modes are operating simultaneously. Here, 
we need to pay attention to the fact that the number of 
relevant modes should be nearly equal to the ratio of 
the power-broadened atomic linewidth to an inter- 
mode spacing. That linewidth is described by the larger 
of the unsaturated gain width 27± and the Rabi 
frequency g(v±/7 II)a/ZIEI" 

2. Characteristics of the Two Types of Optical Chaos 

Let us study in this section how the external modu- 
lation influences a multimode system which has an 
intrinsic instability even without the modulation. The 
bad-cavity condition (K > 7tl, 7±) has been achieved 
experimentally by the far-infrared (FIR) laser (e.g., 
NH 3 laser, CHzF 2 laser) or the molecular electronic 
transition laser (e.g., 12 laser) to observe the Lorenz 
instability in recent experiments [30-32]. Because the 
modulation of the population inversion and the multi- 
mode operation were shown to be effective in reducing 
the threshold for chaos [10], the chaotic behavior of 
the modulated multimode laser with a bad cavity will 
be more easily observed. The other kind of chaos, i.e., a 
quasiperiodic chaos, at low static population inversion 
but at higher modulation amplitude is also observable. 

For numerical calculation, we choose such a case, 
since the active frequency region of gain is covered by 
the five modes n=O, _1,  _+2. For the population 
difference dn, however, additional population pulsa- 
tion terms [28] d_+ 3 and d_+ 4 are considered to allow 
more precise analysis. As a result, the 29-dimensional 
coupled differential equations (1.4) are integrated with 
a fourth-order Runge-Kutta-Gill routine which avoids 
the accumulation of rounding-off errors. We choose 
K=10.07±, 71F=0.5~±, R=0.2, g=4.35, f / L = 2 . 7  
× 10 -3, 2~c/L=0.51~±, and A,n=O. We vary D (°) and 
as the two control parameters. The field amplitude is 
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g/Dth 

Fig. 1. Phase diagram of the modulation characteristics in the 
space of the dc component of the population inversion D (°) and 
the modulation amplitude ~ under K = 10.0~1, 7 I[ = 0.57., R = 0.2, 
and Am=0.0. Chaos due to the Lorenz instability (LC) are 
observed in upper dark C region. In the lower black C region, the 
system shows quasiperiodic chaos (QPC). The upper horizontal 
broken line represents the instability threshold DtBh. Thick broken 
lines denote ambiguous boundaries. This phase diagram is coarse 
grained, and a realistic diagram is filled with finer structure of 
quasiperiodic and periodic chaos, phase-locking, etc. 

normalized by its steady-state value ]ES(z=O)[ whose 
intensity is given by 

A] )  R sinh(O -Ilngl) 
IU(°)12 = ~ \Dt~ //\ ~-z] s i ~  
where (2.1) 

Do= xT± (1 A2) (2.2b) 
g2 t, + 71)" 

Here we briefly review the modulation responses of 
this system found in [10]. The dynamic characteristics 
are classified in the parameter space of D m) and ~, as 
shown schematically in Fig. 1. Roughly speaking, this 
space can be divided into three regions, S, P, and C, 
based upon the power spectrum profile, the phase 
space trajectory, and the time evolution of the ampli- 
tude and phase. The S region is located at weak 
modulation and intermediate population inversion, in 
which the laser system shows stable cw emission or 
emission with slight modulation. In this region, the 
phase of the total field varies almost linearly and slowly 
in time. The P region has a rich dynamics including the 
periodic pulsation, the aperiodic pulsation, the stable 
quasiperiodic oscillation, the unstable quasiperiodic 
oscillation, and so on. Detailed studies of these phe- 
nomena are presented in [10]. 

2.1. The Two Kinds of Optical Chaos 

When D {°) and/or ~ are fairly large, this multimode 
system shows irregular dynamics as optical chaos in 
the regions denoted by C. This response is in contrast 
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to the case of the good-cavity system [9, 10], which 
exhibits a coherent train of pulses in the limit of large 
modulation amplitude (. In order to classify in more 
detail the dynamical characteristics of the C region, we 
employ the dimensionality test, calculating the corre- 
lation dimensions [33, 34] of the attractors of the 
chaotic field amplitude. According to the dimensional 
analysis discussed in the next subsection, the C region 
can be further divided into two regions. One (LC) is 
located at the region of very high D (°) and the other 
(QPC) at rather low D (°) and fairly strong modulation 
(high (), as shown in the phase diagram (Fig. 1). The 
chaos observed in the region of high D (°) (LC) has the 
same origin as the Lorenz instability. The resonant 
mode is described by the Lorenz equations, so this 
mode loses its stability in the high D (°) situation [11]. 
On the other hand, chaotic behavior (QPC) in the 
region of rather low D (°) and very strong modulation 
(high () results from the quasiperiodic instability [35] 
in which the external modulation plays an essential 
role [13]. The boundary line between the two regions 
of chaos is approximately found as 

D(°) ÷~ ~DBtn =_ {5+3  yl~17± 

+ 2 4  ~ \Tli/ I ) ' 

This means that as long as the maximum peaks of the 
modulated population inversion exceed the instability 
threshold DtBh, the chaotic behavior originates from the 
Lorenz instability. Thus the Lorenz instability 
suppresses the quasiperiodic instability in the high D (°) 
region. Therefore the quasiperiodic chaos can be 
observed only in the lower D (°) and high ~ region. So we 
conclude that these instabilities compete exclusively 
with each other. The quantitative differences between 
these types of chaos are presented below. 

Here it should be noted that the phase motions of 
these two kinds of chaos observed in both LC and 
QPC regions behave very randomly, in contrast to the 
"stable" phase motion of the Lorenz chaos observed in 
the single-mode bad-cavity laser [29, 36, 37]. This may 
stem from the multimode property of the mode-mode 
couplings. This point is one of the characteristic 
features of chaos in the multimode system. 

2.2. Correlation Dimensions of  the Attractors 

Strong evidence for the difference in origins between 
LC and QPC chaos is given by dimensional analysis. 
Here we concentrate on the correlation dimension, 
using the method proposed by Grassberger and Pro- 
caccia [33,34]. We start with a series of data 
u(1), u(2) ..... u(i) . . . .  in a time sequence, corresponding 
to measurements regularly spaced in time where time 

is discretized by a sampling (resolution) time interval 
At as t= iA t  (i= 1,2, ...). From the u(i)'s, a sequence of 
points x(1), x(2), ..., is obtained by taking 

x( i )  = [u( i ) ,  . . . ,  u(i + d -  1 ) ] ,  

a d-dimensional vector. We use this sequence 
x(l), x(2), ..., x(N) to constitute the correlation integral 
C(d)(e) as follows: 

1 
c(d)(e) = ~ {number of pairs Ix(i), x(j)] 

such that Ilx(i)-x(j)[I <e}. (2.4) 

Here, d is the embedding dimension and mix- x, [I is the 
Euclidean norm of x - x ' .  Suppose now that 

lim lim log C(d)(e) = D~). (2.5) 
~ o  N-.~o loge 

For d sufficiently large, D 2 ~ lira D(a d) is the correlation 
d---r oo 

dimension. We have calculated the D2 dimensions of 
the attractors formed by the amplitude of the chaotic 
fields, i.e., u(i)= IE(i)I. 

Although the effects of the temporal resolution of 
the time series At and the number of data points N 
upon the correlation dimension are discussed by 
several authors [38M0], they are not yet understood in 
detail from the fundamental and theoretical points of 
view. Therefore, we have calculated the dimensions in 
several time intervals A t between data points, as shown 
in Fig. 2a. From this figure, one observes a dependence 
of D 2 o n  the sampling time interval. In the case of too 
small At, D2 becomes less than two. The values in 
plateau regions are the correct ones [41]. The inhomo- 
geneity or non-uniformity of the strange attractor of a 
system with many degrees of freedom [42] like the 
multimode laser may be reflected in the fact that the 
correlation dimension is less than or near two. A 
strongly dissipative character of this system is also 
reflected in the small D2. 

The correlation dimensions of the strange at- 
tractors in each of the two limiting regions (LC and 
QPC) are found to be fractional and, to within _+ 0.06 
error, are 2.07-2.21 for LC and 2.34-2.50 for QPC. A 
fractional dimension indicates that the observed field 
behavior is "chaotic". Moreover, the convergence of 
D(2 d) for sufficiently large d is evidence that the chaotic 
fields do not have stochastic origins. The clear dif- 
ference in D 2 between LC and QPC comes from the 
different origins of the chaos. Figure 2b shows the D (°) 
dependence of the correlation dimension D 2 in the case 
of the rather strong modulation amplitude 
((/Dth--~3.0-6.0). Two different dimensions exist: the 
higher dimensions (o) are found in the lower D (°) and 
the lower dimension (e) in the high D (°). This indicates 
that the Lorenz instability (e) suppresses the quasi- 
periodic instability (o) even in the strong modulation 
case if D (°) is large. 
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Fig. 2. a The correlation dimension D 2 of the chaotic field 
amplitude as a function of the sampling time interval A t for the 
cases of D(°)/D = 11.0, (/Dth = 0.0 (denoted by e) and D(°)/Dtla 
= 5.0, (/Dth = 4.5 (denoted by o). The total number of data points 
is fixed at 3000 and T denotes a characteristic time of the 
dynamics (the correlation time). The broken lines stand for the 
values in plateau regions, b The correlation dimension D2 plotted 
against the dc population inversion D I°) under the relatively 
strong modulation condition, i.e., ~/Dth=3.0-6.0. The higher 
dimension (o) is observed in the lower D <°) corresponding to 
quasiperiodic chaos (QPC), and the lower dimension (e) in the 
higher D ~°) corresponds to Lorenz-type chaos (LC) 

2.3. Routes to Chaos 

The abrupt transition to LC chaos from cw emission (S 
region) is analogous to the case of Lorenz chaos. As 
shown in the phase diagram, this chaotic region also 
exists below the threshold Dt~~ 12.0Dth. In terms of 
obtaining temporally incoherent light in experiments, 
the multimode operation has the advantage of reduc- 
ing the instability threshold. On the other hand, the 
characteristic route to QPC chaos can be observed as a 
function of the modulation amplitude ~ with fixed 
lower population inversion D ~°). When the modulation 
amplitude is small in the region P, the system exhibits a 
periodic pulsation whose frequency coincides with the 
external modulation frequency (harmonic oscillation). 
On increasing the modulation amplitude, another 
quasiperiodic frequency incommensurate to the 
modulation frequency grows, and stable quasiperiodic 
oscillation occurs after the subcritical Neimark bifur- 
cation [12, 13, 35]. This quasiperiodic motion forms a 
torus in phase space. This torus structure collapses to 
yield an unstable quasiperiodic behavior at stronger 
modulation. These two incommensurate frequencies, 
i.e., the harmonic oscillation frequency and the induced 

quasiperiodic one compete with each other resulting in 
an intermittent behavior with these two frequencies 
irregularly superposed. Finally, dynamical structure 
with several frequencies changes into completely ir- 
regular chaotic behavior which is the fully developed 
chaos. The nonlinear coupling between the modes 
corresponding to the different frequencies tends to 
destroy quasiperiodicity and replace it by chaos ac- 
cording to the Ruelle-Takens-Newhouse theorem 
1-46,47]. 

2.4. Power Spectral Densities 
and Intensity Autocorrelation Functions 

Figures 3a and b show the power spectra of the chaotic 
(LC) field observed in the high D ~°) limit on a semi- 
logarithmic and a log-log-scale, respectively. We find 

o 5 

m / m ~  
100 

3 
U3 

3 

5 

3 0 

0 0.5 

log td 

I 1.5 

40 
m / t ~ T  

Fig. 3a-e. Power spectral density of the field in the high D t°) 
region a in the semi-log frame and b in the log-log frame for 
Dt°)/Dth= 14.0 and (/Dth=0.0. The tail shows the power decay. 
The frequency is measured by O~RT = 2Tcc/L. C In the low D t°) and 
high ( region (QPC) in the semi-log frame for Dt°)/Dth = 4.0 and 
~/Dth = 3 . 5  
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that the power spectrum of LC chaos has a very broad 
profile with a power tail. This indicates that there is no 
characteristic scale of frequency in the power regions of 
the spectrum. On the other hand, the spectrum of the 
other kind of chaos (QPC) at low D (°) and high ( is 
shown in Fig. 3c on semi-log scale. In this plot, the 
spectrum profile is found to have an exponential 
dependence on the frequency co. Thus the power 
spectra of the chaotic fields in both limiting regions 
distinct differences. 

The intensity autocorrelation function C ~2) is a 
measure of the second order coherence of the emitted 
light, defined as 

C(2)(Az) _ <E*(t)E*(t + Az)E(t + Az)E(t)> 
<E,(t)E(t)>2 (2.6) 

In both regions, C(2)(Az) decays rapidly as a function of 
the time difference Az and shows no correlation peaks 
at the time difference corresponding to the round-trip 
time (Fig. 4a and 4b). This results in a small correlation 
time which is further evidence of the incoherence of the 
chaotic light. If the total field obeys the complex 
Gaussian random process, the intensity autocorrela- 
tion function C (2) can be written in terms of the field 
correlation 

C(1)(A t) = (E*(t)E(t + Az))/(IE(t)l 2 ) 

2 

c, 2 

(a) 

20 

(b) 

' 1'O_ ' 0 
Ar 

4 

' 1 ' 0  ' 0 20 

At 

Fig. 4. a The intensity autocorrelation function of the chaotic 
(o) light in the high D region (LC). The peak value is 3.78. The time 

difference Az is measured by the transverse relaxation time YZ 1. b 
In the low D (°) and high ~ region (QPC). The peak value is 3.47 

as 

C~Z)(A~) = 1 + IC(1) (A~)I  2 , (2.7) 

using the factorization properties of the higher order 
moments [483. Therefore, the ratio of the peak to 
background in the intensity autocorrelation functions 
becomes 2:1. In this system, however, the ratios are 
about 3.78:1 and 3.47:1 in the high D ~°) (LC) and high ( 
(QPC) cases, respectively. This indicates that the total 
fields do not obey the simple Gaussian process. 

2.5. Static Probability Distributions 
of the Field Amplitude 

From the viewpoint of applications, chaotic temporal 
behavior is sometimes regarded as a stochastic process. 
We then have another means of distinguishing between 
the origins of LC and QPC chaos as well as the 
deviation of these statistics from the Gaussian type. 

The density distribution of the chaotic fields are 
shown in Fig. 5a-c. In the region of high D (°) and low 
(LC), the probability density (Fig. 5a) of the amplitude 
of the field can be fitted by a power-tailed distribution 
function (F-type distribution): 

W(IEI)°clEl~- l [ 1 _ 7 -(~+/~+1) +e~lEI2 / for t C ,  (2.8) 

where ~ and fl are positive constants related to the 
strengths of fluctuations, and e is also a positive 
parameter, to be discussed in Sect. 3. On the other 
hand, the distribution function in the low D ~°) and high 

(QPC) region (Fig. 5b) can be well described as a 
special case of a F distribution: 

W(lEI)=a21Elexp(--alEI) for QPC, (2.9) 

with a positive parameter a. Both functions have 
profiles different from the Rayleigh (Wigner) distri- 
bution resulting from the complex Gaussian statistics 
introduced in the appendix. 

In each of the two regions, the probability distri- 
bution of the phase is almost uniform with the value of 
1/2z, as shown in Fig. 5c. This comes from the 
superposition of the complex fields of the multimodes 
which obey the chaotic motions. However, the residual 
singular structure (seen as &function-like spikes) re- 
tains traces of the characteristic property of chaos as a 
"dynamical system". 

2.6. Higher Order Moments 

Here we present a second example of deviation of the 
chaotic fields from the Gaussian statistics. The higher 
order moments reflect more strongly the tail structure 
of the probability distribution [49]. The skewness c~3 ~ 
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Fig. 5. a The static probability distribution of the amplitude of 
chaos a in the high D (°) region (LC) and b in the low D (°) and high 

region (QPC). The fitted solid lines are the F-type distribution 
(2.8) and the F distribution (2.9), respectively, e The probability 
distribution of the phase of total field of LC chaos. The broken 
line is the uniform distribution l/2~r 

and the flatness a,~ of the amplitude distribution are 
calculated from time series data. These are shown in 
Table I where the different values from the Gaussian 
case are shown. In the limit of high ( ( Q P C ) ,  the 
skewness and the flatness are evaluated as 1.40 and 
3+3.01, respectively, as shown in Table 1. These 
values coincide well with that calculated from the 
fitting probability density assuming the F distribution 

(2.9): c~ = 1/2 and e~ = 3 + 3. The fact that both ~ and 
e~ are larger than 0.631 and 3 + 0.245, respectively, is a 

Table 1. Typical values of the skewness and flatness of the total 
field amplitude of the optical chaos observed in two limiting 
regions. The number of datapoints is 215 

Skewness~ Flatness~ 

LC 1.41 3+4.32 
QPC 1.40 3+3.01 
Rayleigh 0.631 3+0.245 

Table 2. The normalized intensity moments of the chaotic light 
observed in the high D (°) limit (LC) for the bad-cavity case. The 
number of datapoints is 2 tS. Compare with the values n! in the 
case of the complex Gaussian light. Diverging values for large n 
result from the long-tailed distribution 

Order n 2 3 4 5 6 

Chaotic 3.783 26.92 324.1 4771.8 77490.7 
Gaussian 2 6 24 120 720 

result of the longer tail of the amplitude distribution 
than that of a Rayleigh distribution. 

A further proof of the long-tail property is given by 
the nth order normalized intensity moments mi.t(n): 

<(E*~3"> 
mi"t(n)- ( E ' E ) " '  (n=2 ,3  . . . .  ). (2.10) 

Table 2 shows the diverging intensity moments as a 
function of the order n. These indicate the longer tail of 
the probability distribution compared to that of the 
complex Gaussian statistics. The second-order normal- 
ized intensity moment mi,t(2) is connected to the 
photon counting coefficient, 

t/--= mint(2 ) -  1 = (n2)/<n) 2 -  ( n ) -  i _ 1, 

where n is the number of photoelectrons in the photon 
counting experiment. For  Bose-Einstein statistics (cor- 
responding to ~ complex Gaussian case), I/ becomes 
unity, whereas for Poisson statistics (in the case of 
coherent light), q is zero. In our calculation, q is larger 
than two. Therefore, the optical chaos has incoherence 
with strange statistical properties. 

2.7. Cross-Correlation Coefficients 

In order to confirm that the real and the imaginary 
parts of the electric field are not correlated, the cross- 
correlation coefficient K(O) is a good measure of the 
cross-correlation defined as 

K(O) 

=( [Re  {E(t)} - (Re {E} ) ]  Jim {E(t)} - ( Im {E} )3)  

(2.11) 
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where a 2 and o -2 are the variances of the real and 
imaginary parts of the field, respectively. The correla- 
tion coefficients are calculated as about -0.063 (LC) 
and -0.128 (QPC) in the high D ~°) and the high 
regions, respectively. This means that the correlation 
between the Re{E} and Im{E} is almost negligible. 
Thus we conclude that they are not statistically 
correlated. 

3. Discussion 

A problem to be solved is the dependence of the 
number of modes upon the coherence of emitted field. 
Depending on this number, we must use an appropriate 
model to describe the laser. 1) In single-mode oper- 
ation, a laser becomes a low-dimensional system if 
fluctuations are negligible. 2) When several longi- 
tudinal modes oscillate as in the present case, the 
system has many degrees of freedom particularly if the 
three relaxation constants are of the same order. Here 
numerical analysis is a suitable method for studying 
the high-dimensional properties. 3) When infinitely 
many modes operate simultaneously, as in a dye laser, 
stochastic forces may be employed to describe the 
fluctuation effects of the off-resonant modes on the 
relevant resonant mode [50, 51]. From a naive view- 
point, the system in which a great number of modes 
operate independently and simultaneously is epxected 
to emit random light with Gaussian statistics because 
of the central limit theorem. On the other hand, the 
single-mode system is not stochastic but fully dynam- 
ical. The system of a few modes discussed in this paper 
has an intermediate character between the dynamical 
and the stochastic system. It should be noted that the 
central limit theorem cannot be applied to the multi- 
mode laser system because modes are not independent 
of one another and the mode-mode interaction plays 
an important role in the laser dynamics [52 55]. 

In view of the above discussion, we studied the 
statistical properties of the bad-cavity laser emission 
with the aid of the Langevin and the Fokker-Planck 
equations. In the case of strong pumping (D~°)>>Dth)~ 
the bad-cavity laser is equivalent to the stochastic 
Toda oscillator whose statistical properties are de- 
scribed by the Kramers-like equation. According to 
[14], the normalized light intensity I=[EI 2 in the 
cavity, whose mean value is normalized to be 
A = D(° ) /Dth- -1 ,  has a probability distribution with a 
power tail: 

1 -[- S E  I- -(1 +27[SE+~71!2SD) W(I)°c['~ft/2sD-I( D) (3.1) 

where Y=Yll/Y±, and St and S D are measures of the 
strength of field (including the off-resonant modes) and 
population noises, respectively. Therefore, the normal- 

ized amplitude of the electric field IE] = l/~ also has a 
power distribution with a tail: 

W(IEI) ~= IE[~:41sD- 1 
1 S - \--(l+27/SE+Tf4/2SD) 

× 2) t3 / 

These results are valid in the case of ASg~4SD. 
Normalized intensity moments mint(n) are calculated 
from above distribution function as 

mint(n ) = \ffSE j B ~ + n, 1 + - n 

/33, 

for n < 1 + 27/S~, where B(x, y) is the beta function. The 
first two moments are explicitly written as 

1 + 2SD/TA (3.4a) 
mint(2) = 1_SE/27' 

(1 + 2SD/~,A) (1 + 4S~/~7_) 
mint(3 ) = (3.4b) 

(1 - sd2~,)(1 - s~ /~ )  

We find that the field fluctuation and the off-resonant 
mode noise (measured by SE) play an essential role in a 
large fluctuation due to the long tail of the distribution 
function. Increasing the order n, the denominator of 
mint(n ) becomes small. Therefore, mint(n ) grows more 
rapidly than the Gaussian case. As shown in Sect. 2.5, 
this distribution explains well the numerical result of 
the deterministic multimode laser. Therefore, the sto- 
chastic character of LC chaos can also be understood 
by the Langevin model with the multimode effects 
replaced by fluctuating forces. 

In the strong modulation limit of the bad-cavity 
case, the quasiperiodic instability induces chaotic 
behavior (QPC) as shown in the route to chaos. 
Dynamics of the atomic variables P and D for the 
resonant mode can be described by the simple equa- 
tion of the forced Toda oscillator under the very-bad- 
cavity condition [12]. Analytical studies confirmed 
that the bad-cavity system with modulation has intrin- 
sically a quasiperiodic mode to generate chaos. These 
analyses were presented in [12, 13]. 

Here we mention the Lorenz plot (return map) of 
the chaotic field amplitude in the bad-cavity case. In 
neither region of LC or QPC, can we obtain a well- 
defined transfer function by calculating the Lorenz 
plot of the amplitude [E(t)l, in contrast to the single- 
mode case [12]. The chaotic dynamics of this multi- 
mode system cannot be described by the simple one- 
dimensional map, in spite of the low correlation 
dimensions. The character of the continuous time in 
the differential equations (not a map) plays an essential 
role in generating these kinds of chaos. 
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F o r  the  app l i ca t ion  of opt ica l  chaos  to  incoheren t  
laser  spec t roscopy,  we need to clarify how the non-  
G a u s s i a n  s tat is t ical  p rope r t i e s  affect the m e a s u r e m e n t  
of  u l t ra- fas t  phenomena .  The  dependence  u p o n  the 
spec t roscopic  scheme and  the non l inea r  opt ica l  p ro -  
cesses also remains  to  be clarified. W e  mus t  choose  a 
laser  ma te r i a l  in which  long i tud ina l  and  t ransverse  
r e l axa t ion  cons tan t s  are  of  the  same o rde r  so as to 
observe  this chao t ic  behav io r  in exper iments .  W i d e  
app l i ca t ions  can be expected only  when con t inuous  
con t ro l  of  the  cavi ty  qua l i ty  and  of  the n u m b e r  of  
m o d e s  has  been achieved.  

Acknowledgements. The author would like to thank Prof. E. 
Hanamura, Prof. K. Ikeda (RIFP, Kyoto University), Prof. M. G. 
Raymer, Dr. N. Nagaosa, Dr. K. Otsuka (NTT), Dr. D. 
Takahashi, and Dr. M. Tachikawa for fruitful discussions and 
encouragement. He is also grateful to Prof. N. B. Abraham for 
sending him valuable comments on the calculation of the 
correlation dimension. This work has been supported by the 
Scientific Research Grant-in-Aid from the Ministry of Education, 
Science, and Culture of Japan. 

Appendix 

The Complex Gaussian Statistics 

When we assume that the complex field E(t) obeys the complex 
Gaussian process, that is, the real and imaginary parts of E are 
independent stochastic variables whose distributions are 
Gaussian: 

W(Re{E~,Im{E~)=3exp[--(Re{E})2A(Im{E-})2t, (A.1) 

where A is a pumping parameter A=-D(°)/Dth-1, and E is 
normalized to be (IEI2)=~. In this case, the amplitude IEI and 
the phase arg{E} have the Rayleigh (Wigner) and the uniform 
distributions, respectively: 

2 _  / iEt2'  
W(IEI)=~IElexp~-~-),  IE[_>_0, (A.2a) 

W(arg {E~) = 2~ '  0 < arg {E} < 2z. (A.2b) 

From this, the stationary moments of field amplitude mn are 

~n!!(~r/2)i/2(A/2)n/2, for n: odd, 
ran-(IEI n) = ((n/2)!~n/z, for n: even. (A.3) 

The skewness ~ and the flatness ct~ of the amplitude distribution 
(A.2a) are thus given as 

ct~=_ m3-3mlm2 +2ml a _ 2 (~-  3)~/~ "-~0.631, (A.4a) 
(m2-m2) 3/2 (4 -n )  3/2 

c¢~ = m4 --4mlm3 + 6m2m~ - 3m~ 
(m2--m2) z 

32 -- 3~z 2 
3 + 0.245. (A.4b) - (4_~)2 

The light intensity [~IE[ 2 has an exponential distribution 
defined as 

W(/~= Al=exp(- ~ ) ,  /->0, (A.5) 

whose skewness and flatness are a 3 = 2 and c~ 4 = 3 + 6, respec- 
tively. The normalized intensity moment mint(n ) is 

m 2 n  
min t (n  ) ~ - -  = n ! ,  n = 1 , 2  . . . . .  (A.6) 

(m2)" 
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