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Abstract. The mode structure of hollow dielectric waveguide lasers with free space sections and 
flat mirrors is studied theoretically and experimentally. The study covers the fundamental mode 
and the three most important higher order modes, and graphs are given which identify regions of 
high mode discrimination in the parameter space. Calculated coupling losses are verified 
experimentally by detailed studies of the output power of CO2 lasers as a function of resonator 
geometry. The intensity profile inside and outside the resonator is calculated, and the profile 
outside the resonator is compared with experiments for the fundamental mode as well as for the 
higher order modes. It is shown that in general the fundamental mode is non-Gaussian, and that 
drastically different output characteristics are obtained for different choice of output plane. The 
paper identifies design criteria for obtaining single line and single mode oscillation over a wide 
tuning range, even in the densest region of the CO2 laser line spectrum, and this is exemplified by a 
spectroscopic application. 

PACS: 42.55D, 42.60B, 42.60D, 42.80L 

Hollow dielectric waveguides are widely used for small 
CO2 lasers, mainly because they allow for compact 
designs with a large optical output per unit discharge 
volume [1]. Although their potential for yielding a large 
tunability in a given laser line by using short resonators 
with a large free spectral range was also recognized at an 
early stage, this feature has generally been less emphasized 
in the subsequent development [2]. One reason for this 
may be that tunability is relevant to a rather specialized 
use of the laser only, but it may also be due to the 
notorious difficulty in maintaining single line and single 
mode operation over the entire free spectral range of a 
short laser. Most waveguide lasers are optimized with 
respect to output power by placing the end reflectors as 
close to the waveguide as possible. However, in that case 
there is only little loss discrimination between the funda- 
mental mode and higher order modes, and it is very 
difficult to avoid mode jumping as the frequency is tuned 
away from the center of the gain profile. The required loss 
discrimination can be obtained through propagation 
losses, by using narrow bore waveguides, but then the 

* Supported by the Danish Science Research Councils under grants 
no. 5.17.4.6.19 and 5.17.4.1.23 and by FLS airloq 
** Present address: Science Institute, University of Iceland, Dun- 
haga 3, 107 Reykjavik, Iceland 

resolution of the grating suffers, and unless intra cavity 
elements are used in order to expand the laser beam, it 
becomes difficult to obtain single line operation in the 
densest regions of the CO2 laser line spectrum. In this 
paper we shall discuss the mode properties of short hollow 
dielectric waveguide lasers with special emphasis on the 
requirements for single mode operation over a wide 
tuning range through coupling loss discrimination. 

A waveguide laser resonator basically consists of a 
piece of waveguide with a reflector at each end. For 
practical reasons it will usually not be possible to 
terminate the waveguide with the reflectors, and the 
laserbeam will then experience regions of flee space 
propagation inside the resonator. The electromagnetic 
modes of a hollow dielectric waveguide with circular cross 
section were determined by Marcatili and Schmeltzer in 
1964 [3]. Whenever such a single mode leaves the 
waveguide, it will couple into a superposition of free space 
modes, and the resulting field configuration will propa- 
gate with a divergence angle essentially given by 2/a, 
where 2 is the free space wavelength, and a is the 
waveguide radius. Thus, if a flat reflector is used, some 
radiation will inevitably be lost when the beam reenters 
the waveguide, and this coupling loss will increase 
monotonically with the distance between reflector and 
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waveguide. To minimize this loss, the conventional ap- 
proach is to either place the reflector as close to the guide 
as possible, or to use a curved reflector in order to refocus 
the beam at the waveguide entrance [4]. 

The first to point out the importance of using linear 
combinations of waveguide modes for achieving trans- 
verse mode control in waveguide lasers with spherical 
mirrors were Roullard and Bass [5], and this was applied 
to CO2 lasers by Lyszyk et al. [6], who studied a laser 
resonator terminated by a flat grating and a spherical 
mirror. However, it was noted by Jensen and Tobin F7] 
that even when using two flat reflectors, there would 
occasionally be a range where the laser output would 
actually increase with increasing separation between 
waveguide and reflector, indicating a local loss minimum 
at a specific separation. In 1984, Gerlach et al. [8] 
analyzed this situation for waveguides with circular cross 
section, and found that this loss minimum had a straight- 
forward physical interpretation. Owing to the presence of 
free space regions, the eigenmodes of the actual resonator 
cannot be pure waveguide modes. Assuming instead a 
linear combination of low order modes, they found that 
for a symmetric resonator, the location of the loss 
minimum corresponds to the fulfillment of a phase 
condition, such that the phase difference between the 
EHa~ and EHtz modes increases by 2re during a single 
pass of the resonator. In this way the relative phases can 
adjust such that each time the two modes reenter the 
waveguide, they interfere destructively at the edge, and 
constructively at the center, leading to a resulting field 
which is more confined along the axis than the pure EH1 
mode, and hence couples better into the waveguide. 

Since practical lasers usually employ polarizing com- 
ponents, such as Brewster windows or diffraction grat- 
ings, the theoretical analysis was confined to waveguide 
modes with linear polarization, and circularly symmetric 
intensity distribution, i.e. EH~m modes with m = 1, 2, 3, .... 
They found that for a symmetric resonator loss minima 
will exist whenever the condition 

L 4p~r ~a2~-u~,_u21 p=  1,2, 3, ..., m=2, 3, ... (1) 

is satisfied, where L is the total resonator length, k is the 
free space wavenumber, a is the guide radius, and ut,, is 
the ruth zero of the zero-order Bessel function Jo- For an 
asymmetric resonator the number of loss minima will be 
doubled, and if the waveguide is terminated with a 
reflector at one end, loss minima will correspond to half- 
integral values of p, since the resonator is then equivalent 
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to a symmetric resonator with length 2L. Gerlach et al. 
verified their theoretical findings by determining the 
location of the m = 2, p = 1 output power maximum for 
symmetric resonators with a range of different resonator 
lengths using alumina waveguides with diameter 2.4 mm. 
They considered the fundamental mode only, and they 
found very good agreement with (1), although the experi- 
mentally determined optimum resonator lengths tended 
to be slightly larger than predicted theoretically. 

In order to optimize tunability, it is advantageous to 
work with asymmetric resonators, since they allow for 
loss minima at smaller values of L. In addition, if single 
mode operation is important, it is necessary to study also 
the higher order modes. Although the basis of three EH~,, 
modes used by Gerlach et al. yields three solutions, we 
shall show that these are in fact not the three linearly 
polarized modes with lowest loss, and that other modes 
have to be taken into account. In the following, we first 
outline the theory, and for the relevant modes of an 
asymmetric resonator, we calculate the coupling loss as a 
function of separation between one reflector and the 
waveguide. The calculated coupling losses are used as 
input into the Rigrod model of high gain lasers [9], and 
the resulting output curves are compared with the 
measured output of a series of grating controlled pyrex 
waveguide lasers with different waveguide length and 
diameter, and different operating frequencies. Graphs are 
given, which show the field distribution inside and outside 
the resonator for the lowest order modes, and results for 
the far field are compared with experiment. 

1. T h e o r y  

In this section, we outline the theory, which closely follows 
that developed by [-8]. The resonator is unfolded as shown 
in Fig. 1, and the field at position 1 is expressed as a 
superposition of waveguide modes. Each of these modes is 
expanded in a basis of free space modes with a suitably 
chosen beamwaist Wo, located at the exit plane of the 
waveguide, and these modes next undergo free space 
propagation with the appropriate phase development 
over a distance 2Dr. When reentering the waveguide, the 
beamwaist and the phase front radius of curvature have 
evolved to 

w=w@/l + (2Dt2~ z 
\ ) ' (2) 

/ j (3) 

Z -i L I 

__.2_1 
i to for field region 

9~-1 
Fig. 1. Schematic diagram of resonator and unfolded 
resonator 
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Rather than projecting directly back upon the waveguide 
basis, the free space modes are first transformed to a 
different free space basis with beamwaist Wo and flat phase 
fronts, and the advantage now is that the further trans- 
formation to the waveguide basis is just the inverse of the 
initial transformation out of this basis at position 1. The 
waveguide modes next propagate in the waveguide and 
acquire loss and phase shift as determined by [3]. The free 
space region 2D2 is treated as 2DI, and after a final pass 
through the waveguide, the field is back where it started. 
Each of these steps can be expressed in terms of a complex 
matrix operating on the basis functions, and by matrix 
multiplication we arrive at a resulting transformation 
matrix which expresses the development of the field 
during one double pass of the resonator. Equating this to 
a complex constant multiplied by the initial field, an 
eigenvalue equation results which, when diagonalized, 
yields the eigenvalues and eigenvectors. Writing the 
complex eigenvalue as 121 exp(iqS), the round trip loss is 
given by 1-1212, while ~b determines the relative phase 
shifts of the different eigensolutions. 

When carrying out this procedure, three decisions 
have to be made: the size of the waveguide basis, the size of 
the free space basis, and the value of wo used for the free 
space basis. As for the waveguide basis, we first adopt the 
same criterion as [8], that only modes with linear 
polarization are considered, and we choose the polariza- 
tion to be along the y-axis, so that Ey = E, sin 0 + E o cos 0. 
The modes may be classified according to the number of 
azimuthal nodal planes for the electric field, and the first 
class, with no nodal planes, contains the hybrid modes 
EHlm. In the limit ka >> 1, and excluding regions very close 
to the waveguide wall, the normalized electric field is given 
by (r) 
4= V~[Jl(ul,,)laJo ut,,a rNa, re=l ,2 ,  .... (4) 

where U,m is the mth zero of J,_ ~(x), and normalization 
implies 
2r~ a 

I ~ dP 2rdrdO=l" (5) 
0 0 

The intensity distribution is cylindrically symmetric, with 
a maximum at the center, and m - 1  zeros between the 
center and the waveguide wall. The EH1 ~ mode has the 
lowest propagation loss of all possible waveguide modes, 
and it is thus natural to assume that the lowest order mode 
of the actual waveguide is a linear combination of EHI,, 
modes, dominated by EHal. This was the basis used by 
[8], and they used up to three modes in their analysis. 

When the EH~,, modes couple into free space, they 
predominantly excite the TEM~)__ 1 modes with normal- 
ized electric field given by 

~(o) - 1 / ~  I (o" /2r2"~ / " - ' - v =  ' (6, 

where 5e is an associated Laguerre polynomial, defined 
through the expansion 

p (~ + p) ! x" 
E ( - 1 )  - -  (7) 

,,=o (p-m)!(~+m)! mI' 

and normalization implies 
2re 0o 

~ ~p2rdrdO = 1. 
0 0 
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(8) 

By a suitable choice of w0, the coupling can be optimized 
for each m individually, and the traditional value of 
wo =0.6435a, given by [-10], corresponds to an optimum 
coupling of 98% from EHll  into TEM(o °). For higher 
order modes, optimum coupling is obtained for a smaller 
value of Wo. We have chosen to work with basis of 4 EH 1,, 
modes and 7 TEM~ °) modes, and with this choice we have 
found w0 = 0.4a to be suitable. 

The second class, containing modes with one azi- 
muthal nodal plane, consists of the composite modes 

TEom + EHzm, m = 1,2,..., 

TM0m +EH/,~, m=1,2  . . . . .  

In the limit ka >> 1, the electric field of these modes is given 
by (r) 

No = J1 Uom 

TEom :< (9) 
Er=0,  

Eo=O 
TMom ~ (10) (r) 

Er=J1 uom a , 

and the resulting field then becomes 

r (12) 
TE°• + EH2" :t E = J t (uo,,a) Sin2(O + Oo), 

TMom + EH2,~ :< (13) 
( r ) [ l + s i n 2 ( O + O o ) ]  E~=J1 Uom a 

where 0o is an arbitrary constant, specifying the orien- 
tation of the nodal plane. Polarization along the y-axis 
corresponds to 0 o = 0 for TEom + EH2m, and 0 o = - re/4 for 
TMom + EH2~, and the corresponding normalized electric 
fields are 

TEo,,+EH2m:qb= l ~ J  1 U2,na cos0 (14) 
IJ2(uz~)l 

1 2 1 J1 U2m • TM°m+EH2m:~b= a [Jz(uzm)[ ~ sin0 (15) 

When leaving the waveguide, these modes predominantly 
excite the free space modes TEM~ )_ 1, with normalized 
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F i g .  2a-e. Intensity patterns for linearly polarized hollow dielectric 
waveguide modes with zero (a), one (b), and two (e) azimuthal nodal 
planes 

electric field given by 

tP~)--1 VrcrnV~Wo m - l \ w 2 j e x p ( - ~ o ) ~ C ° s O  (sin0. (16) 

The field configurations for the composite modes with 
m = 1 are shown in Fig. 2b. Since for each m the two nearly 
degenerate modes are mutually orthogonal, they may be 
excited independently of one another. If they are excited 
simultaneously, the intensity distribution becomes cir- 
cularly symmetric, and for m--1 this produces the we/l- 
known ring-shaped doughnut pattern. 

The last class which we shall consider, contains modes 
with two nodal planes. The waveguide basis consists of the 
combinations 

EH_ tm+ EH3,, m = 1, 2 .... 

which for 0o=0 and 0o=-re /4  yields the mutually 
orthogonal normalized electric fields 

1 ,/2- 1 /" r'~ fcos20 
qS= a V ;  ]J3(u3,,)] Jz~U3ma){sin20. (17) 
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Their free space counterparts are TEM~,2_)~, with normal- 
ized electric field given by 

~ L I =  a re(m+-1) ~'woz-m-l\ w;] 

x e x p ( -  ~oZ) ~c°s20 (sin20. (18) 

The field configurations for m = 1 are shown in Fig. 2c. If 
the two modes are excited separately, they give rise to a 
four-clover intensity pattern, and if they are excited 
simultaneously with the same amplitude, the intensity 
distribution again turns into a circularly symmetric 
doughnut pattern, but with a larger diameter. 

Owing to their different angular dependence, modes of 
different classes are mutually orthogonal both in the 
waveguide and in free space, and since for a cylindrically 
symmetric resonator there is no mixing, they can be 
treated completely independent of one another. Since we 
are concerned with the higher order modes only in sofar as 
they represent a threat to single fundamental mode 
operation of the laser, we have restricted the waveguide 
basis for modes with azimuthal nodal planes to modes 
with m = 1 and 2, and used only 5 free space modes with 
w o = 0.5a. 

The phase shift acquired by the TEM~ ~) mode over a 
distance z in the free space region, is given by 

F 2z' -] 
exp L-i(2p + e) arctan ~ ] ,  (19) 

where z' =z/ka z, and the phase is measured relatively to 
the TEMPo °) phase. The loss and phase shift acquired by a 
waveguide mode ( ),m in a waveguide of length tg and 
radius a, is given by 

exp[_uZ lgRe{v,}]expl - i 2 ~(u.,.-.~O 

/g(1 + 2 Im{v;})J, (20) X 

where tg = LJka 2 and v', = v,/ka, v, is given by 

1 
--~ TE0,, modes 

y 2 

v,=, ~ 1 TM°" modes (21) 

v2+l  
- -  EH,,, modes, 

2 ~ - 1  

where v is the complex refractive index of the dielectric. 
The phase shifts are measured relatively to the EHj~ 
phase, and the constants u,,, are given in Table 1. 

It follows from above that all transformations can be 
expressed in terms of the dimensionless parameters 
lg=Lg/ka 2, dl=D1/ka 2, dz=Dz/ka 2, I=L/ka 2, and 
v', = v/ka. With a real refractive index of 1.5, the three 
values of v, are 0.894, 2.010, and 1.453 respectively. For 
our range of experimental conditions we have kay-1000 
and lg = 0.25, so that propagation losses in the waveguide 
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Fig. 3. First column: Calculated coupling loss v s  d 2 for seven different 
normalized waveguide lengths lg (d2 = D 2 / c  and dl =0.015/c, where 
c = ka 2 is given in the graphs of second column). Full lines refer to the 
three lowest order modes with zero azimuthal nodal planes, open 
circles to the lowest order mode with one, and crosses to the lowest 
order mode with two azimuthal nodal planes. Second column: 

J. Henningsen et al. 

Calculated output power for lasers with normalized waveguide 
lengths corresponding to the first column, but using D2 =cd2  as 
independent variable. The dotted line indicates the minimum value 
of D z allowed by the experimental arrangement. Third column: 
Measured average output for the lasers of the second column 
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Table 1. ruth zero of (n- 1)th order Bessel function 

n,m 1 2 3 4 

1 2.405 5.520 8.654 11.792 
2,0 3.832 7.016 10.173 13.324 
3, -- l 5.136 8.417 11.620 14.796 

Table 2. Normalized resonator length corresponding to loss minima 
for two-mode interference 

p 1 2 3 4 

EHil/EHlz 0.255 0.509 0.764 1.018 
EH 11/EH13 0.091 0.182 0.273 0.364 
EHil/EHi4 0.047 0.094 0.141 0.189 
EHi2/EH13 0.141 0.283 0.424 0.566 
EH12/EH14 0.058 0.116 0.174 0.231 
EHi3/EH14 0.098 0.196 0.294 0.392 

EH z i/EH2a 0.182 0.364 0.546 0.728 

EHal/EH32 0.141 0.283 0.424 0.565 

are insignificant. We may therefore neglect effects related 
to the refractive index, and in all calculations we have used 
v', = 0.001. 

Although the actual resonator modes are linear 
combinations of pure waveguide modes, they are usually 
dominated by a single component, and this component 
may then be used for designating the particular resonator 
mode. Close to the local loss minima, there are significant 
contributions from other waveguide modes, and here we 
therefore include the dominant interfering mode in the 
designation. For waveguide modes with one or more 
azimuthal nodal planes, the linearly polarized combina- 
tions always contain a hybrid mode component of the 
type EH,m, where n > 0, and this component will be used 
for designating the particular combination. 

Figure 3 shows the coupling loss as a function of de for 
fixed dl and 7 different values of lg, varying from 0.109 to 
0.228. The location of mode mixing minima according to 
the condition (1) are given in Table 2 and with l : l g  
+ dl + d2 it is straightforward to identify the local minima 
of the loss curves. Starting with lg=0.109, we first notice 
the strong EHll/EH12 minimum at d2=0.115, with a 
coupling loss of about 10% and a very good mode 
discrimination. Reducing d2, the EHii/EH13 minimum 
for p = 2  appears at d2~-0.06. Here, however, the 
EH2JEH22 doughnut mode has its first loss minimum as 
well, and improved mode discrimination can be achieved 
at the expense of a moderate increase in coupling loss, by 
further reducing d2 to about 0.04. As lg increases, the loss 
pattern moves inwards, so that the total resonator length 
corresponding to a given feature remains essentially 
constant. For Ig > 0.170, the EH 1 a/EH 13 minimum moves 
into the waveguide, and at the same time two new features 
appear. For /g=0.200 we observe loss minima corre- 
sponding to EHIz/EH~3 mixing at d 2 "~0.065 and mixing 
of the EH3a/EH3z modes at roughly the same d 2. Finally, 
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at lg = 0.228, we observe the second EH21/EH22 doughnut 
minimum at d 2 ~-0.10, while the EH3 JEH32 minimum at 
d 2 ~ 0.04 dips down below the fundamental mode. 

2. Experiment 

The findings illustrated in Fig. 3 have been studied 
experimentally through a series of measurements on 
pyrex waveguide lasers with different combinations of 
diameter in the range 2.8 to 3.5 mm and length in the 
range 160 to 313 ram, and through operation from 9.2 
to 10.8 lira. The general design of our laser has been 
reported previously [11], and only minor modifica- 
tions to enable easier exchange of waveguide have been 
introduced. At one end the resonator is terminated by 
an internal, fiat ZnSe mirror whose reflectivity varies 
between 96 and 98% over the CO 2 laser bands. At the 
other end, the waveguide is terminated by a ZnSe 
Brewster window, and the resonator is terminated by 
a flat, Littrow mounted grating with 150 lines/ram. The 
gas is a 64/18/18% mixture of He/N2/CO a, and is 
flowed at a rate between 100 and 200 ml/min STP, while 
the pressure in the waveguide varies between 80 and 
120Torr, depending on the waveguide dimensions. 
The laser is excited by a pulsed power supply with 10 gs 
pulses at a repetition rate of 600-800 Hz. 

The calculated coupling losses are used as input in 
the Rigrod expression [9] 

eout: s l/;; tl (goL +inl 11r2), 

where Ps is the saturation power, go the small signal gain 
coefficient, Lg the gain length, t 1 the transmission coef- 
ficient of the output mirror, and rl, z the effective power 
reflection coefficient at the mirror and the grating end of 
the resonator respectively. In the experiments, D 1 was 
fixed at 15 mm in order to protect the mirror, while D 2 
was varied from about 60 ram, corresponding to the 
smallest practical separation between the grating and the 
waveguide, out to a maximum of 360 ram. Since D2 is 
thus always much larger than D1, the coupling losses ac 
are lumped together with the grating loss of 0.05 and an 
assumed Brewster window loss of 0.02 to produce the 
effective reflectivity r2 = 0.93-ac. In the other end, an 
assumed mirror loss of 0.02 together with the mirror 
transmission q,  produces the effective reflection coef- 
ficient r 1 = 0.98 - q. 

Both the gain coefficient and the saturation power 
depend on waveguide dimensions, pressure, flow, and 
discharge energy. In addition, the losses in the mirror 
and the Brewster window will tend to increase with the 
operation time of the laser, and the grating efficiency is 
a function of the wavelength. Rather than attempting 
to account for all of this, we have performed all cal- 
culations with losses as given above, with a mirror 
transmission t 1 =0.02,  and with a gain coefficient of 
go = 2.0 m-  1. The effect of individual variations in all of 
these parameters is absorbed in the saturation power, 
which is adjusted so as to produce agreement with 
experiment at the EHtl/EH12 output maximum. This 
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Fig. 5. Measured output power of fundamental mode (filled circles) 
and higher order EH~ 2 doughnut mode (open circles). Inserts show 
photoacoustic spectra for CO2, recorded at the location of the 
arrows. Triangles indicate oscillation in a neighboring line 

feature is clearly seen in the experiments where it leads to a 
kink in the output v e r s u s  O 2 graph. One feature which is 
not so well reproduced, is the EHI~/EHI3 loss minimum 
for p = 2, which according to the calculations should lead 
to a power maximum at D2---125 mm for lg=0.109, and 
80mm for /~=0.126. Presumably this is related to the 
doughnut mode which has a loss minimum at slightly 
lower d2 values, and which may contribute to the total 
output power in this range. 

procedure may be problematic close to the threshold, 
and may therefore affect the maximum value of D2 for 
which the laser is predicted to oscillate. However, this 
is balanced by the fact that in this region, the coupling 
losses generally increase rapidly with D2. 

3. Output Power 

3.1. Lowest Order Mode 

In the second and third columns of Fig. 3, the calculated 
power for the lowest order mode is compared with 
experiments for the 7 values of lg corresponding to the first 
column. The actual waveguide dimensions and the wave- 
length are shown in each experimental graph, and to give a 
better feeling for the actual experimental conditions, we 
have used D2 rather than d2 as independent variable. We 
find that the calculations reproduce all essential features 
of the experiments. In Fig. 4 we have compared measured 
and calculated values for d 2 +dr  corresponding to the 
local power maxima, indicating with straight lines the 
predictions following from Table 2. For  the EH 11/EHla 
maximum the agreement for L is within 2% except for 
/g=0.180. Here, a slight change in grating adjustment 
would shift the maximum between the two values in- 
dicated. Note that around Ig = 0.170 condition (1) leads to 
the correct L value, whereas both for higher and lower lg, 
the correct L is smaller than predicted from (1). In several 
cases lazing persisted beyond D z = 360 mm, which was the 
maximum length allowed by our experimental setup, and 
it is noted that in all cases the oscillation limit for d a is 
fairly accurately predicted by the theory. 

For  Ig = 0.180 and 0.200, the loss calculations indicate 
a mode crossing at da --0.085 and 0.060 respectively. This 

3.2. Higher Order Modes 

For maximum tunability it is desirable to work at as small 
a D2 as possible, and considering the lowest order mode 
only, this would suggest a n  Ig in the range 0.12 to 0.14, 
where the coupling losses are only about 3% for d2 "0.05 
to 0.03, owing to the E H l t / E H l s  mixing. However, as 
seen from Table 1 as well as from Fig. 3, this loss 
minimum is coincident with the loss minimum for the 
EH21 doughnut mode, which has a coupling loss of only 
7%, and this will lead to very poor mode discrimination. 
Some improvement can be obtained by a slight reduction 
of d2 to a local loss maximum for the doughnut mode. The 
situation is illustrated in Fig. 5, which shows the experi- 
mental power curves for both the lowest order mode and 
the doughnut mode, using the /g=0.109 configuration. 
The power in the two modes was quantified by recording 
photoacoustic absorption in pure CO2 at a pressure of 
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order mode with one azimuthal nodal plane (EH21-open circles), and 
two azimuthal nodal planes (EHal-crosses) 
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about 10 Torr, where the absorption line is essentially 
Doppler broadened. For  single line and single mode 
operation, the spectrum will consist of a single line located 
at the center of the tuning range, while multiple peaks 
indicate operation in several lines or modes. Inserts in 
Fig. 5 show the photoacoustic signal for three different 
values of D 2. In each case, the line was checked by a 
spectrum analyzer, and the intensity pattern was checked 
with fluorescence plates. By fine tuning the resonator 
length according to [12], single line and single mode 
operation was achieved over the full 540 MHz tuning 
range at D2 values around 80 ram. At smaller values of D2, 
the laser tended to jump to a neighbouring line when 
tuned close to the tuning edge, as witnessed by the small 
photoacoustic resonance centered between the main 
peaks. 

Other types of higher order modes can be observed for 
higher values of Ig, where their loss minima correspond to 
coupling losses of the same order of magnitude as those of 
the lowest order mode. They were studied for Ig = 0.209, 
and in the range d 2 < 0.076 a total of 4 different modes 
were identified in the photoacoustic spectrum. The cal- 
culated coupling losses are shown in Fig. 6, while cal- 
culated and measured output power for these modes is 
shown in Fig. 7. Their identity will be further discussed in 
Sect. 5 below, where we are concerned with their intensity 
pattern in the far field region. 

4. Fundamental Mode 

Single fundamental mode properties were studied for 
lg = 0.180 and d 2 = 0.076, where the losses of higher order 
modes are sufficient to prevent oscillation (Fig. 3). 
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amplitude phase 
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0.216 -2.889 
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0.768, 0.196 
0.591 2.877 
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0.588 0.655 
0.222 2.870 
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Fig. 8. Calculated intra cavity intensity profiles at five different 
positions in the resonator (referring to Fig. 1). Adjacent to each 
graph is shown amplitude and phase (modulo 27c) of the four 
components of the corresponding eigenvector 

4.1.lntra-Cavity Intensity Profile 

The intensity profile for the fundamental mode was 
evaluated from the appropriate eigenvector, and the 
results are shown in Fig. 8. The positions refer to Fig. 1, 
and adjacent to each figure we have given the amplitude 
and the phase (modulo 2~) for the four components of the 
eigenvector. Note that within the waveguide the phases 
are measured relatively to the EH 11 phase, which remains 
unchanged. At position 4, where the field reenters the 
waveguide, the EH~2 and EH~s components are both 
about zc out of phase with EH~ 1. The resulting pattern is 
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front end output beam of a laser with configuration as indicated 

essentially ring shaped, and the necessary reduction of the 
field near the waveguide wall is brought about by the 
EH13 component. At position 8, where the field reenters 
the other end of the waveguide, EH~ ~ and EH12 are only 
about re/3 out of phase, while EHa3 is essentially in 
counterphase. Thus, both EH12 and EH13 interfer de- 
structively with EH1 ~ near the waveguide wall. 

The net result is an intensity profile which changes 
drastically as the beam moves through the resonator. 

Fig. 12. Development of the intensity profile towards the far field 
region for zero order output beam. The graph extends from the 
output plane to a distance of 25 cm 

Also, inspection of the profiles at positions 5 and 8 show 
that the two counterpropagating beams are significantly 
different at this end of the waveguide. The intra cavity 
intensity distribution cannot be probed directly without 
perturbing the resonator, but it reflects itself in the beam 
outside the resonator, which we consider in the following 
section. 

4.2. Far Field Intensity Profile 

The intensity profile outside the resonator is calculated by 
evaluating the eigenvector at the output coupler (posi- 
tion 2), and allowing the TEM modes to propagate over a 
suitable distance in free space before adding the fields. At 
position 1, the profile is very different from what is 
expected for a fundamental mode. However, as the beam 
propagates away from the laser, the profile changes, and 
the development towards the far field region is shown in 
Fig. 9. 

Experimental profiles were recorded by scanning a 
pinhole with 120 pm diameter across the beam, and 
measuring the transmitted power with a large area 
detector with homogeneous response. Recordings were 
made for a number of different positions between 29 and 
84 cm from the output coupler. In all cases we found a 
pattern qualitatively similar to that produced by diffrac- 
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Fig. 11. Calculated and measured intensity profile for 
frgnt end output beam at a distance of 59 cm from the 
rdsonator 
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Fig. 13. Comparison of front end beam profile and zero order beam 
profile, both recorded at a distance of 84 cm from the resonator 

tion in a circular aperture with a radius of 90% of the 
waveguide radius, but with significantly stronger side 
lobes. In Fig. 10 we show the H W H M  point of the central 
peak, the radius of the zero intensity ring, and the radius of 
the intensity maximum of the first ring, as a function of 
distance from the output coupler. All points are located 
on straight lines which extrapolate to a point located 
about 2 cm inside the waveguide. Figure 11 compares the 
measured and calculated profile at a distance of 59 cm 
from the output coupler, using only a single adjustable 
amplitude factor. The good agreement obtained for the 
strength of the side lobes and for the beam width, shows 
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that the model provides excellent predictions for the far 
field intensity pattern. 

A different way of coupling out of the resonator is 
through the zero order reflection from the grating. At this 
position, the intensity profile is very different from that at 
the output mirror, and the same holds for the far field 
intensity profile, which according to calculations develops 
as shown in Fig. 12. In Fig. 13 we compare the measured 
intensity profiles of the two output beams at a distance of 
84 cm from the resonator, and we find that the overall 
width of the zero order beam is more than twice as large as 
that of the front end beam. 

5. Higher Order Modes 

Higher order modes were studied for lg= 0.209, where a 
number of different modes may oscillate over a range of d 2 
values. Calculated far field intensity profiles for the four 
modes considered in Sect. 4.2 are shown in Fig. 14. 
Experimentally, the different modes were selected by 
reducing the pressure in the laser to 30 Torr in order to 
narrow the gain width, and tuning the resonator length to 
the appropriate photoacoustic peak. 

The condition for oscillation at the center of the gain 
profile is that at the corresponding frequency, the phase 
change of the field during a double pass of the resonator 
equals an integral number of 2~. Denoting the phase of the 
eigenvalue as ~b, this condition is expressed as 

2kL + ~b = 2rcq. (22) 

Thus, for a given longitudinal order q, eigensolutions with 
different q~ will oscillate at different values of resonator 
length L, and the relative phases can be measured directly 
from the relative location of the photoacoustic absorption 
in a resonator length scan, with one full period corre- 
sponding to 2re. 
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Fig. 14. Calculated normalized far field intensity profiles for the four modes considered in Figs. 6 and 7, evaluated at a distance of 45 cm from the 
output coupler 
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Figure 15 shows for a range of d2 values the relative 
phases of the observed modes, measured relatively to the 
phase of the fundamental mode, and the corresponding 
recorded intensity profiles are shown in Fig. 16. The EH3~ 
doughnut mode appears reasonably clean at d2 = 0.0496, 
whereas at larger d2 values the central peak indicates 
some admixture of the fundamental EH~I mode. The 
phase difference between the two modes is < n/3, and this 
is not enough to ensure complete separation. The EHa~ 
mode is observed over the entire range ofd 2 values, except 
between 0.06 and 0.07. It is dominated by the central peak, 
and the side lobes, which are relatively strong at low de, 
presumably reflect a contribution from EH12. Theoreti- 
cally, only very small side lobes are expected, and at high 
d2, where the EHa/contribution vanishes, the observa- 
tions agree with this prediction. In the intermediate 
range a different mode pattern occurs, with comparable 
intensity in a central peak and a ring. This is the pattern 
expected for the EHI2 mode, and the d2 range over which 
it is observed, corresponds well with the range in which 
the EHa2 loss dips down below the EH~2 loss. As a further 
corroboration, we show in Fig. 17 the calculated phase of 
the mode with lowest loss, and it is seen that a phase jump 
of the right sign and magnitude is expected in this range. 
Also, it will be noted that the theoretical prediction of a 
rapid shift of intensity away from the central peak and 
into the ring, with increasing d2, is well supported by the 
experiment. Finally, over the entire range of d2 values, the 
EH/x doughnut mode is observed, and we see that the ring 
diameter is smaller than for the EH3I doughnut, in 

agreement with expectations. Since there is nothing in our 
theoretical model which couples modes with a different 
number of azimuthal nodal planes, it is not possible to 
predict the relative phases of such modes. 

Although the various modes are well enough sepa- 
rated that their identity can be inferred from the intensity 
pattern, the presence of a finite intensity at the center of 
the doughnut modes indicate a residual contribution from 
the EHa 1 mode. This contribution will lead to a reduction 
of the ring diameter, and it is therefore not too surprising 
that the measured diameters are 20% smaller than 
calculated. A similar situation exists for the EH11 mode at 
low dz, where the EHt2 contribution leads to a central 
peak which is also about 20% narrower than predicted for 
the pure fundamental mode. 

6. Conclusion 

In the previous sections we have extended the treatment of 
hollow dielectric waveguide lasers with free space regions 
and flat mirrors, introduced by I-8], to cover the most 
important higher order modes, and in this way we have 
identified regions of high mode discrimination in the 
parameter space. A study of Fig. 3 shows that any attempt 
at achieving large single mode tunability in a waveguide 
laser with the reflectors very close to the waveguide, will 
meet with difficulties, since at least four different modes 
have total losses well below 10% per double pass. On the 
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other hand, by varying the separation between one of the 
reflectors and the waveguide, it is possible to find a 
configuration where the fundamental mode loss is less 
than 5%, whereas the first higher order mode has more 
than 50% loss per double pass, and this laser will be 
totally immune to higher order mode oscillation. 

The calculated magnitude of the coupling losses is 
compared with experiments by studying the output power 
of CO 2 lasers for a wide range of resonator configurations. 
It is noteworthy that quantitative agreement is obtained 
both for the structure in the D2 dependence, and for the 
maximum value of D z for which the lasers can oscillate, 
despite the fact that the lasers differ by up to a factor of 2 in 
active length, and almost a factor of 3 in active volume. 
Four different higher order modes are included in the 
analysis, and three of them have been identified 
experimentally. 

The intensity profile inside and outside the resonator 
has been studied for the fundamental mode, and we find 
that the profile changes dramatically with position in the 
resonator. A logical consequence is that the extra cavity 
profile will also depend strongly on the choice of output 
plane. In our lasers we could choose front end out- 
coupling through a dielectric mirror, or zero order 
outcoupling from the grating, and for the configuration 
studied, the two beams are both non-gaussian, and very 
different both as far as shape and width are concerned. 
Again, however, both shape and width is accurately 
predicted by the calculations. 

The far field pattern for three higher order modes was 
studied experimentally and theoretically. For these modes 
the qualitative agreement was good, but the measured 
beam width for all of them was about 20% smaller than 
predicted. This may be a consequence of the fact that none 
of them can experimentally be perfectly separated from 
the fundamental mode. However, it cannot be ruled out 
that the truncation to two waveguide modes and five free 
space modes for fields with azimuthal nodal planes is too 
brutal. 

The overall conclusion is that the model used by [-8] 
and extended as discussed above, is capable of explaining 
most essential features of hollow dielectric waveguide 
lasers, and of providing quantitatively correct predictions. 

By a suitable choice of design parameters, single line and 
single mode tuning can be achieved over a wide frequency 
range, even in the densest regions of the CO2 laser 
spectrum. As an illustration we have chosen an example 
from the high-J region of the 9R band, and Fig. 18 shows a 
scan over 620 MHz in the 9R30 line, allowing the 
observation of a strong absorption in NH3, centered 
190 MHz below the CO2 line center. 

One feature which cannot be explained, is the relative 
phase shift between eigenmodes of different azimuthal 
symmetry, since the model does not allow for any 
interaction between such modes. However, in view of the 
large variations of the beam profiles with position in the 
resonator, it is plausible that the relative phases are 
determined by the requirement that the spatial overlap 
between different eigenmodes is minimized. 

Although the motivation for this study was the desire 
to achieve a good understanding of waveguide lasers, it is 
conceivable that the theory might be relevant to conven- 
tional open structure lasers as well. A typical cw CO2 laser 
has a 100 cm discharge tube with 10 mm diameter, and 
this configuration corresponds to a normalized wave- 
guide length of lg = 0.067 at 10.6 ~tm. Inspection of Table 2 
shows that an EHlt /EHls  loss minimum is expected 
around l-0.091, corresponding to a resonator length of 
135 cm. Since the discharge tube is deliberately chosen 
large enough that a fundamental TEM(0 °) mode can 
propagate with low diffraction losses, it follows that a 
waveguide mode will utilize the gain medium more 
efficiently, and unless an intra cavity aperture is used, it is 
quite likely that the laser will prefer oscillating in a 
waveguide mode. For quantitative considerations one 
must of course take into account that open structure 
resonators use curved mirrors, whereas the theory, as 
developed above, applies to resonators with flat mirrors. 
Another potential area of relevance is optically pumped 
far infrared lasers. For cw lasers the much lower operating 
pressure in conjunction with the reduced Doppler width 
means that the gain width is usually much smaller than 
the free spectral range. Single mode operation can there- 
fore be achieved without relying on loss discrimination, 
by just choosing the appropriate resonator length. For 
high power pulsed lasers, however, the situation is 
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different, and here the loss discriminat ion m a y  be a 
necessary ingredient. 
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