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Abstract. The nonlinear material TlaAsSe 3 was used to convert pulsed 10.6 pm laser radiation 
into the second harmonic. The laser beam was tightly focussed, and an energy conversion 
efficiency of 57% was obtained, which is the highest reported to date in the mid-IR. 

PACS: 42.55.Dk, 42.65.Cq, 42.70.Fh 

A powerful and tunable mid-IR laser would be very useful 
for a number of applications, and one approach is to use a 
CO2 laser and harmonic generation. This method has the 
advantage that CO2 lasers are well developed, and the 
major uncertainty at present is the availability of suitable 
harmonic generation materials. 

T13AsSe 3 (TAS) can be grown at Westinghouse with 
high quality in lengths over 10 cm, and with an extremely 
low absorption coefficient of 0.0005 cm- 1. TAS also has a 
wide transmission range of 1.3-17 gm, a large nonlinear 
coefficient and a high damage threshold. These factors 
combine to make TAS an excellent harmonic generation 
material, and a second-harmonic generation (SHG) effi- 
ciency of 28 % was previously reported using TAS [1]. The 
present results are considerably higher than previously 
reported, demonstrating that very efficient harmonic 
generation can be accomplished with TAS, which could 
lead to a useful laser source in the mid-IR. 

1. Apparatus 

A schematic diagram of the apparatus is shown in Fig. 1, 
which consists of a low-pressure oscillator and a high- 
pressure amplifier. The laser contained a grating, a ZnSe 
beam splitter with enhanced polarization coatings, a 
CdTe Pockels cell and a 4 m radius of curvature copper 
mirror. These elements were arranged in a cavity dumping 
configuration [-2], which allows the cavity field to build up 
to its maximum value before being switched out of the 
laser cavity. The laser-pulse shape is determined by both 
the laser cavity length and the switching time of the 
Pockels cell. With infinitely fast switching, the pulse 
length would be equal to the laser cavity round-trip time. 
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Fig. 1. Schematic diagram of SHG parametrization apparatus 

The oscillator produced Gaussian TEMooo pulses on 
the P(20) transition at 10.59 gin. The pulse shape was 
triangular with a FWHM of 20 ns, as shown in Fig. 2. The 
pulse energy was about 0.1 m J, which was then increased 
in the high pressure amplifier to any level up to 30 mJ. 
This was accomplished with a double pass through the 
150 crn long discharge medium. 

The SHG efficiency was measured using a sensitive 
thermal energy meter, where a sapphire plate was used to 
block the 10.6 pm radiation while measuring the 5.3 gm 
energy. The various losses in the optics were also taken 
into account, to obtain the intensities inside the crystal. 

The laser beam was determined to be nearly Gaussian 
by measuring the beam diameters at various points in the 
system, and comparing them with the predicted spot sizes 
of a Gaussian beam. The spot size ~o is defined from the 
intensity relation 

I = I o exp ( - 2r2/o~ 2), (1) 

where Io is the intensity at the center of the Gaussian, and 
r is the radial distance from the center. The spot sizes were 
experimentally determined by measuring the diameter 
which allowed half of the beam power to pass [3], which 
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Fig. 2. Cavity dumped laser pulse illustrating triangular pulse shape 

Fig. 3. Photograph of burn hole used to determine the focal spot size 

occurs at a beam radius of 0.58909. All of these measure- 
ments were performed with the amplifier off, so that any 
distortions produced by the amplifier were not included. 

The focussed spot size was measured by allowing the 
laser beam to burn through a piece of paper until half the 
beam power was projected through the hole. Such a burn 
hole is shown in Fig. 3, in which the hole diameter of  
165 ~m represents the half power point of the beam, and 
corresponds to a spot size of 140 ~tm. The paper thickness 
was 40 ktm, which is thin compared to the hole diameter, 
so that diffraction effects from the edges of the paper were 
minimized, and the irregular burn pattern is due to the 
fiber structure of the paper. 

2. SHG Formulation 

The SHG process is typically formulated in terms of plane 
waves, and to apply the results to the present focussed and 
pulsed case, the plane wave results must be spatially and 
temporally integrated. The SHG energy efficiency for a 
pulse is then given by 

r I = ~ ~ ~ I2dadt/~ ~ Idadt ,  (2) 

where the integrals extend over the pulse shape and 
profile, and ~ is the conversion efficiency coefficient for 
plane waves given by [4] 

= (8rC2#oV2/cna)d2L 2 sinc 2 (flA 0), (3) 

where #0 is the vacuum permeability, v is the fundamental 
frequency, c is the velocity of light, n is the index of 
refraction of the fundamental frequency, d is the nonlinear 
coefficient, and L is the interaction length. The conversion 
is also assumed to be uniform and in the small signal 
regime over the interaction length. The phase mismatch is 
taken into account by sinc2(flAO), where sinc2(x) repre- 
sents sin2(x)/x 2 and 

fl = (rcvL/c) sin(20m) [(n~ v) - 2 _ (no2V) - 2]n3 ' (4) 

where 0,1 is the phase matched angle, n~ ~ is the extraordi- 
nary index of refraction at the harmonic frequency, n 2~ is 
the ordinary index at the harmonic, and n refers to the 
ordinary index of the fundamental beam. 

Performing the spatial integration over a Gaussian 
beam profile along with the temporal integration over the 
triangular pulse, the efficiency becomes 

r/=(1/3)~Io, (5) 

which applies to all Gaussian spatial distributions and 
any triangular pulse width, for either symmetrical or 
asymmetrical triangular pulse shapes. In terms of the 
fundamental pulse energy E~, I 0 is given by 

l o =  2E~/(zcco2z), (6) 

where z is the FWHM of the triangular pulse. 
The focussed SHG formulation differs from the un- 

focussed case in that the variation of the beam in the 
propagation direction must be taken into account. Such 
an analysis was performed by Boyd and Kleinman for the 
confocal case with Gaussian beams [5], and they for- 
mulated an efficiency parameter h, which described the 
reduction in efficiency due to the focussing, where the 
focussed efficiency r/y is related to the unfocussed effi- 
ciency by 

rls=rlh/4, (7) 

where 4 = L i b  is a focussing parameter, and b=  2rmo92v/c 
is the length over which most of the SHG interaction will 
occur. Therefore 4 represents the fraction of the available 
interaction length within the crystal. With a large spot 
size, b will be much larger than the crystal length, and 4 
will be small. For tight focussing, b will be smaller than the 
crystal length, and ¢ will be large. At small values of 4, 
h = 4, and r/y reduces to the unfocussed efficiency q. 

The h parameter is also a function of the walk-off angle 
due to birefringence, which is equal to 2.12 degrees inside 
TAS at 10.59 Ixm. Walk-off reduces the efficiency, since the 
effective interaction length is decreased. For a given 
crystal length, the appropriate value of h for TAS can be 
found from the curves of Boyd and Kleinman. 

3. Measurements 

The SHG efficiency was measured using a 4.57 cm long 
TAS crystal having diamond turned surfaces with AR 
coatings, and initially the unfocussed beam with a spot 
size of 5.7 mm was used. The crystal was rotated about the 
matching angle, and the normalized SHG efficiency as a 
function of the internal angle A 0 was measured. The result 
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is shown in Fig. 4, and it is compared with a sinc2(A0) 
function having a FWHM of 1.15 mrad, which corre- 
sponds to the FWHM of the measured points. 

The tuning curve indicates that the crystal is operating 
at an effective length of 3.3 cm, which is 72% of the 
measured 4.57 cm crystal length. It is believed that this 
reduction in effective length is due to crystal quality 
problems, and is not due to beam spreading effects, since 
the same tuning curve was measured at various other spot 
sizes using collimating optics, and it was found that the 
FWHM was unchanged for spot sizes larger than 2 mm. It 
is also believed that uncertainties in the indices of 
refraction used in calculating the tuning curve are not 
responsible for the widening effect. This was investigated 
analytically by expanding the tuning curve relationship in 
terms of the uncertainties in the indices, and assessing the 
widening as a function of the uncertainty. The Sellmeier 
equations of Ewbank were used [6], which are considered 
to be the best available formulation, and are within about 
0.03% of the measured values at 10.59 pro, and should 
widen the tuning curve by 0.5% at the most. We can 
therefore conclude that the uncertainties in the Sellmeier 
equations are not responsible for the additional tuning 
curve width. 

A reasonable explanation for the widening of the 
tuning curve is crystal quality problems. This speculation 
is supported by noting that the measured curve of Fig. 4 
does not attain zero, and that it is not symmetrical in the 
wings. These effects, and especially the asymmetry tend to 
support crystal quality problems, in which asymmetrical 
misorientations occur over the length of the crystal. It 
would be difficult to explain the asymmetry with instru- 
mental effects. We must therefore conclude that the TAS 
crystal quality is not perfect, and that the effective length 
with regard to SHG is 3.3 cm. 

Since the SHG process is not effectively interacting 
over the entire crystal length L, the measured d value will 
be less than the actual value. The measured d coefficient 
can be scaled more closely to the actual value by assuming 
the interaction length is the effective length Loff, rather 
than L. This technique should give reasonably correct 
results when L e f  t ,~ L. 

Using an effective length of 3.3 cm, and d = 20 pro/V, 
the focussed efficiency given by (7) was plotted in Fig. 5. 
The calculation does not include depletion of the funda- 
mental beam, and the plot is linear. The experimental 
points are correctly predicted by the theory in the small 
signal region using these values of length and d, but 
deviate at higher efficiencies. Also shown is a tanh2(r/1/2) 
function, which describes depletion for the plane wave 
case, and it also appears to predict the effects of depletion 
with focussing. 

The present d value is considerably less than the 
41 pm/V measured by Feichtner and Roland [7], and the 
value of up to 29 pm/V given in [1]. A possible explana- 
tion is that longitudinal laser modes were contributing to 
the higher measured d values, where enhancement factors 
of two between single and multiple mode operation can 
exist [8]. The present result corresponds to single- 
longitudinal.mode operation, and is expected to be lower 
than those measured with a multiple-mode laser. 
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Fig. 4. Measured tuning curve compared to sincZ(A0) prediction 

100 

80 

I I ] I 

o Experimental - -  17 ( Small Signal ) 
L = 4.57 cm ____tanh2(~l/2 ) 

d = 20pm/V  . ,  60 
Lef t = 3 . 3 c m / ~  o 

m 40 / / / / ~  " 9 " 7  TAS 

20 / "  ~ = 10.59 pm 
%= 140pm 

"r = 20 nsec 

] p ] [ 

I 2 3 4 
Energy (mJ) 

Fig. 5. Focussed SHG results showing high SHG efficiency for TAS 

A maximum efficiency of 57% was obtained without 
damage at an internal energy of 3.9 m J, giving an energy 
density of 12.7 J/cm 2 at the focus. With the 20 ns FWHM 
pulses used for these measurements, the power density 
was 630 MW/cm 2 at the focus. Assuming that the focus 
was situated at exactly the center of the crystal, as 
prescribed for the confocal case, beam expansion would 
have reduced the energy density to 5.3 J/cm z through the 
surfaces. Although this represents a very high surface 
energy density, it is less than recently measured damage 
levels for TAS of 10 J/cm 2 using 130 FWHM ns pulses at 
10 pm [9]. 

4. Conclusions 

TAS has been shown to be a very efficient harmonic 
generation material, and an efficiency of 57% was demon- 
strated using a pulsed COz laser at 10.6 pm with focussing 
in the crystal. The data was correlated to the SHG theory 
for focussed Gaussian beams, which gave a nonlinear d 
coefficient of 20 pm/V. This value was obtained with a 
single longitudinal mode laser, so that enhancement 
effects from multiple modes were not present. 

The high demonstrated efficiencies of this study indi- 
cate that TAS could be useful as a harmonic generation 
material for a mid-IR laser. With appropriate harmonic 
generation and mixing, tunability from quadrupled CO z 
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laser radiat ion to doubled  CO2 wavelengths could be 
obtained with such a laser. 
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