
Appl. Phys. B 52, 361-366 (1991) 
Applied physics Physics B and Laser Chemisby 

© Springer-Verlag 1991 

On the Transport of Activated Particles 
by Flow and Diffusion 
G. Schulz and M. Simon 

Universit/it des Saarlandes, FB Exp. Physik, W-6600 Saarbrticken, Fed. Rep. Germany 

Received 25 February 1991/Accepted 20 April 1991 

Abstract. It will be shown, how the spatial decay of active molecules - excited electronically or 
activated otherwise (e.g., chemical processes) is determined by diffusion and flow as well as by the 
intrinsic molecular constant. The exact analysis in cylindric geometry leads to a set of unique 
solutions, which in lowest order are characterized by a weak gradient of the particle concentration 
at the wall and a pronounced kernel in the center of the tube. In special cases there exists a simple 
but powerfull expansion of any distribution in the source, which are very similar to Fourier-Bessel 
series. The solutions in lowest order will be used to analyze the measured decay of activated 
oxygen in a steady stream of molecular oxygen. Since the decay constant is determined by volume 
deactivation and by the removal of particles at the wall, evaluation of experimental data, 
however, remains necessarily ambiguous. 

PACS: 51.70, 82.40P 

The transport of atoms or molecules with long-lived 
excited states in flowing media has been investigated and 
reviewed extensively [,1, 2]. Corresponding experiments 
were often evaluated by means of theoretical derivations 
which are confined to special ranges of pressure and 
particle concentration [-3] or which are only approxi- 
mately valid [-4-6]. It will be shown that approximations 
are not necessary at all, because unique and compre- 
hensive solutions exist. The phenomenon is governed by 
at least three effects: 1) the motion of the particles, i.e. flow 
and diffusion of the participating species, 2) the collisional 
interaction of particles in the bulk and at the wall of the 
cavity, and 3) absorption and reemission of radiation, 
which may additionally fill or deplete the excited states 
[7]. These effects play an important role in streaming 
plasmas, used for the etching and deposition applciations 
and in the corona of high-frequency flames and may also 
have some influence on the energy balance of plasma jets. 
In some cases the phenomena may be separated experi- 
mentally. This paper discusses the radiation transport of 
the excited or activated particles by convection, diffusion 
and collisional interaction alone. The superposition of 
absorption and reemission on the particle-motion will be 
described in a forthcoming paper. 

If nitrous oxide NO is added to a low concentration of 
oxygen in a steady stream of a rare gas, activated e.g. by a 
radio-frequency discharge, one observes the prompt emis- 

sion of a greenish-yellow radiation in the spectral region 
from 400 nm to more than 700 nm which is typical for the 
well-known airglow. The phenomenon persists even when 
the nitrous oxide is added in a region far from the source 
of activation where no spontaneous emission is present 
(Fig. 1). This indicates a very long apparent lifetime of the 
active species. If we assume that the radiation is due to 
some first-order reaction of oxygen with NO or to the 
direct energy transfer from activated oxygen to NO, the 
intensity of the radiation will be proportional to the 
concentration of particles. Hence, the added NO merely 
acts as a target as in the well-known beam foil method [-8]. 

In a series of experiments a thin capillary was used to 
introduce NO into the gas flow to minimize pertur- 
bations. The optical intensity from a 4 x 4 mm 2 region 
immediately behind the inlet was detected by a micro- 
processor controlled photoncounting system, which has 
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Fig. t. Experimental setup for the preparation of active oxygen by a 
radio frequency discharge at 62 MHz. Direct interaction of oxygen 
with NO at a pressure of 1 mbar 
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Fig. 2. Radiation from the interaction zone of activated oxygen and 
nitrous oxide as a function of the distance behind the source of 
activation, at a pressure of 1 mbar:  I Multichannel signal at rates of 
103 counts per second. II  Semilogarithmic plot of I giving the decay 
constant 2o~p = 0.094 cm-  1 

H 

-2.o-~ 

already been described in a previous publication [9]. The 
velocity of the streaming gas was so adjusted that 
obviously no backdiffusion of radiating particles occured. 
The monochromator was set to the wavelength of max- 
imum intensity at 560 nm with a slitwidth of 4 mm. 
Varying the distance between the rf source and the NO 
inlet by moving the induction coil of the rf source we got 
as a multi-channel signal curve I in Fig. 2 for the decay of 
activated oxygen in purified and highly dried oxygen. 

The spatial decay is commonly transformed into a 
temporal decay by dividing the distance between the 
source and the point of observation by the velocity of the 
gas flow, i.e. by the mean velocity which only can be 
measured outside the tube. However, the distribution of 
the active particles inside the tube is not uniquely defined 
by the gas flow alone, because of diffusion and deacti- 
vation in the volume and at the wall of the tube. The 
semilogarithmic plot II of the intensity as function of the 
distance in Fig. 2 shows very slight deviations from 
linearity which indicate that a first-order process domi- 
nates the removal of activated oxygen. 

The measured intensity in the target region is most 
likely due to the direct interaction of O atoms with the 
added NO molecules in a first-order reaction leading to 
excited NO,.  This process was first assumed by Gaydon 
[10] and affirmed by Kaufman [1]. It might be mentioned 
that the excited NO* complex can only be formed, if 
stabilized by threebody collisions. The extremely slow 
decay of the O concentration cannot be explained by the 
simple interaction of O atoms with O atoms, i.e. by 
recombination, because recombination is a second-order 
reaction and therefore very fast. Tentatively it may be 
assumed that the long lifetime of the O atoms is due to 
some activation, which inhibits direct recombination, but 
which does not hinder the direct interaction of O with 
NO. Another spectroscopic experiment in crossed beams 
of high-frequency activated oxygen and NO at a pressure 
as low as 10 -4 mbar prevealed exactly the same charac- 
teristic radiation between 400 and 700 nm. It should be 

noted that under these conditions threebody-collisions do 
not occur [11]. However, even in case of the crossed 
beams set-up the activated oxygen has to be prepared at 
high pressures in the presence of a high-frequency dis- 
charge and then transported into the low-pressure reac- 
tion chamber through a small nozzle. This indicates that 
the production of O atoms and their activation occurs 
stepwise. Further evaluation of experimental results re- 
quires a rigorous theoretical analysis of how the phe- 
nomenological constants of diffusion and gas flow are 
connected with the intrinsic molecular characteristics. 

1. Analysis 

For the given experimental setup the behaviour of the 
activated particles has to be described by the continuity 
equation in cylindric coordinates: 

D A n(r, z)-- Vz(r)~n(r, z)/ ~z - A,mn(r, z) = 0, (1) 

where n(r,z) stands for the particle concentration as a 
function of the radial and the axial coordinate r and z, 
respectively, and Vz(r) denotes the velocity in z-direction as 
a function of the radial coordinate r alone. A,m is the 
coefficient of volume deactivation probability (Einstein- 
coefficient for the transition from state m to n). It may be 
assigned to the mean lifetime of the activated particles by 
z =  1/A,m. The diffusion-constant of atomic oxygen in 
molecular oxygen is denoted by D. Diffusion cannot be 
neglected where viscous flow occurs and vice versa, since 
both transport phenomena are based on the same source, 
viz. the thermal agitation of particles. Laminar flow in 
cylindric coordinates is described by the law of Hagen- 
Poiseuille: 

v=(r)= 2e(1 -r2/~o~), (2) 

where ~3 denotes the mean velocity in z direction, and ro is 
the radius of the tube. The mean velocity can be deter- 
mined by measuring the gas flow outside the tube, i.e. 
without any knowledge of the molecular viscosity. The 
coefficient A,,m and the diffusion constant D, however, are 
intrinsic molecular constants, one of which must be 
known in order to evaluate experimental results. 

As in the case of pure diffusion, when v=(r)= 0, the 
differential equation (1) is separabel in r and z and yields 
the separation ansatz 

n(r, z) = y(r) exp ( -  2z) (3) 

in which - on physical grounds - only the negative sign in 
the exponential is acceptable. Now the substitution 

Q = r(22 + 22~/D -- A., m/D) 1/2 (4) 

and the abbreviation 

= (22g/D)/[r~(Z222g/D -- A,, , ./0) 2] (5) 

lead to a differential equation with only one parameter 8: 

d2y/do 2 + 1/Qdy/dQ + (1 -fl~2)y = 0. (6) 

The solutions of this second-order differential equation 
are determined by the boundary condition at the wall of 
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the tube, at r = r 0, and by the distribution of n = n(r, 0) in a 
given plane, say in the source at z=0 .  Equation (6) 
includes the case of pure diffusion (called the eigenvalue 
problem of diffusion in cylindric geometry), if one sets 
fl=0. In that special and well-known case the Bessel 
function Jo(0) of the first kind and zero order is solution of 
(6). The boundary condition n(ro, z) = 0 can be fulfilled by 
Jo(0), running from 0 = 0 to any one of the zeros Q~ of the 
Bessel function. Because every function (which fulfils the 
Dirichlet condition) can be represented by series of Bessel 
functions, the second condition can be satisfied by the 
superposition of solutions in the form of Fourier-Bessel 
series [12] 

oo 

n(r, z) = ~ b~Jo(&~) e x p ( -  2,z), (7) 
,a 

where ~ runs from 0 to 1 as r goes from 0 to ro and the 
values of 2~ are uniquely determined by the zeros of Jo, 
inserted into (4). The 2, are called the eigenvalues of the 
(entire) set of eigenfunctions Y~(~)=J0(0,~). The coeffi- 
cients are then given [12, 13] by: 

1 

b~ = (Z/y; z) ~ n(ro¢, O)y~(~)~d¢, (8) 
0 

where y'~ denotes the first derivative Of Jo at 0~. It should be 
mentioned that an appropriate representation exists even 
when the boundary condition is n(ro, z)~ 0 [13]. But it 
should also be mentioned that the higher-0rder 2~ are so 
much greater than 2o, corresponding to 0o = 2.4048, that 
in many practical cases, at some distance from the source, 
only the solution Yo(~) = Jo(0o¢) e x p ( -  2oZ) persists. 

In the actual case with v=(r) +- O, i.e. with B according to 
(5), the analytical solution of the complete equation (6) is 
given by 

y(o)= E a,o 2" (9) 

with ao = 1.0, al = -0 .25% 

1 
a , -  (2#)2 (au-1 - flau- 2)- 

To prove that this solution is analytical, absolutely 
convergent and therefore unique 1 in the whole region 
(0, oo), we build at first 

On 
am_1 -- ( ~  2 1 . (10) 

am - 1 ~ a m -  2 

By continuously inserting a,,_ffa,,_ 2 we obtain the 
continuous fraction [15] 

am _ - 1  ( flZZ(m-2)2[ 
a,,-1 ( 2 ~ 2 _ 1 +  I1+ 

+ f122(m-2)2111+ ~ f122(m-m+11 1)21)-" (11) 

1 By another method Aris [14] obtained solutions in totally 
different form which, of course, should be reducible to the analytical 
form given here 
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Theory of continuous fraction [16] yields: 

aa~_l M 
= ~mm with a positiv constant 0 < M < 1 

for all fi22 < 1. (12) 

Thus the absolute ratio of successive coefficients goes to 
zero as m tends to infinity. In the special case f122 = 1, i.e., 
fl=0.25, one obtains M = I  and the power series (9) 
becomes exactly 

Y = 2 ( -  1)" (0/2)2u = exp [ - (0/2) 2] (13) 
#! 

which at once can be affirmed by inserting (13) into (6) 
with f l= 1/4. But a physically meaningful solution must 
have at least one zero in order to fulfil the boundary 
condition. For comparison, in Fig. 3 solutions are shown 
between r = 0  and r=ro - where y(00)=0 - for some 
extreme values of the parameter fl: When fl goes to 0, i.e. 
for vanishing velocity v=, we obtain from (6) automatically 
the Bessel function J0, as shown in curve I. With increas- 
ing fl up to fi = 0.2499995, which gives 0o = 6.28 and which 
would correspond to very high velocities, the solutions are 
characterized by a very weak gradient of the particle 
concentration at the wall, which implies a pronounced 
kernel in the center of the tube, as shown by curve II. For 
even greater fl one can only construct solutions with 
n(ro, z) > 0 and (Sn/Sr), o ~ O, as shown by III in Fig. 3. But 
in this case of purly mathematical interest, one has 1 < M, 
which reduces the circle of convergence drastically. There- 
fore curve III has only been drawn from 0 -- 0 to the point 
0o where 8y/~0 = O. 
In the actual case too the decay constants 2~ are uniquely 
determined by the zeros 0~ of the solutions Y(0) in (9): 

2~ = [(~/D) 2 + (&lro) 2 + A,,,/D] 1/2 _ J/D, (14) 

and so fl~ is determined by 2~, when the parameters g/D 
and A,m/D are given. Thus the physically meaningful 
solutions have to be determined in a self-consistent way 
by an iteration process. One firstly chooses some plausible 

i I 

0.0 919o 1.0 

Fig. 3. Typical solutions of the transport equation for various values 
of the parameter ft. I: fl = 0 ~Qo = 2.41 Bessel function Jo, ~/D = 0, II: 
fl=0.2599995~0o = 6.26 profil with y(Qo)=0, UD >> 1; III: fl=0.5 
~Qo =2.13 for vanishing (3y(0)/(30 and y(Q)4:0 
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value for O~ 1), say the appropriate zero of the Bessel 
function and determines the corresponding 2. by (14) and 
fl~ by (5). Now calculating y(p) in fine steps one will obtain 
perhaps another zero p~)' and start the procedure again 
with ev~(2)__ 1/~(1)2 ~Mv --" u~(1)'k,, simultaneously refining the step- 
width. The programmed procedure should be terminated 
if Ip ("+ 1)_p(n) I <S with some small value of e. We found 
s =  10-5 sufficiently small for all practical purposes. 

The solutions between 0 = 0 and 00 only describe the 
steady state at some distance beyond the source of 
activation. Immediately behind the source solutions of 
higher-order zeros will persist, although more rapidly 
decaying Furthermore, the series in (5) are not well 
conditioned for numerical evaluation. If one looks for an 
expansion of (5) as a function of the parameter t ,  however, 
one obtains 

, , ~ gu(0), 4,~ ,g 

where go(O)= Jo(O) is the Bessel function of the first kind 
and zero order and the other auxiliary functions g,(o) are 
rapidly decaying functions of p, as shown in Fig. 4 2. 
Successive derivation of the series (9) yields 

g#(P)---- ~_, -,u, e n~-.n2n-4'u (16) 
n = 2 #  

with Co, o = 1, % , _  1 = 0, and 

1 

% .  = (2n)2 (% . -  1 - # c u  - 1, . -  2 ) .  ( 1 7 )  

Because the parameter fl includes the v th zero of the 
solution in the form 04, we arrive at (pgfl~)= s:,~4, with 
~=p/p~ i.e. 0 <  4 <  1, which yields an excellent conver- 
gence even for solutions with higher-order zeros, up to the 
order 9. The results of the calculations are shown in 
Table 1 for some experimentally interesting values of 5/D 
and Anm/D. The new auxiliary constant ~ can be written 
tG = 22~r~UD which together with (14) at extremely high 

2 The same expression can be found by the method of successive 
approximation 

1.0- 

O3 

1 6.24999910-02 
2 1.9531241o-03 
3 4 0690101--05 
4 61357828,~-07 
5 7.9472851o-09 
6 8 2784221~-11 
7 71391448,;'13 
8 5.774569 o-15 
£ 4.010 71o-17 

g=9 

0.0 \ ~ ' -  ~3 ~ 20.0  

Fig. 4. Rapidly decaying auxiliary functions g,(0) with the initial 
value g,(0) at e = 0 

Table 1. First zeros 0o of the eigenfunctions for experimentally 
interesting values of g/D [cm - 1] and A.,,]D [cm- 2]. The appropriate 
eigenvalues 20 [cm-t]  (decay constants) are given in parentheses 

Table of limiting eigenvalues Qo as function s of parameters 

A'm/D 0.0 0.1 1.0 10.0 100.0 ~/D 

0.0 2.4048 2 .4048 2 .4048  2 . 4 0 4 8  2.4048 
(2.4048) (2.4255) (2.6044) (3.9728) (10.2851) 

0.1 2.4258 2 ,4261 2.42759 2 .4398 2.4947 
(2.3279) (2.3487) (2.5274) (3.8953) (10.2069) 

1.0 2.5553 2.5570 2.57074 2 .6746  3.0859 
(1.7440) (1.7638) (1.9340) (3.2607) (9.5129) 

10.0 2.6984 2 .7030  2 .7422  3 .0729  4.4337 
(0.3576) (0.3637) (0.4172) (0.9290) (4.8208) 

100.0 2.7044 2 .7089  2 .7499  3 .1027  4.6980 
(0.0365) (0.0371) (0.0428) (0.0980) (0.6085) 

values of g/D approximately becomes ~ ~ p~. When the 
Bessel function describes the molecular transport at 
vanishing flow, the general solution (9 or 15) yields a 
description also in the other extreme case of very high 
velocities. If (/7/D) 2 >> Anm/D and (~5/D) 2 >> (0v/ro) 2, then we 
obtain 

tip2__ 1. (IS) 

Quite analogous to (7) one can build the superposition of 
solutions 

n(r, z) = Y. bvy~( ~) e x p ( -  2vz). (19) 
v 

In a very similar way which leads to (8) [12, 13], one finds 
on account of (18), at least for large UD: 

1 

by = (2/y; 2) I (i - ~2)n(r0~, O)y~(~)~d~, (20) 
o 

where again y'~ denotes the first derivative of y~(~) at ~ = 1. 
In case n(ro, z) # 0 the factor in front of the integral will 
adopt a more complicated form [13]. But Table 2 shows 
clearly that the decay constants 2 o < 2 1 < . . . < 2 N .  
Moreover, it should be mentioned, that for all values of 
UD the values of /~  becomes small and even smaller with 
growing v. Only the gradient of  the lowest-order solution 
is strongly influenced by flow at Q = p~, so that y~ < y'~. o. 
Thus here also only the solution Y0(~) with 2o persist over 
some distance behind the source. According to the fact, 
that the experimental data can be described by a simple 
exponential we shall adopt this assumption throughout 
the following text. 

The constant B~ comprises all possible experimental 
arrangements and also all theoretical implications: If, for 
example, the deactivation of particles at the wall is not 
perfect, then the diffusional current of particles in radial 
direction must balance the reaction rate at the wall [4]. 
With the rate constant Kw we obtain: 

- D(On(r, z)/t3r)r o = Kwn(r o, z). (21) 



On the Transport  of Activated Particles by Flow and Diffusion 

Table 2. Higher-order zeros of the 
eigenfunctions with various parameters g/D 
[cm-1]  and A,,,/D [cm-2]  for comparison 

Table of eigenvalues Qu for selected parameters 

OlD 0.0 0.1 1.0 10.0 

An,hiD 0.0 0.0 0.1 0.0 0.1 0.0 0.1 
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v:0  2.4048 2.4258 2.4276 2.5551 2.5707 2.6984 2.7422 
1 5.5201 5.5508 5.5513 5.7912 5.7961 6.5468 6.5740 
2 8.6537 8.6859 8.6861 8.9522 8.9543 10.1996 10.2155 
3 11.7915 11.8242 11.8243 12.1009 12.1021 13.6841 13.6940 
4 14.9309 14.9638 14.9639 15.2460 15.2468 17.0606 17.0673 
5 18.0711 18.1041 18.1041 18.3898 18.3902 20.3709 20.3756 
6 21.2116 21.2447 21.2447 21.5327 21.5331 23.6390 23.6425 
7 24.3525 24.3856 24.3856 24.6753 24.6756 26.8791 26.8818 
8 27.4935 27.5267 27.5267 27.8176 27.8178 30.0996 30.1018 
9 30.6347 30.6679 30.6679 30.9597 30.9599 33.3128 33.3128 

In zero order and with the substitutions of (4) this 
constraint can be brought into a dimensionless form: 

1 8y o 
~o = roKw/D. (22) 

Yo 8Q 

The rate constant Kw can be resolved into the mean 
thermal velocity ~ (in one direction v~/4) and the efficiency 
?, which stands for the probability, that a collision with 
the wall will effectively remove an active particle: 
K w =¼7~. Similarly kinetic theory yields D =½Av~, where 
A denotes the mean free path of the particles. Thus the 
logarithmic derivative (22) has also the meaning: 

1 8Yo 3 I) 
Yo OQ Co= ~ r o ~  (23) 

which depends on temperature only to the extent that the 
mean-free path A depends on the total particle density. 
Figure 5 shows a special solution and the appropriate 
logarithmic derivative for r o-- 1 cm, v/D = 1.0 cm- 
and An,n/D=Ocm-2, which yields ¢o=2.5549, 
2o=1.744 cm -1, and flo=0.08,18. All values of roy/A 
larger than say 100 are realized in the immediate neigh- 
borhood of Qo, so that the assumption n = 0  at ~=¢o 
serves as a good first approximation for great efficiencies 
of the removal of active particles at the wall or small 
mean-free paths. 

If, on the other hand, the ratio roK~/D becomes smaller 
and smaller, solutions have to be found with 2o or to, 
respectively, for which the negative logarithmic derivative 
at Q=¢~ yields the proper value of roKw/D in the 
prescribed self consistent way. Thus we obtained the 
values of ~;/Qo as function of roKw/D in double logarith- 
mic coordinates (Fig. 6). The unprimed ~o stands for the 
limiting value, when roK~/D goes to infinity, and is given 
in Table 1 together with the corresponding values of the 
decayconstant 2o in brackets. Curve I and IIa are valid for 
An,n/D=O and F/D=0 and ~/D= 1 cm-~, respectively. 
Both curves become straight lines with a slope 1/2 in the 
limit roKw/D ~ O. This derivation indicates clearly the re- 
gion, where the approximations made by other researchers 
I-3] may be valid. If, however, volume deactivation oc- 
curs, even at a very low level, An,n/D =0.1 and 1.0 cm -2, 

1.0- 

 !00 
o.o 9/90 ~,.o 

Fig. 5. Special solution of the t ransport  equation for r o = 1 cm, 
v/D = 1 cm-  1, and An,,]D = 0, which yields 0o = 2.5549, 
20 = 1.744 c m - 1  and to = 0.0818 and showing the typical behaviour 
of the logarithmic derivative ron'/n around r o 

96/90 
- - 1 . 0  

-0.01 
00~ 0 i 

ro*Kw/D 
t . 0  '10 0 

Fig. 6. Continuous course of the values Q~/Qo as a function ofroKw/D 
in double logarithmic coordinates: 1: U D = 0 ,  A,,,/D=O, pure 
diffusion without volume deactivation, lla: g/D = 1 cm-  1, A,,,/D = O, 
slope tends also to 1/2 if roKw/D~O, b: O/D=I cm -1, An,,/D 
=0.1 cm -2. c: UD=I cm -1, A,m/D=l.0cm-2 limiting values if 
roK~/D~O: d and e corresponding to b and c with ro=2.0  cm 
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--I.0- %t A 0 

0.01 O. 1.0 
ro*Kw/O 

i/I// 

lo o 

Fig, 7. Decay constants 2~/20 corresponding to Fig. 6 in semi- 
logarithmic coordinates 

then the simple linear relation between the roots and the 
wall reaction rate is broken up and ~/Qo goes to a nearly 
constant value at comparably low roK~/D, as shown by 
curve b and c in Fig. 6. The corresponding curves a-c of 
the decay constant 2~/2o are drawn in Fig. 7 in semi- 
logarithmic coordinates. The limiting value of the decay 
constant 20 at low r o K J D  and finite A,m/D corresponds 
to a limiting profile of the particle concentration, which 
under these conditions cannot become "flat", or in any 
way homogeneous over the radius of the tube. As shown 
in Figs. 6 and 7 by the curves in broken lines, growing 
radius ro of the tube enhances the effect of volume 
deactivation and deminuishes the influence of the reaction 
or deactivation at the wall (besides an overall shift to 
lower K~/D). But without further experimental evidences 
it seems impossible to distinguish between the two effects 
and their influence on 20. 

2. Results and Conclusion 

In our experiments the gas flow was controlled by a 
flowmeter and the velocity exactly determined by measur- 
ing the depletion of a given volume in time. So we got: 
~= 253 +_ 0.03 cm/s. For  the diffusion of O in 02  at 273 K 
and l mbar pressure we obtain from literature 
D--176 cm2/s [18]. Therefore, the experimentally deter- 
mined parameter is f/D = 1.44 cm-  1 and the data in Fig. 2 
yield the decay constant 2exv=0.094 cm -1. Thus we 
obtain according to (14): 

(Q'o/ro) 2 + A,,,,/D = 0.27. (24) 

For  r o = l . 0  cm and with the additional assumption 
A,m/D = 0 one obtains 0~ = 0.52 which theoretically can be 
achieved with roKw/D =0.072. But with A , ~ D  +-0 also 
valid solutions exist, which correspond to lower values of 
Q~ and also lower values of roK~/D, until at A,,./D = 0.14 
the limiting value 0~ = 0.36, according to roK,~/D = 0.001, 
is reached. Larger values of A,m/D lead theoretically to 

values of Q;, which are incompatible with the experi- 
mental result in (24). At this relatively low value of 
roKw/D, volume deactivation, especially in the slowly 
moving parts of the Hagen-Poiseuille flow, becomes 
dominant and forms together with diffusion and flow a 
concentration profile with nonvanishing particle con- 
centration and a very little gradient at the wall. At even 
lower values of roKw/D wall effects have no more signifi- 
cant influence on the decay constant. On the other hand, 
~) cannot be cancelled at all, because every particle 
produced in the source can reach the wall and interact 
with it more than once. Since A,,,/D can be written: A,,,,/D 
= 1/Dz and the mean lifetime z is likewise the migration 
time of the diffusing particles, we get from kinetic theory: 
2D-c= (62),  where 6 denotes the root-mean-square dis- 

tance. Hence we obtain for the limiting value 
= 3.77 cm, which is much larger than the radius of the 
tube r o = l . 0 c m .  Thus in the region A,,n/D=O.O to 
0.14 cm-2  the evaluation of experimental results remains 
ambiguous. 

Shifting the NO inlet to the wall, we observed, that the 
intensity from the target region diminishes markedly but 
does not vanish near the wall. So we must conclude, that 
the deactivation occurs at the wall as well as in the 
volume, but the experimental facts are not sufficient to 
remove the ambiguity. 

Acknowledgements. The authors wish to thank Prof. Dr. K. Becket, 
City University of New York, for many helpful advices and are 
grateful to the ,,Deutsche Forschungsgemeinschaft" for supporting 
this work. 

References 

1. F. Kaufman: Progress in Reaction Kinetics (Pergamon, New 
York 1961) Vol. 1, pp. 11-13 

2. E.E. Ferguson, F.C. Fehsenfeld, A.L. Schmeltekopf: Adv. At. 
Mol. Phys. 5, 1-55 (1969) 

3. W.W. Smith: J. Chem. Phys. 11, 110-125 (1943) 
4. R.E. Walker: Phys. Fluids 4, 1211-1216 (1961) 
5. P.J. Ogren: J. Phys. Chem. 79, 1749-1752 (1975) 
6. R.V. Poirier, R.W. Carr: J. Phys. Chem. 75, 1593-1501 (1971) 
7. G. Schulz, H.J. Gutjahr: Z. Angew. Phys. 29, 26-34 (1970) 
8. S. Bashkin (ed.): Beam Foil Spectroscopy, Topics Curr. Phys. 1 

(Springer, Berlin, Heidelberg 1976) 
9. K. Becker, B. Stumpf, G. Schulz: Chem. Phys. 53, 31-38 (1980) 

10. A.G. Gayson: Proc. Soc. A183, 111-123 (1944) 
11. G. Schulz, M. Simon: Third European Conf. on Atomic and 

Molecular Phys., Bordeaux, ed. by A. Salin (1989) Vol. 2, p. 448 
12. G.N. Watson: A Treatise on the Theory of Bessel Functions, 2 nd 

ed. (Cambridge Univ. Press, Cambridge 1962) 
13. Ph. Frank, R. v. Mieses: Differential- und Integralrechnung I 

(Dover, New York 1961) Chap. VIII, p. 3.7 
14. R. Aris: Proc. R. Soc. A235, 111-123 (1956) 
15. M. Abramovitz, I.A. Stegum: Handbook of Mathematical Func- 

tions (Dover, New York 1972) 
16. R. Sauer, I. Szabo: Mathematische Hilfsmittel des Ingenieurs III 

(Springer, Berlin, Heidelberg) Chap. II, p. 4 
17. E.L. Ince: Ordinary Differential Equations (Dover, New York 

1956) 
18. T.R. Marero~ E.A. Mason: J. Phys. Chem. Ref. Data Vol. 1, No. 1 

(1972) 


