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Abstract. This paper brings to attention recent developments in algorithms to efficiently 
solve linear systems resulting from the discretization of systems of population rate 
equations which arise in X-ray laser kinetics modeling. Specifically, we report the success of 
two variants of the preconditioned gradient method, namely the preconditioned conjugate 
gradient square (PCGS) algorithm and the method of generalized conjugate residuals 
(GCR) in solving non-LTE rate equations. 

PACS:  02.70. + d, 52.25 Dg. 

The purpose of this paper is to bring to attention some 
recent work by the authors [-1, 2] concerning the fast 
and efficient solution of non-local thermal equilibria 
(NLTE) rate equations. In non-equilibrium plasma 
kinetics calculations, a solution to NLTE rate equa- 
tions often is required to determine the ionization 
balance and the fractional occupation of the atomic 
levels. These rate equations can be cast in the form 

0 .  
0~- = R(u, t)- u, (1) 

where u is a column vector of length N and R is a rate 
matrix. In a typical NLTE application, the matrix R is 
composed of the detailed rates at which particles enter 
and leave a particular quantum state; the elements of 
the vector u, ui, represent the population density of 
state i. The rate matrix R is a function of both the 
population density and time. 

A numerical solution to this rate equation typically 
requires a linearization and discretization of the equa- 
tion (1). For example, if a modified backward Euler 
differencing were used, the resulting linear system to be 
solved would be given by 

( I -  A tR)- u. +1 = u. .  (2) 

The subscript n denotes the timestep [-u, = u(t,)]. The 
quantity At is t,+ 1 - t ,  and the matrix I is the identity 
matrix and R is an approximation to R(u, t) at t,+ 1- 

Equation (2) can be cast into the matrix inversion 
problem of the form 

A . x = b ,  

where A -  ( I -  AtR), x = u, + 1, and b = u,. 
The above linear system can be solved by direct 

methods such as Gaussian elimination. Recent work 
by the authors has shown that iterative methods can 
provide a faster and more efficient alternative to 
standard Gaussian elimination for inverting NLTE 
rate matrices. This paper describes the use of two 
different iterative algorithms based on the precondi- 
tioned conjugate gradient method, namely the pre- 
conditioned conjugate gradient squared (PCGS) al- 
gorithm and the method of generalized conjugate 
residuals (GCR). The purpose of this work is to review 
the methods briefly in order to bring them to the 
attention of X-ray researchers. 

The paper will be organized as follows. First, in 
Sect. 1, we shall present the algorithm. In presenting 
the algorithm, we will first show how the matrix equa- 
tion (2) has to be modified in order for the iterative 
methods to converge rapidly. The modification will 
result in the solution of a new matrix equation, 
different from (2). We shall then present the PCGS and 
GCR algorithm to solve the new linear system. In 
Sect. 2, we will discuss the results of our numerical 
experiments and compare them with standard direct 
methods such as Gaussian elimination. 
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1. Algorithm 

1.1. Reduction of Dimension and Preconditioning 

As it stands, Eq. (2) is not in a form amenable for the 
either of the two conjugate gradient based methods 
because A is ill-conditioned. This ill-conditioning 
arises due to the conservative nature of the matrix R 

(i.e. ~=~ R~j=0)  which makes R singular. Therefore, 

the first step in solving (2) is to remove this singularity. 
The singularity can be removed in R (thereby 

improving the conditioning of A) by expressing the 
population of the last level N in terms of the levels 

N -  I levels i.e. u N = N o -  ~ u~ . This leads to a new 
i = 1  

form of (1). 

Ou 
0 t  = R ' . u + f ,  (3) 

where R' is a non-singular ( N -  1) x ( N -  1) matrix. The 
elements of R' and f are R'~j = R~j-  RIN and f~ = Ri,N o 
respectively. Since the new matrix R' is nonsingular, 
the steady state population now can be found by 
solving R' .  u = - f. 

Equation (3) can be finite differenced to yield 

( I -  A tR'.) • u. +1 = u. + A tf. .  (4) 

This equation resembles (2). The problem again re- 
duces to the form A. x = b but now, A = I - A  tR' and 
b = u , + A t f , .  

1.2. Preconditioning 

In order to further improve the condition number of 
the matrix A, the matrix is preconditioned [3, 4, 7]. 
Preconditioning involves the selection of a matrix Q 
such that 

Q-1  . A ~ I .  

This Q is then used to solve the preconditioned system 

Q - 1 . A . x _ _ Q - I . b .  (5) 

The matrix Q-1  is selected such the computation of 
Q -  1 is a computationally cheap task. One simple way 
to generate a Q-1  is to have Q - 1  -1 -1 - -  U i n  e " Linc where 
Lino and Ui,~ are strictly lower and upper diagonal 
matrices respectively. One way to generate the ma- 
trices Li,~ and Ui,~ is through the incomplete Crout 
decomposition [8]. 

Typically, in an incomplete decomposition, (LiJi~ 
= (Uinc)~j = 0 if (i, j) ¢ ~ where ~ is the sparsity pattern. 
One simple way to assign a sparsity pattern is to have 
the same as that of A. However, we have found that 
this is not necessary. In fact, only a few elements of A 

need to be retained in the sparsity pattern. These few 
elements that are retained are the m largest (absolute 
value) off-diagonal terms in each column of R. Here, m 
is an adjustable parameter. We have found that for a 
258 x 258 matrix which may have a fill factor of 20%, a 
good value for m is m ~ 10 which implies that Lino and 
Uinc have a fill factor of only 4%. Physically, the above 
prescription means that for each level ui, the m largest 
states to which it couples is retained in the sparsity 
pattern; the coupling strength is measured (crudely) by 
the off-diagonal matrix element. 

1.3. Preconditioned CGS Algorithm 

With the singularity removed and the matrix pre- 
conditioned, it is now possible to solve the linear 
system using conjugate gradient methods. There are 
numbers of good references to the standard conjugate 
gradient algorithm (e.g. see [-5,6]). The conjugate 
gradient algorithm improves the current estimate of Xk 
by adding a correction vector ~kPk. The algorithm 
generates optimal direction vectors Pk+a and the 
coefficient ~ by minimizing the error from iteration to 
iteration. 

However, the standard conjugate gradient method 
is not appropriate for this problem because it is only 
suited for solving symmetric matrices, and R is not 
symmetric. This is the motivation for considering the 
PCGS algorithm because the CGS algorithm is known 
be a robust method for solving asymmetric matrix 
equations [-11 ]. The preconditioned algorithm is given 
as 

hk  + 1 ---- ek  - -  ~ k Y k ,  

xk + 1 = xk + ~(e~ + hk), 

rk + 1 = akA. (e k + hk), 

ro r • rk+ 1 
g.r ' 

ek  + 1 = U - 1 .  L -  1. rk + 1 ~- f l khk  + i ,  (6) 

Pk + 1 = ek + 1 + flk(hk + 1 + flkPk) , 

yk+l  = A ' p k + l ,  

Wk+l = U - ~  "L-a "Yk+l, 

ro T" rk+ 1 

~k+1--  r ~ . y k +  1 , 

where ro - b -  A. Xo, eo = 0, and Yo -- 0. 
However, the one drawback with this algorithm is 

that it requires two full matrix-vector multiplications. 
Matrix-vector multiplications are the largest fraction 
of the computational task; hence, it would make sense 
that an algorithm that requires only one matrix 
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Fig. 1. Ilrkllz vs. iteration no. for PCGS algorithm. (1) PCGS near 
equilibrium (2) PCGS away from equilibrium 
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Fig. 2. Ilrkll2 vs. iteration no. for GCR (1) GCR near equilibrium 
(2) GCR away from equilibrium 

multiplication and can converge with similar rates is 
far preferable. This is the motivation for examining the 
second algorithm, the method of generalized conjugate 
residuals. 

1.4. General i zed  Conjuga te  Res iduals  

The method of generalized conjugate residuals (GCR) 
is another popular method to solve asymmetric matrix 
equations [12]. The GCR algorithm, like the CG 
method, chooses the optimal c~ to minimize the error; 
however, GCR does not choose the optimal direction. 
By relaxing the optimality constraint on the directions, 
the GCR method has to do less work per iteration. As 
mentioned earlier, the PCGS algorithm requires two 
full matrix vector multiplications, whereas GCR re- 
quires only one full matrix vector multiply. Thus, it can 
be nearly twice as fast if the convergence rate is the 
same. Reviews of GCR can be found in the literature 
[12]. 

The preconditioned version of the algorithm which 
we have proposed is: 

r o U-1 . L - l . r o  
~o = k = 0 ,  

Po" A .  Po 

PT'[A(LU)- t ]T ' rk  for k = ( 1 , 2 , . . . , k ) ,  

Yk r" Yk 

Xk + 1 = Xk  -I- C~kp k , 

rk + 1 = rk - -  ~kYk, 

Sk+l----A'rk+l,  

(A" pl)r' Sk + 1 
ilk, l - -  Y f  " Yl 

l = k  

for l=(0, 1,.. . ,k), 

Pk+l=rk+ l  - Z flk, lPz, 
l = O  

l = k  

Y k + 1 = A ' P k + I = S k + I  - ~ flk, zYz" 
/ = 0  

(7) 

The algorithm above is a modification of the 
algorithm in the literature E12]. The definition of e has 
been modified for the very first iteration. It was found 
that the algorithm works much better with this 
modification. The motivation for this has been dis- 
cussed in length in [2] and is beyond the scope of this 
paper. 

2. Results 

To test the algorithm, a rate matrix was constructed 
based on a model for a nickel-like Mo plasma (similar 
to the one used in [9]). The rate matrix was a 258 x 258 
matrix having a fill factor of 19%. 

Our algorithm was tested on this matrix. As it can 
be seen in Fig. 1, the algorithm was quite successful. 
There are two curves shown in Fig. I: the top curve 
shows the iteration plot for an initial state that is away 
from equilibrium: (]l xt=° - x  t= ~ II 2 = 7 . 0 ) ;  the bottom 
curve shows for an initial state close to equilibrium 
I I x ' =  o _  x '  = °~ll 2 = 9.6 x 10-1. The algorithm converged 
in about thirty iterations for the former and in about 
eight in the latter. The slower rate observed in the 
former can be readily explained; however, the details 
are somewhat technical and can be found in [2]. 

Figure 2 plots the result of the GCR. As it can be 
seen the algorithm is converged roughly 30% faster. 
Furthermore, since the algorithm multiplies only one 
full matrix, it is roughly a factor of two faster per 
iteration step. 

However, the GCR algorithms is somewhat fragile 
in comparison with the PCGS algorithm which is 
robust for all initial conditions. Though GCR has faster 
convergence than PCGS for the present problem, the 
algorithm tends to break down when the system is very 
far from steady state. If the number of iterations 
required for convergence is moderately large (as is the 
case when the system is very far from equilibrium), 
GCR algorithm does not converge well. In Fig. 2 it can 
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be seen that the solutions computed by the GCR 
algorithm does not converge to the same level of 
accuracy as that by the PCGS algorithm (Fig. 1) for the 
second case. 

The reason for this is as follows. At each iteration, 
the GCR algorithm involves a Grahm-Schmidt type 
orthogonalization with respect to the correction vec- 
tors selected in the previous steps (see the algorithm 
above). As the number of iterations increases, the 
number of required orthogonalizations also increases 
which in turn makes the algorithm very susceptible to 
numerical roundoff errors. 

For  applications where the system is very far away 
from equilibrium, the CGS method seems to be the 
algorithm of choice. It is robust for all initial con- 
ditions. As the system approaches steady state, how- 
ever, GCR can be used with an expected 30% speedup. 

3. Computational Costs 

It would be useful at this point to compare the 
computational work (operation counts) of the above 
two algorithms with Gaussian elimination. The num- 
ber of operations required for Gaussian elimination is 
roughly 

N 2 N 2 
gGaus  s ~ f ~ -  + ~ - .  (8) 

For  simplicity, we have assumed that multiplications 
and additions take roughly the same time to execute. 

The number of operations required for the PCGS 
algorithms are 

NpcGs ~ (9N + 4 f N  2 + 4mN2)k. (9) 

Here, m is the number of non-zero elements in each 
column of the matrix L + U  (see 1-1]) and k is the 
number of iterations required for convergence. The 
number of operations required for GCR is 

NGcRm(4N + 2fNE + 2mN2)k + 2Nk(k + l).  (10) 

For  the test problem above ( f = 1 9 % ,  m=7 ,  
N = 258, k = 9), GCR is three times faster than PCGS 
and over five times faster than Gaussian elimination. 

4. Conclusion 

This paper has reviewed two CG based iterative 
methods, the preconditioned conjugate square and the 
method of generalized conjugate residuals, as an 
efficient alternative to standard Gaussian elimination 
for inverting rate matrices in N LTE problems. Of the 
two, the GCR algorithm is much faster; however, it is 
not as robust as the PCGS algorithm and must not be 
used when the system is far away from steady state. 
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