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Abstract. The Einstein-Podolsky-Rosen (EPR) paradox is 
demonstrated experimentally for continuous variables by 
employing a nondegenerate optical parametric amplifier 
(NOPA). Such a system is analogous to and under some ideal 
conditions is in one-to-one correspondence with the original 
system discussed by EPR. In particular, the quadrature-phase 
amplitudes for a signal beam are inferred in turn from those 
of a spatially separated but strongly correlated idler beam, 
where these optical amplitudes are analogous to canonical 
position and momentum variables. The variances for the two 
inferences are measured and their product is observed to be 
below the limit of unity associated with the Heisenberg un- 
certainty relation, in apparent contradiction with quantum 
mechanics according to the argument of EPR. The smallest 
product of inference variances achieved in the experiment 
is (0.70 4- 0.01). Various other types of quantum noise for 
this system are also investigated, and a theory of a narrow- 
band NOPA is presented with losses included. A comparison 
between experiment and this theory shows relatively good 
agreement. The question of a local hidden-variables descrip- 
tion of the system is discussed. 

PACS: 42.50 

Over the past several years, the process of parametric down- 
conversion has been employed to produce a variety of non- 
classical states of light. Depending on the type of the para- 

. metric process considered and on the strength of the pump 
wave, various groups have generated squeezed states [1-8], 
single-photon Fock states [9], two-photon states [10] and 
twin photon beams [11-14] with relative ease in the labora- 
tory. Applications with these nonclassical states in precision 
measurement [2, 15], spectroscopy [8] and quantum com- 
munication [16] have also been explored. For the particu- 
lar case of nondegenerate parametric down-conversion, the 
pump photon is split into a pair of photons called signal and 
idler that are highly correlated in time [17] and in photon 
number [11-14] (Fig. la). The quadrature-phase amplitudes 
for these two beams are also highly correlated as was dis- 
cussed by Yurke [18] and exploited by La Porta et ai. [19] 

to perform a back-action evasion experiment. Later, Reid 
and Drummond [20] systematically analyzed a nondegener- 
ate optical parametric oscillator (NOPO) and the correlations 
between quadrature-phase amplitudes for the signal and idler 
beams. When the pump beam to the NOPO is relatively 
strong but below a certain threshold value, this system can 
be considered as a nondegenerate optical parametric ampli- 
fier (NOPA) with appreciable gain over a limited bandwidth. 
For inputs in the vacuum state, the OPA amplifies the incom- 
ing vacuum noise and produces two noisy outgoing signal 
and idler beams with large fluctuations in quadrature-phase 
amplitudes. However, because of the splitting of the pump 
photons in the amplification process, the fluctuations of op- 
tical amplitudes for the two beams are strongly correlated 
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Fig. 1. a Nondegenerate parametric down-conversion via the second- 
order susceptibility X (2). b Schematic representation of the fluctuating 
field amplitudes in the output from a NOPA showing the correlations 
between the quadrature-phase amplitudes (X1, Y1) of the signal beam 
and (X2, Y2) of the idler beam 
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so that under a limiting condition, they can become "quan- 
tum copies" of each other (Fig.lb). It is this type of non- 
classical correlation of quadrature-phase amplitudes of the 
two spatially separated signal and idler beams that led Reid 
and Drummond [20, 21] to suggest a possible avenue to 
demonstrate the original Einstein-Podolsky-Rosen paradox 
in quantum theory. 

Recall that in 1935, Einstein, Podolsky and Rosen (EPR) 
[22] proposed a gedanken experiment involving a system 
of two particles spatially separated but correlated in posi- 
tion and momentum. From their view of local realism, EPR 
concluded that quantum mechanics is incomplete since ap- 
parently canonically conjugate variables for one of the parti- 
cles could be assigned definite values from measurements of 
the other particle in conflict with the Heisenberg uncertainty 
principle [23]. Subsequently, Bohm [24] presented a variant 
of EPR's argument for a system of discrete variables and 
analyzed [25] an experiment performed by Wu and Saharov 
[26]. The irreducible conflict between quantum mechanics 
and local realism was finally understood and formalized by 
Bell in the well-known Bell inequalities [27, 28]. Since then 
there have been numerous discussions and experiments re- 
lated to this issue, with a very persuasive experiment being 
the one by Aspect et al. [29]. Note that throughout the second 
half of this century, most theoretical discussions including 
the classic one by Bell and all experimental demonstrations 
have focused on Bohm's version of the EPR paradox which 
involves a system with discrete variables (such as electron 
spin or photon polarization), in contrast to the system origi- 
nally discussed by EPR with continuous variables (position 
and momentum). 

The fundamental issue in experiments of the type pro- 
posed either by EPR or by Bohm is the existence in quan- 
tum theory of a kind of nonlocal correlation between two 
spatially separated subsystems. Of course Bell [27] proved 
that such quantum correlations are so large in certain sys- 
tems as to exclude a whole class of theories based upon 
objective realism (the so called hidden-variables theories). 
Returning to the example of signal and idler beams gener- 
ated by parametric down conversion, we might expect that 
the strong intrinsic correlations of these beams could lead to 
the kind of quantum nonlocal correlations discussed above. 
This is indeed the case as has been demonstrated in experi- 
ments involving fourth-order interference of signal and idler 
beams where Bohm's argument applies to the polarization 
correlations of a suitably arranged system and where viola- 
tions of Bell inequalities have been reported [30, 31]. Other 
fourth-order interference experiments demonstrating quan- 
tum nonlocal correlations have involved such variables as 
position [32] and phase [33]. However, there does not exist 
a position observable for the photon [34] and experiments 
parametrized by phase delay as in [33] lead to discrete out- 
comes and to Bell inequalities with the same form as those 
for polarizations [31]. In any case many recent observations 
involving fourth-order interference are directed to the ques- 
tion of Einstein locality and not to the explicit demonstration 
of the EPR paradox. 

Inclusive of these experiments with photon pairs in para- 
metric down conversion, the reported demonstrations of the 
EPR paradox and of violations of Bell inequalities are based 
on correlations of discrete variables. As far as we know, an 

experimental demonstration of the EPR paradox with con- 
tinuous variables along the lines of the original discussion 
has not yet been realized either optically or otherwise. Possi- 
ble demonstrations of the original EPR paradox by employ- 
ing the scattering of massive particles [25] are hampered 
by the requirements for extremely accurate measurements 
of the positions and momenta of the particles after the scat- 
tering event. By contrast it is relatively stralghtfoward to 
implement a nearly ideal measurement of quadrature-phase 
amplitudes of an optical field. Hence the nonclassical corre- 
lations of quadrature-phase amplitudes studied by Reid and 
Drummond [20] and by Reid [21] for the system of two 
spatially separated signal and idler beams produced in non- 
degenerate parametric amplification provide an extremely 
attractive avenue toward a realization of the original EPR 
gedanken experiment. Actually, in the limiting case when 
the parametric gain approaches infinity and passive losses 
go to zero, the wave function for the state of signal and 
idler modes has the same form as the wave function for the 
two particles discussed by EPR (see Sect. 2). More specifi - 
cally, each mode of the electromagnetic field is analogous to 
a harmonic oscillator, with the quadrature-phase amplitudes 
of the electromagnetic field playing the roles of canonical 
position and momentum variables for the oscillator. Since 
quadrature-phase amplitudes of light can be readily mea- 
sured with a homodyne detection scheme, the demonstration 
of the original EPR paradox becomes feasible. 

We should however note at the outset that the correlations 
originally discussed by EPR can be described in purely local 
terms with the aid of the Wigner function [35, 36]. Since the 
Wigner function is everywhere positive both for the original 
EPR gedanken experiment as well as for the experiment that 
we report, we must conclude that the EPR correlations are 
not in conflict with local realism and that no paradox exists 
in the modern sense (i.e., there is a local hidden variable 
theory that successfully describes the system [36]). By con- 
trast, the nonlocal correlation for the spin and polarization 
systems is irreducible as specified by the Bell inequalities 
[27, 28]. Thus the demonstration of the original EPR para- 
dox does not enable us to say anything about local realism 
and quantum theory. Nonetheless, an investigation of corre- 
lations of continuous variables in spatially extended systems 
is a first step toward a possible generalization of the Bell 
inequalities to this setting. 

In this paper, we study the nonclassical correlations of 
quadrature-phase amplitudes between signal and idler beams 
generated by a subthreshold optical parametric oscillator that 
is operated in a frequency degenerate but polarization nonde- 
generate mode. By inferring in turn the two quadrature-phase 
amplitudes of the signal beam from measurements of those 
of the spatially separated idler beam, we are able to achieve 
a reasonably faithful realization of the original EPR paradox 
with continuous variables. If  instead of directly examining 
the signal and idler modes, these fields are combined to 
form two new modes, we find that both of these new modes 
are squeezed and exhibit noise reduction below the vacuum 
noise level. The measured correlations and noise reductions 
are compared with a theoretical treatment similar to that in 
[20] with good agreement. 

The organization of the paper is as follows: in Sect. 1, 
we present a theoretical treatment of a nondegenerate optical 
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Fig. 2. Geometry of the nondegenerate optical parametric amplifier 
(NOPA) for the theoretical analysis 

parametric oscillator below threshold. The treatment follows 
the input-output formalism of Collett and Gardiner [37a] and 
includes both internal and external losses of the NOPA. We 
calculate in particular the relevant measurable quantities for 
our experiment. Section 2 is devoted to an analysis of the 
demonstration of the EPR paradox for continuous variables 
with less than ideal correlations. The Wigner function for 
the NOPA is also derived. The actual experiment involving 
a subthreshold OPO and two sets of balanced homodyne de- 
tectors is discussed in Sect. 3. We conclude in Sect. 4 with 
a summary of our results, a discussion about the bidden- 
variables description of the NOPA, and with a brief descrip- 
tion of a quantum communication experiment that utilizes 
the correlation properties of  the NOPA. 

1 T h e o r e t i c a l  T r e a t m e n t  o f  the  N O P A  

The system that we consider consists of a two-ended opti- 
cal cavity with two modes el ,  a2 and a nonlinear medium 
characterized by the nonlinear susceptibility X (a) which pro- 
vides for an interaction between two modes (Fig. 2). The 
two modes are orthogonally polarized but may be degener- 
ate in frequency. For simplicity here, we will assume that 
both modes experience the same loss inside the cavity as 
well as outside the cavity. The internal losses of  the system 
are modeled as leakage via a mirror at one end of the cav- 
ity with damping rate 0- We denote by (71, c2 the unwanted 
vacuum modes that are coupled into the cavity through the 
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We will take n to be real without the loss of generality. The 
Hamiltonian for the two (internal) cavity modes of resonant 
frequencies (Wl, co2) is 

Hs = hwla~al .1, hw2a~a2, (3) 

with a similar expression for HR, which is the Hamilto- 
nian for the external modes. HsR is the Hamiltonian that 
describes the coupling of the internal modes (a1,2) to the 

modes ~h(i' o) cl,2) external to the cavity, and accounts for ~ '1 ,2  
the excitation and decay of the internal modes. 

Following the formalism of Collett and Gardiner [37a], 
we derive equations of  motion for the two cavity modes 
a I ~ a 2 a s  

de1 = - i w l a l  .1, t~e-2iW°ta½ + 
dt 

3,-t-0 
- -  T a l  .1. v / ~ b ~  i) .1, v/-~Cl , 

de2 t~e_ 2iWot a ~ (4) 
dt = - iwza2 .1, 

_ 3, .1.____00 a2 .1. x/~b~ *) .1, v/~C2 • 
2 

The output quantities h(°) then follow from the boundary ~1,2 
conditions 

b(O) ~ b(i) = x / ~ a l , 2  ( 5 )  1,2 ~ 1,2 

In order to solve (4, 5), we first move to a rotating frame at 
frequency co o by setting 

o(t) = O(t)e -i~°t (6) 

r :  ,(i, o) 
with o = 1.~1,2; 01, 2 ; (71,21 and O = [AI,2; ~l,2/~(i'°)', C 1 , 2 ] ,  and 
then make the Fourier transformation 

1 S d tO( t )e  -is?t (7) O ( X ? ) -  , / ~  

with commutation relation [OU?), Or(f2')] = 5(~2 - $2') for 
B(i, o) C1,2. From (4-7), after some straightforward algebra, 1,2 , 
we can relate the output quantities to the input quantities as 
follows 

B~ ?)(~) = {~2 + [(3' _ 0 ) / 2  + i(£2 + Aj ) ]  [(3' + 0 ) / 2  - i(S2 - A k ) ] } B } ° ( ~ )  

[(3' .1. 0) /2 - i(X? .1. Aj)] [(3' .1. 0) /2 -- i(O - Ak) ] --/g2 

~3 ,BO)t ( -~)  .1. [(3, .1, 0) /2 - i(f2 - Ak)] v / -~Cj ( /2  ) .1, ~v/-TdC~(- ~2) 
.1, 

[(3, .1. 0) /2 - i(X2 + Ay)] [(3, + 0)/2 - i(x2 - Ak) ] - ~2 
, (8 )  

leakage loss at mirror M3.  The fields of  interest are coupled 
in and out through the mirror M1,  which is characterized 
by the damping rate 3' that is assumed to be the same for both 

modes. The input and output fields are denoted by b] i), b~ ) 

h(°) h(°) respectively. In the limit of  weak coupling, we and ~1 ~ v2 ' 
take the Hamiltonian for this system to be given by [37, 38] 

H = Hs + HI + HR + HsR, (1) 

where 
i ? i ~ ( , . t  t , t  ~ - 2 i w o t  H I  . . . . .  ~.~1~2 - - a l  a 2  e 21w°t) ( 2 )  

is the interaction Hamiltonian describing the coupling be- 
tween the modes e l ,>  Note that we assume that the nonlinear 
medium is pumped by a field in a coherent state of  frequency 
2w0 and that the pump field is undepleted and described by 
a c-number which is included in the coupling coefficient n. 

where j = 1, k = 2 or vice versa, and //1,2 = wo - o21,2. 
From now on, let us assume that the two cavity modes 
are frequency degenerate and on resonance with COo so that 
A1,2 = 0. Then (8) can be simplified to 

/35°)(0) = G(~)B}i)(~Q) ÷ g(f2)B~)*(-O)  

+ O(f2)Cj(f2) + .~(/2)C~(- f2) (9) 
with 

G(g?) = {t~ 2 + [(7 - 0)/2 + i~2] [(3' + 0)/2 - i$2]}/M 

= G * ( - g ? ) ,  

9(£2) = ~;3"/M = g * ( - / 2 ) ,  (10) 

G(Y2) = [(3" + 0)/2 - iX2]v/-~/M = O*(-X2), 

O(Y2) = ~ v ~ / M  = ~l* ( - f2 )  , 



268 Z. Y. Ou et al. 

where M ~ [(7 + Q)/2 - i/2] 2 -- K 2. If  the inputs to the 
cavity are in a vacuum state (as will be assumed throughout 
this paper), then 

(o)t (o) / <Bj (O)B~ (O)) = [[9(0)12 + L0(O)1215(o - o'), 

(o) (o), , I(9(o)1215(o 09 (Bj (O)Bj ( Q ) )  = [ IG(O)[  2 + - , 
( l l )  

= [G(0)9'(0) + (9(0)9"(O)]5(O + 0'), 

with {j,k} = {1,2}, {2, 1}. The other averages for the 
external modes are zero. 

Let us now introduce external losses for the output modes 
B(O) by using a beamsplitter model with uncorrelated vac- 1,2 
uum modes D~ i), D~ ) from one of the ports (Fig. 2). If  the 
total external loss is denoted as L, then we find the detected 
fields D~ °), D(2 °) as 

D[°~(O) = ]v/]-7-L-LB~°,~(O)+ iv~D~i?2 (12) 

In this simple model, the total external loss L is meant to 
include propagation loss as well as the non-unit homodyne 
efficiencies and quantum efficiencies of  the detectors. 

With (9-12) we can calculate various measurable quan- 
tities. But before doing that, let us first examine some spe- 
cial cases in order to reveal the physics which is otherwise 
masked by complicated algebraic expressions. To do so, we 
assume that the system is lossless so that L = 0 = 0. Then 
we have 

D~°,~(O)--- G(O)BIi)2(O)-~- g(O)B~i)~(-O) , ,  ] 

where } ( 13 ) 
G(O) --= (t~ 2 q- 3"2/4 q- 02)/[(3'/2 - iO) 2 -- n2], 

9 ( 0 )  = t~3'/[(3'/2 -- iO) 2 -- t~2], 

with 

[G(n)[ 2 -]g(n)[ 2 = 1. 

These are just the familiar input-output relations for a 
lossless nondegenerate parametric amplifier of  finite band- 
width. The gain of the amplifier depends on the pump 
strength and can be extremely large as the threshold of the 
system is approached (~ --* 3`/2) and O ~ 0. If  we intro- 
duce the quadrature-phase amplitudes defined as 

X1,2(O ) D{O~(O) + (o)~ = , D1, 2 ( - - 0 ) ,  

(o) -irr/2 Fl(O)f( o]~ivr/2 
Y1,2(Q) = DI,2(Q)c q- ~1,2 ' - " ~ ' ~  ' 

0 4 )  
x~i)(n)  (i) (i), 

= B1,2(Q) q- B 1 , 2 ( - Q ) ,  
(i)'~ irv/2 Y(i~(O)---- Bli)2(O)e-irr/2, q- B1,2 ( - O ) e  , 

then (13) are transformed to 

x~,~(n) = a(o)xl~,~(o) + 9(0)x(),)~(0), 
(15) 

a(a)Y i (a) - g( o)y :l (o ) .  

Let us now define a new set of  modes (D1, D2), ~fi(i) ~(i h ~'~-'1 ' ~2 ] 
formed from superpositions of the original modes (D~ °), 
D(Oh ri~(i) B(i)~. 2 2' \L'I ~ 2 2" 

/)}i) __ BI D-}- ~i)  
v 2  ' 

/3~o) _ D I ° ) +  D(2 °) 

Then (13) become 

n(i)--Vzn'(i) } 
/~(i) __ 1-'1 -- ~t~'2 . 

n(o) n(o) 
;5(o) *~i - *"2 
~2 -- 7 ~  " 

D[°)= G(O)B(~)(O)+ g( n)Bli)t (- O) , I 

b~ °) G(O)B~i)(n) - 9(O)B~i)f(-O) ,f 

(16) 

(17) 

which are the equations for two independent degenerate 
parametric amplifiers. Thus the originally coupled two 
modes tn(°) n ( °h  ~ 1  , ~ 2  J are transformed into two independent 

c tS(°) tB(°h which are individually (and indepen- modes ~ 1  ~ 2  ]' 
dently) in squeezed states. The spectra of  squeezing for the 
two decoupled modes can be easily calculated from (17) and 
have the following (non-normally ordered) forms: 

(Xl (O)R1 (O')) / 

= 6(0 + 0')s+(0) = (5"2(0)~(0')), (18) 
<?l(n)9~(n')) 

= 6(0 + 0')s_(0) (Xz(n):g2(n')),] 

with 

S + ( O )  = I G ( n )  + g(O)[ 2 = 1 q- 2t~3'/[(~ - 7 /2 )  2 + O2], 

S_(Q)  = IG(O) - 9(O)12 = 1 - 2t~3'/[(t~ q- 3'/2) 2 q- 02] .  

On the other hand, from (15), the quadrature-phase am- 
plitudes of  the original signal and idler modes rn(°) m(°)~ 
defined in (14) have variances of  the following form: 

<x,(o)x1(o')> : 5(o + ] 
(Y~(n)Y~(n')) = 5(n + 0 )TIt(n), 

(X2(O)X2(Ot)) = 5(0 ~- 01)T?(0), I 

(Y:(n)Y2(O')) = ,5(0 + O')Tf (n) , ] 

(19) 

where TX(n) : T2x(o) = T~(O) = T~(O) _ Gq(O). 
Here the quantum noise gain Gq(Q) is given by 

G q ( n )  = I a ( n ) l  2 + 19(o)12 

(3,2/4 q_/g2 @ f~2)2 ~_ 3'2/g2 
= ( 2 o )  (3'2/4 __ /g2 __ f'22)2 .~_ ,~2~-~2 

and describes the phase-insensitive fluctuations of  the sig- 
nal (D~ °)) and idler (D~ °)) outputs of  the system. Note that 
Gq(Q) ---+ oo as ~c ~ "//2 =- tqh and O ---+ 0. Therefore, 
from the above equations we see that the system amplifies 
the vacuum noises of  the inputs (Bli)2) and generates two 

outputs with large noises (D~°~). However, the difference of 
the X amplitudes is such that 

X1(O) - X2(O) ] 

= [G(O)  - g ( n ) ]  [x} i ) (n )  - x ~ ) ( O ) l  

t~ - 7 / 2  + i__..__.__~Q r 3((i)co ~ _ ¥.(i)/o. ] 
n + 3'/2 - iD L ~ I  \ ] ~2 ~'""JJ 

--+0 as n---+3"/2 and O---+0,  

(21a) 
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while the sum of the Y amplitudes is 

5 ( 0 )  + Y2(O) 

/ = [G(O) - 9(O)1 [Y~0)(O) + Y2(i)(O)] 

n - 7 / 2 + ~  ~ ~)(O)+Y2(~)(g?)] [ (21b) 

---~0 as ~--+"//2 and g ? - - + 0 , )  

indicating that the two outputs (b{°,~) are highly correlated. 
Actually, if we set t~ = 7 /2  and f2 = 0, then 

X l ( 0  ) = X2(0) ,  "~ 
(22) ( 

5 (o) = -Y2(O), J 

and the quadrature-phase amplitudes of the output beams 
become "quantum copies" of one another since (22) is an 
operator equation. 

To quantify the degree of the correlation, we introduce 
the spectral variances V±(O) given by 

([Y1(O) + Y2(O)] [I/1(O') + Y2(g?')]) 

= 6(O + O')V+(O),  
(23) 

<[Xl(g? ) -- X2(O)]  [XI(]'~ 1) - X2(~Q/)]) 

= ~(g? + o ' ) v _ ( g ? ) ,  

where from (18) 

V+(g?) V_(g?) 2S_ 2 (~; - "{/2)2 + 02  = = = (24) (n + "//2) 2 + O 2 " 

Note that the factor 2 can be traced to the contributions of 
the uncorrelated vacuum fluctuations of the input modes Bli,) 2 
(21a, b). This is obvious when we set t~ = 0 in (24) which 
corresponds to unit gain for the system and thus vacuum 
fields for r)(°)" in this case, V±(~) = 2. On the other hand, ~1,2'  
when ~ = 7 /2  and O = 0 (so that G --~ oc), we find that 
V±(0) = 0, corresponding to perfect correlation. 

In practice of course, the gain of the system is not infinite, 
and in this case X1(O) [Y1(O)] are better correlated to the 
scaled quantities AX2(O) [-AY2(g?)], with 0 _< A < 1 prop- 
erly adjusted for best correlation [21]. Hence the quantities 
V~(g?) defined as 

([XI(,Q) -- )~X2(g?)] [Xl  (f-2 t) - .)~X2(g?t)]) ) 

= 6(g? + O')V-~(Y2) ' / (25) 
( [ 5  (~2) + AY2(O)] []/'1 (g?t) + AY2(g?')]) 

= 6(g? + n')v+~'(g?), 

offer an alternative statement of the degree of correlation 
between modes 1 and 2. As we shall soon see, the quantities 
V~(~) will better serve our investigation of EPR correla- 
tions since V~(g?) are always smaller than V±(g?). Explicitly 
from (15) we have that 

V~(g?) = ( 'r2/4 - ~2 _ g72)2 + .~202 
( ~  ~- 7 ~  02) 2 +@t~ 2 -< V±(g?), (26) 

where A has been chosen to minimize V~(O). 
Returning now to the actual case of finite losses in the 

system with (L, 0) ~ 0, we can still introduce the transfor- 
mation in (16) to find that the two modes 13(°) ~1,2 are decoupled 

into two independent degenerate parametric amplifiers (with 
the same gain and loss parameters). Following the analy- 
sis that lead to (18-20, 26) but with more algebra, we can 
thus calculate the spectra of squeezing S±(O) for the modes 
)(o) the phase-insensitive quantum noise gain Gq(O) for the 1,2' 

signal and idler fields n(°) and the correlation quantities ~1,2'  
V~(g?) between the quadrature-phase amplitudes (Xt,Y1) 
and (X2, Y2). They have the following form: 

2(1 - L)~7 
2 + ( 0 )  = 1 + 

[/g -- (')1 -}- 0)/2]  2 -}- 0 2 ' 

2(1 - L)t~ 7 
5 _ (0 )  = 1 - 

[K; + (q, + 0) /2]  2 q- ~(~2 ' 

Gq(O) = 1 + 2(1 - L)~2"),('y + O)/IMI 2 , 

V~(O) = i + 4(1 - L)t~2"7(0 + L T ) / I M I  2 
1 + 2(1 - L)~;27(~) + ,',/)/IMt 2 ' 

(27a) 

(27b) 

(27c) 

(27d) 

where IMI 2 ~ 02(0 + 7) 2 + [(7 + 0)2/4 - 02 - In]2] 2. It is 
straightforward to check that the results in (27a-d) are same 
as those in (18-20, 26) when we set all the losses to zero. 

Of course, beyond the specific set (X1,2, YL2) of quadra- 
ture-phase amplitudes is a continuous set given by 

Xl(g?,  ¢1) ~- Dl(g?)e -i¢~ + Dl(-g2)e i¢l , 
(28) 

X 2 ( 0 ,  ¢2) = D2(O)e -i¢2 + D~(-g?)e i¢2 , 

which are parametrized by the phases ¢1, ¢2 for the sig- 
nal and idler beams, respectively. The quantities Xt,z(g?), 
YL2(g?) are special cases of X1,2 (0 ,  ¢1,2) when q51,2 = 0 
and re/2, respectively, where the phase reference for these 
choices is specified by our choice of phase for n (real). A 
derivation similar to that for (27a-d) leads to the spectra 
S1,2( O, ¢1,2), T_1,2(O, ¢1,2), and V1~(O , ¢1, ¢2) which are as- 
sociated with XI,2(~, ¢1,2) (quadrature-phase amplitudes for 
+45 ° modes), X1,2(O, ¢1,2) (quadrature-phase amplitudes 
for signal and idler modes), and XI(O, ~bl) - AX2(O, ¢2) 
(correlation of signal and idler amplitudes), respectively. 
These quantities are given by 

$1,2(0, ¢1,2) 

2(1 - L)t~-,/[t~ 2 q- (Q + ,.,/)2 q_ 0 2] 
= &(g2)  + 

I M ?  

× (1 4- COS2¢1,2), 

Tl(g?, ~bl) = T2(O, ¢2) = Gq(O), 

(29a) 

(29b) 

and 

([X1(O,  ¢1) - ~X2(g?, ¢2)] [X1(O' ,  ¢1) - ~X2(g?',  ¢2)]> 

- 5 ( 0  + g? ' )v~(n ,  ¢1, ¢2), 

where 

gl~2( g?, ¢1, ¢2) 

= v 2 ( o )  

8(1 -- L)2t~2'T2[/g 2 q- (7 -t- c0)2/4 q- f2212/]m[4 
+ 

1 + 2(1 -- L)2/g2'~(,y -~ 0)/[m[ 2 

X [1 -- COS(¢ 1 -{- ¢2)]-  (29c) 
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It can be easily seen that 

S1(~'2, 0) = $2(~'~, 7r/2) = S+(f2),  (30a) 

Sl(J'2 , 71-/2) = S2(f2, 0) = S_(f2) ,  (30b) 

o, o) = v ) ( o )  = 

= V1~2(f2, -7r /2 ,  7c/2). (30c) 

In (29c, 30c), A is chosen such that Vff(f2) are minimized. 
For subsequent comparison with the experimental data, 

we need to relate the quantities 7, O and f2, t¢ to measured 
quantifies. Let us rewrite (27a-d) in terms of the following 
variables: 

e --= 2~ / (0  + ~) co =-- - - ,  
O + 9' (31) 

Loverall ~ 1 - (1 - L) 7 . 

Then (27a-d) become: 

S_($2) = 1 - 

S+(~ )  = 1 - 

4(1 - Lowran)e 
(32a) 

c o 2 + ( l + e )  2 ' 

4(1 - Loveran)e  
(32b) 

co2 + (1 - E) 2 ' 

8(1 - Loverall)e2/-/17/2 , (32c) Gq(~)  = l + 

V~(~'2) = 1 + 16LoverallC2(1 - LoveraU)/J~ f2 
1 + 8(1 - L ov e ra l l )E 2 / J~  2 ' (32d) 

with 217/2 = (w2_ 1 + e2) 2 + 4 w  2. Now (31) can be expressed 
in terms of readily accessable experimental quantities as fol- 
lows: 

/ co = (~2/27r) 2Fro 
UFSR ' (33) 

Loverall = 1 - (1 - L) Fm 

where P is the green pump power with Pth as the threshold 
value. Fro, Ft are the finesses of the NOPA cavity with and 
without internal losses. Fm can be directly measured and 
Ft is calculated from the known transmission of the out- 
put coupling mirror M1. ~SR is the free spectral range of 
the cavity. The quantities in (32a-d) are exactly the objects 
of our experimental investigation, which we will discuss in 
Sect. 3. 

2 EPR Paradox and the NOPA 

As pointed out by Reid and Drummond [20] and by Reid 
[21], the correlations between the quadrature-phase ampli- 
tudes of  the spatially separated signal and idler beams re- 
semble the original correlations discussed by EPR. Indeed, 
if we go back to (22), we find that the two quadrature-phase 
amplitudes of  mode 1 are identical to those of  the mode 
2 (with the exception of a sign) under some limiting case. 
The relationship between the correlations in the NOPA and 
in the original EPR paper can be best analyzed by compar- 
ing their wavefunctions or equivalently their Wigner phase- 

space functions [35, 36]. With the Wigner functions, we can 
also address the question of possible local hidden-variable 
descriptions for these systems. 

Towards this end, let us consider the lossless case of 
NOPA in (13, 15). For the purpose of illustration, we set 

= 0 and find from (15, 16), that 

D1 = G/) I  + 9/)~, D2 = G/)2 - 9/)~, (34) 

where 

G -  G(0) -- c o s h r ,  

g -=- 9(0) = sinh r ,  

with r _> 0, and 

t ?1 ,2  - N i ) 2 ( 0 )  • 

For the transformation given in (34), it can be shown that 
the Wigner function for the modes D1, 1)2 is connected to 
that of  modes B1, Be by the following simple relations: 

WD1 (£cl, Yi) = W &  (e-~N1, e rg l ) ,  
(35) 

WD2(:~2,/J2) = W/)2(erff:2, e - ry2) ,  

where we can write the Wigner functions for D1 and D2 
separately because they are independent of  each other (17). 
Note that if /)1,2 (or equivalently Bii!2) are vacuum-state 
fields, then W&(~i, ~i) (i = 1,2) has die simple form 

2 
Wvac(X,  y) = - -exp[-2(x  2 + y2)], (36) 

71" 

where the variables (x,y) = (xi,yi) with i = 1,2. The 
Wigner function for the whole system is then simply the 
product of  the Wigner functions of  the two modes D1, D2, 
which with (36) becomes 

W / )  1 ,D2(Xl ,  Yl;  x2 ,  Y2) 

= W / )  1 (Xl ,  y l ) W D 2 ( a 7 2 ,  92)  

= _ _  -2  -2 2r  4 exp{-2(~?~ + z3~)e -2~ - 2(x 2 + Yl)e } (37) 
71. 2 

Transferring the above Wigner function for the modes D1, 
D2 to that for the modes D1, D2 by using (16), we thus 
have the Wigner function for the signal (D1) and idler (D2) 
modes of the NOPA: 

WD1 ,D2 (Xl, Yl; X2, Y2) 

4 
= 7r--- ~ exp{--[(Xl + Z2) 2 "-1- (Yl -- y2)2] e-2r 

- -  [ (Xl  - -  232) 2 "1- (Yl -t- y 2 ) 2 ] e 2 r }  , 

--~ C S ( X l  - x 2 ) • ( y l  + Y2) a s  r --~ o o .  (38) 

The wavefunction of the system for g2 = 0 can be easily 
derived from this Wigner function as follows: 

I•(a71, x2)l 2 

J WDI,D2(Xl, Yl;  X2, y2)dyl dy2 

= ( 2 / v ~ ) e  - r  e x p [ - ( x l  + z 2 ) 2 e  - 2 r  - ( Z l  - x 2 ) 2 e 2 r ]  , 

C'8(xl -x2)  as r ~ oc ,  (39a) 
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or alternatively, 

I~(yl, Y2)] 2 

= f WD 1,D2(xl, yl;  x2, y2)dxldX2 

= (2/x/~)e -~ exp[ - (y l  - y2)2e -2r - (Yl q- y2)2e2r] , 

CtfS(Yl q- Y2) as r ~ oc. (39b) 

Here the constants C and C'  are the normalization constants 
for the Wigner function and wavefunction, respectively. 

As is well-known in the quantum theory of light, each 
mode of the light field is analogous to a (mechanical) har- 
monic oscillator, where the position x and momentum p of 
the oscillator are associated with quadrature-phase ampli- 
tudes X and Y of the field mode, as can be justified by the 
commutation relation [X, Y] = 2i. Therefore, in the limiting 
case of r --+ oo, both the Wigner function in (38) and the 
wavefunctions in (39a, b) for the system of the NOPA have 
a one-to-one correspondence with the Wigner function and 
wave functions in the original gedanken experiment of EPR 
[36]. 

Since the limiting case r --+ oc corresponds to the situa- 
tion of infinite gain, it is clear that in order to demonstrate 
experimentally the EPR paradox for the system of the NOPA, 
we need to formulate a somewhat different approach than 
that given above. We will proceed along the lines suggested 
by Reid [21]. First of all, recall that for the system discussed 
by EPR [22], two spatially separated particles have their po- 
sitions and momenta correlated with each other so that "with- 
out disturbance" of particle 1, a measurement of the position 
Z 2 of particle 2 can be used to infer (with probability 1) a 
value for the position Xl of particle 1 and likewise for the 
momenta. Thus with their definition of physical reality, EPR 
claimed that the position and momentum of particle 1 are re- 
alistic physical quantities independent of any observers and 
have definite prescribed values. But this obviously is in con- 
tradiction with the Heisenberg uncertainty principle; hence 
a paradox arises. In a practical system such as the NOPA, 
however, the parametric gain is of course finite and losses 
are also present resulting in imperfect correlations between 
the signal and idler beams. As well our measurements of 
the quadrature-phase amplitudes are not perfect. Thus the 
inferences at a distance cannot be made with probability 1 
but only with some nonzero errors specified by AinfX and 
AmfY for X1 and Y1, respectively. Fortunately, this non- 
ideal circumstance does not prevent us from demonstrating 
the EPR paradox because the paradox is ultimately about the 
quantitative precision of inference for the quadrature-phase 
amplitudes of the signal beam (X1, Y1) from measurements 
on those of the spatially separated idler beam°(X2, Y2). This 
inference need only be such that the product of uncertain- 
ties is below the (apparent) bound set by the uncertainty 
principle. Hence we can still proceed with a modified form 
of EPR's argument as follows [21]. A spatially separated 
measurement of X2 will specify a value for X1 not with 
probability 1 but with average error Ai~fX; therefore we 
can establish a value for XI to within an error AinfX. Sim- 
ilarly, Y1 can be determined to within an error AinfY. From 
quantum theory, X1 and Y~ are noncommuting canonical ob- 
servables and their variances should satisfy the Heisenberg 
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uncertainty relation A X 2 A y  2 _> 1. A paradox in the sense 
of EPR exists if we can determine the inference errors n i n f X  

and AinfY so that AinfXAinfY < 1. For our particular case, 
the error Ai,fX in the inference of XI from a measurement 
of X2 is given by the variance V_ = {(XI - X2) 2) and 
similarly for I(1,2 with V+ = ((Y1 + Y2)a)- However, as was 
discussed in (25, 26) of Sect. 1, the quantities (AX2, -)~Y2) 
are better estimators of (X1,111) since V~ _< V~ because of 
the limited (non-ideal) degree of correlation. 

If we limit our discussion to the system of NOPA with 
vacuum input, the whole argument given in the previous 
paragraph can be equivalently formulated in terms of condi- 
tional variances [39]. To see this, note that the output fields 
of the NOPA are described by a Gaussian distribution (38); 
therefore the variance of X1 given the value of X2 or the 
conditional variance V(Xx ] X2) can be written as (Eq. (9) 
of [39]) 

V(X~  I X2)  = Vx~(l  - C2~x2) 

= VXl -- (XlX2)2/Vx2,  (40) 

where C 2 NiX2 -~ ] ( X I X 2 ) -  (XI) (X2)I2/Vx1Vx2 and we 

have used the fact that (X1) = (X2) = 0 (Vxl - (AXe) ,  
Vx2 =- ( A X  2) are the ordinary unconditional variances). But 
from (4.4) of [21] the rhs of (40) is just V x _= ((X1 -AX2)  2) 
with A optimized. Hence 

V ( X  1 I X 2 )  = V_ A , (41a) 

and likewise 

V(Y1 I Y2) = V+ x. (41b) 

Thus with the conditional variances V(X1 I X2), V(Y1 I ]12), 
we can arrive at the same results as we did with the in- 
ference errors AtnfX and AinfY. Only this time, the dis- 
cussion leading to the paradox is more direct because in 
EPR's original argument, the existence of the realistic ob- 
ject X1 is determined from the measured value of X2 in 
the sense of a conditional distribution. We should note that 
in quantum mechanics there is in fact no conflict between 
the inequalities A X ] A Y  ( >_ 1 and V ( X  1 ] X2)V(Y1 I Y2) = 
Ai2nfXAi2nfY < 1 since the first inequality refers to uncondi- 
tional and independent measurements of X1 and Y1, while 
the second inequality refers to the conditional measurement 
of X1 given 322 and likewise for (II1, -Y2). The absence of 
an unresolvable paradox for our system as well as for the 
historical system of EPR will be discussed more fully in 
Sect. 4. 

In our experiment, the quadrature-phase amplitudes 
Xl(qS1) and X2(~2 ) of the signal and idler beams are mea- 
sured with two homodyne detection schemes (Sect. 3 and 
Fig. 3b). The photocurrent i2(t) associated with the idler 
beam is attenuated by a factor ), and then subtracted from 
the photocurrent/fit)  associated with the signal beam. The 
combined photocurrent i_ (t) = i l(t) - Ai2(t), which reflects 
the fluctuations of the quantity Xl(t ,  ¢1) - AX2(t, ¢2), is 
then sent to a spectral analyzer (SA). The spectral analyzer 
gives the power spectrum ~(Y2, q51, ¢2) for the current i_(t) 
at a particular analysis frequency Y2; this spectrum is pro- 
portional to the quantities VI~(Y2 , ¢1, q52) calculated in the 
preceding section. By using the shot noise level OOs as ref- 
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erence (where #Os is the spectral density for a vacuum-state 
signal beam at the balanced detector H1 with A = 0), we 
can measure V~(O, 051, ~b2) = #(O, ~bl, ~b2)/gr0s and make a 
comparison with the result in (29c). As for the measurement 
of the inference errors A in fS  , AinfY , and the EPR para- 
dox, we will see in the following discussion how the EPR 
paradox can be formulated in terms of the spectral densities 
V1X2( O, q~l, q~2), where now we are dealing with the spectral 
components X1,2(O) and YL2(O) defined in (14). Notice that 
in the experiment, we measure the inference errors AinfX , 
Amfy but not the conditional variances V(X1 I X2) and 
V(Y~ ] Y2), although they should be the same for our sys- 
tem (41). 

From (25), it is clear that V~(O) are associated with the 
degree of correlation of the quantities XI,2(O), Ya,2(O) and 
hence with the error of inference in determining [XI(O), 
Yi(O)] from [X2(O),-Y2(O)]. However, X1,2(O ) and 
YI,2U2) are not Hermitian operators and therefore are not di- 
rectly observable. Consider instead the following two pairs 
of Hermitian observables for the NOPA system [21]: 

Re*X1,2(O) = [X1,2(O) -4- X ~ , 2 ( O ) ] / V ~  , 
(42a) 

Re*YL2(O) = [Y1,2(O) + Yl*,2(f~)J/~v/~, 

and the corresponding imaginary parts, 

Im*X1,2(O) -= [XL2(O) - X~,2(O)]/v~i , 
(42b) 

lm*Y1,2(O) ~ [Y1,2(Q) - Ylt,2(O)]/v/2i, 

with X1,2(O) and Y1,2(O) given in (14). Obviously 
Re*X1,2(O) = Re*X1,2(-O), etc., so that we can limit 
our discussion to O > 0. With the commutation relations 
[D1,2(O), D~,2(O')] = ~5(O - OI), we can easily prove from 
(14, 42) that 

[Re*X1,2(O), Re*Y1,2(O')] = 2i~(O -- or),  

[Im*X1,2(O), Im*YL2(O')] = 2i6(O - / 2 ' ) ,  
with all other commutators equal to zero. The Heisenberg 
uncertainty relations for the observables Re*X1,2, etc. can 
then be formulated as follows 

ReX ReY ~} 
$1, 2 (O)S1, 2 (O)  ___~ 1 (43a) 
s I m X ( o x ~ I m Y g o  "~ > 1 

1,2 ) 1,2 ~, ] -- 
where for stationary processes, the spectra S~,~2x(o), etc. are 
defined by 

(Re*XI,z(O)Re*XL2(O')) = s ~ x ( n ) 6 ( O  - n ' )  (44) 

and similarly for the other quantities. From (44), it is ob- 
vious that S~,~2x(o), etc. characterize the fluctuations of 
Re*XI,2(O), etc. and are associated with the variances 
A 2 Re*XI;z(Q) ----= sRI,e2X(o), etc. for Re*XI,2(~), etc. The 
Heisenberg uncertainty relation for Re*X1,2(O), Re*Y1,2(O) 
can be written as 

A 2 Re*X1,2(O)A 2 Re*YL2(O) _> 1. (43b) 

Let us now form the correlation quantities 

Re A ( O )  = Re*XI(O) - A Re*X2(O), 

Re A+(O) = Re*YI(O) + ),Re*Y2(O), 
(45) 

Im A_(O) = Im*XI(O) - A Im*X2(O), 

Im A+(O) = Im*YI(O) + AIm*Y2(O), 

where we have for their spectra (as in (44)), 

{Re A±(O) Re A+(O')) = v g e ( o ) ~ ( O  -- Or) ,  
(46) 

(Im A±(f2) Im A±(O')) -- vIm(o)~(O - O'), 

With the above equations, we can rewrite the left-hand-side 
of (25) as 

( [ X I ( O )  - / ~ X 2 ( O ) ]  [ X I ( O ' )  - ~X2(O ' ) ] )  

= A~nfX(O)~(O + O') 

= < [ x 1 ( o )  - ~ x 2 ( o ) ]  [ x ~ ( - o ' )  - ; ~ x ~ ( - o ' ) l )  

1 ([Re/X_(O) + i lmA_(O)] 
2 
x [Re A ( -O ' )  - i Im A_ (--O')]) 

1 [ v R e ( n )  27 v i m ( n ) ] 6 (  n -4- n t) 
2 

= v3e(n)~(n + n'), (47) 

where the final step follows since vRe(o) = v.Im(o) for 
stationary processes. Comparing (25) and (47), we have 

v_Re(o) = v i m ( o )  : V_A(O) : A2nfX(O ) . (48a) 

Similarly 

vRe(o) = v+Im(o) = V+~(O) = AienfY(O). (48b) 

Therefore, in the inference of Re*XI(O)[Re*YI(O)] from 
A Re*X2(O) [-ARe*Y2(O)], the inference error is vRe(o) 

= A2nfX(O)[VRe(o) = A2nfY(O)] because of (48a) 
[(48b)]. Thus there exists an EPR paradox if 

v_Re(o)v+Re(o) < 1 (49a) 

or 

A2nfX(O)A2nfY(O ) < 1 (49b) 

in apparent contradiction with the uncertainty relations in 
(43a, b). A similar discussion can be applied to Im*X1,2(O) 
and Im*Y1,2(O). Note that V~(O) are strictly associated 
with X1,2(O) = (Re*X1,2 + ilm*X1,2)/v~ and Y1,2(O) = 
(Re*Y1,2 + ilm*Y1,2)/v'~ so that our measurements of 
V~(Q) (without coherent detection of the individual quadra- 
tures at O) are actually measurements of v~e(o) + vim(o) 
rather than v~e(o) or vim(Q) alone. But with the reason- 
able assumption of stationarity, the results of (48, 49) follow. 
Thus the measurement of V~(O) [and hence of A2nfX(O) 
and A2nfY(O)] is sufficient to give v~e(O) or v,Im(o) and 
to demonstrate the EPR paradox if the condition in (49a, b) 
can be achieved [21]. 

3 Experimental Configuration 

For our experiment, we have constructed a nondegenerate 
optical parametric oscillator with the signal (mode 1) and 
idler (mode 2) beams generated as the output modes (b~ °/, 
b (°)) shown in Fig. 2. The pump strength is controlled such 2 
that the oscillator is always operated below threshold. As 
discussed in Sect. 1, such a device can be viewed as a non- 
degenerate optical parametric amplifier (NOPA) with the 



Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables 273 

gain determined by the pump strength and with a band- 
width limited by the cavity linewidth (which is typically 
much smaller than the phase matching bandwidth of the non- 
linear medium). Nondegeneracy is realized in our work via 
a Type II parametric process where the two down-converted 
modes (signal and idler) have orthogonal polarization. A 
more detailed diagram of the experimental arrangement is 
shown in Fig. 3. The NOPA consists of a folded ring cavity 
of total length 38 cm with two curved mirrors (M3, M4) of 
10 cm radius of curvature and two flat mirrors (M1, M2). 
Three of the mirrors (M2, M3, M4) have high reflectivity 
(99.98%) at 1.08 gm and relatively high transmission (94- 
96%) at 0.54 gin. M1 is the output coupler for the subhar- 
monic field at 1.08 gm with a transmission coefficient of 3%. 
The nonlinear medium is placed between the two curved 
mirrors where the small waist of the cavity is located (ap- 
proximate waist size cOo = 60 ~tm). 

The crystal for the down-conversion process is a 3 x 
3 x 10 mm 3, a-cut potassium titanyl phosphate (KTP) crystal 
with two faces dual-band antireflection coated to minimize 
the loss at 1.08 gm and 0.54 gm. The two modes (signal and 
idler) are polarized along the b and c axes of the crystal, 
respectively. Type II noncritical phase matching at 1.08 gm 
is achieved at a temperature of 63°C with a full width of 
about 30 ° C [40, 41]. Because of the nature of Type II pro- 
cesses, both the b- and c-polarized beams are not usually 
simultaneously resonant for a given cavity length. However, 
the b- and c-polarized beams have different temperature de- 
pendences for their indices of refraction inside the crystal, 
so that by fine tuning of the crystal temperature, we can 
reach the condition of simultaneous resonance for the signal 
and idler fields (al, a2). For our arrangement, the temper- 
ature tolerance to maintain the dual resonance condition is 
about 20mK and the separation between two consecutive 
overlapping resonances of the b- and c-polarized beams is 
about 10 ° C. An active stabilization circuit is used in order 
to fix the crystal temperature to a few mK. 

We employ the well-known Pound-Drever rf sideband 
technique [42] to lock the NOPA cavity onto resonance for 
the signal mode (b-polarization) with the help of an auxil- 
iary beam that is counter-propagating relative to the down- 
converted beams (modes 1, 2) from the pump field (beam el 
and detector D2 in Fig. 3a). Such a beam does not adversely 
affect the system performance as long as the backscattering 
is small (in our case < 10-4).  Once the signal mode (aD is 
locked on resonance, an adjustment of the temperature of the 
crystal brings the orthogonal idler mode (a2) into resonance. 

The NOPA cavity is pumped at 0.54gm with a beam 
polarized along the b-axis that is coupled into the cavity 
through mirror M4, which has a transmission coefficient of 
96% at 0.54 ~tm. The green pump power is built up in an 
independent cavity formed by the high reflector mirrors M5 
through M8 and the input coupler W (a window with an an- 
tireflection coating on one side). The green build-up cavity is 
also locked on resonance with the Pound-Drever technique 
by detector D3. Due to the reflection losses of the mirrors 
M3 and M4 at 0.54 gm, this cavity has a modest build up of 
about 5 times. We have chosen this design of two indepen- 
dent cavities for 1.08 gm and 0.54 ~tm to avoid the technical 
problems that we have previously encountered in triply res- 
onant cavities [4]. The injected green pump power before 
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Fig. 3. a Experimental schematic of the NOPA and the laser system. 
b Diagram of the dual balanced homodyne detectors (HI, H2), showing 
the photocurrents il, i2 and i_ that correspond to k~ 1 (~~, 41), ~2( ~,  42) 
and ~(/2, 41,42) 

build-up can be varied from 10mW up to about 90mW. 
The injected green power for the threshold of the NOPA is 
approximately Pth = 150 roW. 

The field at 0.54gm is itself generated by intracavity 
harmonic conversion in a frequency stabilized, TEM00 
Nd : YA103 laser. As shown in Fig. 3a, the laser is a ring cav- 
ity containing an a-cut 2 x 2 x 6.8 mm 3 KTP crystal located 
between two lenses with 5 cm focal length for intracavity 
frequency doubling. The laser frequency is locked to an ex- 
ternal cavity with the Pound-Drever sideband technique by 
detector D1 and its rrns linewidth is approximately 50kHz. 
The fundamental beam at 1.08 gm transmitted through the 
laser locking cavity (which also acts as a filter cavity for the 
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spatial mode of the beam) is intensity-stabilized and then 
split into two beams to serve as local oscillators for the bal- 
anced homodyne detectors (H 1, H2). Fractions of the funda- 
mental beam are used to lock the NOPA cavity (c1) with an 
error signal derived at detector D2 and to provide a probe 
beam (~2) for the NOPA. 

To quantify the operating parameters for the NOPA, we 
inject an intense probe beam (~2) at the fundamental fre- 
quency into the cavity via the input coupler M I with the 
cavity used as a frequency doubler without green pump. In 
this way, we can make quantitative measurements of the con- 
version efficiency of the crystal and the linear losses of the 
cavity [41]. The generated green light also helps us to align 
the green build-up cavity and to mode-match it to the NOPA 
cavity. We then measure the classical gain of the amplifier by 
turning on the green pump and injecting a weak probe beam 
c 2 with various polarizations through the input coupler M1. 
When the injected beam has the same polarization as either 
the signal or idler beams, we observe phase-insensitive gain 
for the beam through mirror M2. When the injected beam is 
polarized at +45 ° relative to the b-axis, we observe phase- 
sensitive gain that is the same for both 4-45 ° polarizations. 
By way of these tests, we have concluded that our system 
behaves as an NOPA with two independent signal and idler 
modes (b and c axes). 

Beyond the generation scheme, a detailed diagram of the 
detection system is drawn in Fig. 3b. The output beams from 
the NOPA are separated with a low loss polarization beam- 
splitter (P). Each beam is then combined with a local oscil- 
lator by a 50:50 beam splitter to form a balanced homo- 
dyne detection scheme [43]. We denote LO1 and LO2 as the 
local oscillators corresponding to the homodyne detection 
schemes (HI, H2). The photocurrents il(t), i2(t) from (H1, 
H2) are sent either directly to a spectrum analyzer for mea- 
surements of their spectral densities or to a hybrid junction 
with a phase shift of 180 °, where i2(t) passes first through an 
attenuator ),. The spectral density of the combined current 
i_(t) = il(t) - Ai2(t) can then also be measured. 

The spectral densities of the photocurrents il (t), i2(t), and 
i_(t) recorded by the spectrum analyzer are given by 

gq(~) = f (Ail(t)Ail(t + r))eiardr, 

~2((2) = . f  ( Ai2(t)Ai2(t + 7))eiS2rd7, (50) 

~((2) = f (Ai_(t)Ai_(t + T))eiS~rd7, 

where Y2 is the analysis frequency of the spectral analyzer; 
[2/27r = 1.1 MHz for all data reported here. If  we denote ¢1 
as the phase difference between LOa and the signal beam, 
and ¢2 as the phase difference between LO2 and the idler 
beams, then the photocurrents il, i2 reflect the fluctuations 
of the quadrature-phase amplitudes (as in (28)) 

Zl(t, ¢1) ~- Ol(t)e -i¢1 H-O~(t)e i¢1 , 

a2(t ,  q52) ~ O2(t)e -i¢2 -~ O~(t)e i¢2 , 

where 01,2 = (D{°,)2 or ~1,2,75(°)~ and Z1,2 = (21,2 or -'~1,2). 
Thus, depending on the arrangement of the half waveplate 
which directs the fields to H1, H2 and upon the phase set- 

tings of the fields, we can measure the vaious noise spectra 
that were derived in Sect. 1. 

The local oscillator beam originates from the laser at 
the fundamental frequency. It passes through a spatial mode 
cleaning cavity (which also serves as the laser locking cav- 
ity) and then is divided into LO1 and LO2 by a 50:50 beam 
splitter. The phases ¢1, ¢2 of the local oscillators LO1 and 
LO2 can be varied by scanning the steering mirrors M9 (00), 
M10 (0D, which are mounted on piezoelectric transducers. 
The intensities of the local oscillators are actively stabilized 
(to about 1%) with a servo based upon a combination of an 
electrooptic modulator and a polarizer. 

We have used a procedure similar to that described in 
[lb] to test our homodyne detection scheme. The balancing 
and calibration of the homodyne detectors are done by fine 
adjustment of the electronic gains and relative phases of the 
detectors through their shot-noise levels and with external 
coherent amplitude modulation. The excess amplitude noise 
of the two local oscillator beams above the shot-noise level is 
measured to be less than 0.2 dB and is suppressed in the bal- 
anced homodyne detection schemes by about 30 dB. Overall, 
the shot-noise level at the analyzing frequency is determined 
to within ±0.1 dB and is principally limited by small drifts of 
the radio frequency £2, which have a disproportionate effect 
due to the resonant nature of the detection electronics. Our 
detectors give a shot-noise level 25 dB above the electronic 
noise floor for a local oscillator power of 1 mW [44]. 

3.1 Measurements of Squeezing 

To investigate the quantum noise of the system, we start by 
measuring the spectra of squeezing for the modes 15(°) by ~1,2 
projecting the signal and idler fields along polarization di- 
rections at -4-45 ° relative to the signal polarization [2]. This 
is easily done by changing the setting of the half wave- 
plate (,V2) placed at the NOPA output. Individual spectra 
of squeezing can then be determined with the two balanced 
detectors (H1, H2) from the spectral densities ~1,2 of pho- 
tocurrent fluctuations for/1,2. By scanning the overall local 
oscillator phase 00, we observe noise variations above and 
below the vacuum-state levels from which k~_ (£2) (maximum 
noise reduction) and ~+(/2) (maximum noise enhancement) 
can be determined. Figure 4 shows a trace for the squeezing 
at detector H1, where the shot-noise level is denoted by gt01. 
ko_(f2) and ~+(f2) are measured from a number of traces as 
in Fig. 4 for five different green pump powers of the NOPA 
over a range from 10 to 90mW and are used to derive the 
overall loss as well as the quantum noise gain of the system. 
By considering that this system should produce a minimum 
uncertainty state under the condition of no loss [1, 37], we 
are able to determine that the overall loss is 0.37. This result 
is comparable to the measured overall loss of Lover~ll = 0.31 
derived from measurements of the individual losses for the 
system. From (31) we have 

Loveral 1 = 1 - ~ T0??zct; (51) 
Q+3 '  

where (1 - L) =- Torlec~, with the individual efficiencies 
given as follows. 
- Cavity escape efficiency 7/(6  + 3') = 90% (we suspect 
that the uncertainty in the measurement of this quantity con- 
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Fig. 4. Phase dependence of the quantum noise kv~ in a squeezed state 
produced from the projection of the signal and idler fields from the 
NOPA along a direction at 45 ° relative to the signal beam polariza- 
tion. gt01 is the vacuum-state noise level. Analysis frequency f2/27r = 
1.1 MHz, resolution bandwidth= 100 kHz, video bandwidth=2.2 kHz, 
scan t ime=100  ms 
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Fig. 5. Logarithm of the observed noise levels ~P+ (maximum) and ~P_ 
(minimum) versus the quantum noise gain Gq for a squeezed beam 
from the NOPA. Analyzer settings are the same as in Fig. 4, and ~01 
is the vacuum-noise level. The theoretical fit shown as a solid line is 
derived from (32), with L o v e r a i  1 = 0.37 

tributes to most of the discrepancy between the derived and 
directly measured overall losses); 
- Propagation efficiency To (mainly from the polarizer P)  = 
95%; 
- Homodyne efficiency ~7 = 95% for H1 and 96% for H2; 
- Detector quantum efficiency a = 90% for H1 and 80% 
for H2. 

In Fig. 5, we show the measured maximum kP+ and min- 
imum g t  noise levels vs the quantum noise gain Gq for five 
different pump powers of the NOPA. The quantum noise 
gain Gq(f2) is derived from Ok(D) with the following defi- 
nition: 

Gq(~) = [k~_(O) + gt+(Q)l/2k~01(O), (52) 

where we have used (27a-c) with S:~ = g'±/~01. The solid 
curves are drawn according to (32a-d) in Sect. 1, where the 
overall loss Lowran is chosen to be 0.37 and the normalized 
analysis frequency co is derived to be 0.56 from (33) with 
measured finesse F m =  180, analysis frequency S2/27r = 
1.1 MHz and cavity free spectral range UFSR = 790MHz. 
The relatively good agreement between the measured and 
calculated spectra establishes some confidence in the perfor- 
mance of our system as a simple NOPA describable by the 
theory of Sect. 1 and provides as well the number of 37% 
for the overall loss of the system. 
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Fig. 6. Measurement of the phase-dependent correlation #ax2(f2, qgl, 4)2) 
between the signal and idler beams from the NOPA as a function of 
overall LO phase 0o, where (i) represents the shot-noise level of signal 
beam alone (~0s); (ii) is the phase-insensitive noise of signal beam 
from the NOPA (Gq); (iii) is the phase sensitive noise #~2(J2, ~l ,  Sz) 
with the attenuation factor ), = 0.78; (iv) is the shot-noise level for the 
photocurrent i_ = il  - Ai2 (corresponding to XI - AX2). Acquisition 
parameters are the same as in Fig. 4 with a smoothing algorithm applied 
to the traces for clarification 

3.2 Measurements of EPR Correlations 

Having investigated squeezed state generation in the +45 ° 
modes, we next project back the original directions of po- 
larizations for the signal and idler fields with an adjustment 
of the half waveplate after the NOPA. The signal and idler 
beams are then directed to the two spatially separated ho- 
modyne detectors (H1, H2), where the correlations between 
the quadrature-phase amplitudes of these two beams can be 
studied by measuring the spectral density ~(f2, ~bl, ~2) for 
the current i_(t) (Fig. 3b). 

As illustrated in Fig. 6, a phase-sensitive variation of 
~(f2,~bl, q~2) is observed as the phase 00 is scanned (note 
that ~bl = 00 + 6001 and ~b2 = 00 + 60o2 with 6001,02 as arbi- 
trary offsets). When the phase q~l + ~2 = 2pTr (io =integer), 
~($2, ~bl, q52) corresponds to V~(X2) (29c), where the attenua- 
tion factor A is adjusted to minimize the value of V~(g)). On 
the other hand, if A = 0 we examine the quadrature-phase 
amplitudes of the signal beam alone. In this case, we observe 
large phase-insensitive quantum noise which results from the 
amplification of the vacuum-noise input to the NOPA. From 
the level of this noise (relative to the vacuum-noise level), 
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Fig. 7. Spectral density of the photocurrent fluctuations ~)2(f2, ~b~, ~ 2 )  

vs time where first the variance Aznfx(f2) and then the variance 
Ai2nfY(g2) are measured as the phases 00 and 01 of the local oscillators 
LO~ and LO2 are stepped according to the discussion in the text. Two 
separated measurements for the pair (A~fX, Ai2nfY ) are shown. ~P0s is 
the vacuum-state level for the signal beam alone. Analysis frequency 
(2/27r = l. 1 MHz, rf bandwidth= 100 kHz, video bandwidth=0.2 kHz 

we can find the phase-insensitive quantum noise gain Gq(f2). 
Under the same conditions (A = 0), when we block the in- 
put to the homodyne detector HI ,  ~(I2, 41,42) = kV0s gives 
the vacuum-noise level of mode 1 (signal) alone, which cor- 
responds to unity in the right-hand-side of  the inequalities 
(43, 49). A typical set of  such measurements is displayed 
in Fig. 6 for a pump intensity of  about 90 mW. Trace (i) is 
the shot noise level ~P0s of the signal beam alone; trace (ii) 
is the amplified phase-insensitive quantum noise of  the sig- 
nal beam (Gq); trace (iii) shows the phase-sensitive quantum 
noise ~ as 00 is scanned, where A has been optimized to be 
0.78; trace (iv) corresponds to the shot-noise level for the 
combination X1 - AX2, which is a factor of  1 + A 2 higher 
than the level of  unity for the shot-noise level of  the signal 
beam alone. From these traces, we see that the noise spec- 
trum of the signal beam alone (ii) is phase-insensitive and 
has an excess noise about 5.5 dB above the vacuum-state 
or shot-noise level gt0s (i); thus the quantum noise gain Gq 
is determined to be 3.8. Note that the phase-sensitive noise 
~ ( ~ ,  41,42) (iii) for some value of phases 0 0 (41,42) is below 
both the shot-noise levels of  the signal beam alone (i) and 
of the combination X1 - AX2 (iv) by about 0.8 dB and 3 dB, 
respectively. This means a demonstration of the EPR para- 
dox is possible (as determined by the level of trace (i)) and 
the Cauchy-Schwartz inequality for classical wave theory is 
violated (as determined by the level of  trace (iv)). 

To quantify more carefully the deviations of  ~(g2, 41 °, 4 °) 
below the vacuum-state level ~Os of the signal beam alone 
and thus to demonstrate the EPR paradox, we stop the scan 
of 00 and manually tune 00 to a minimum value of ~(~2, 

(,~0 ,a0) (again with A 41, 42) with corresponding phases ~1, v'2 
chosen at its optimum value). This minimum value of ~(~2) 
as compared to the shot-noise level ~P0s of the signal beam 
alone gives the quantity V_~(S?) [or equivalently I/'Re(D) and 
k~m(D) from (48a) (see the discussion in Sect. 2)]. Hence 
the inference error A~fX(S?) ~ ( ( X l  - AN2) 2) is deter- 
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mined experimentally to be Ai2nfX(f2) = ~(f2, 4 °, 4°)/g'0s, 
where we have arbitrarily chosen X1(4 °) as X1 and X2(4 °) 
as X2. After recording ~(f2, 4 o ,~0) for a period of about 1~ ' /"2 

200 ms, we then switch the phases 00 and 01 shown in Fig. 3b 
so that 00 ~ 00 + 90 ° , 0i -+ 01 + 180 ° . This results in 
4 ° --, 4 ° + 27o °, 4 ° ~ 4 ° + 9o ° and therefore Xl(4°t) 
21(40 + 270 °) - -Y~ and X2(42 °) ~ X2(42 ° + 90 °) -- I(2, 
where Y1,2 are the conjugate quadratures of XI,2. Hence the 
conjugate inference error Ai2nfY(f2 ) ~ ((Y1 + AY2) 2) is deter- 
mined experimentally to be ~(f2, 4 o + 270 °, 4 o + 90°)/~P0s. 
Since ~(g2, 41,42) depends only on cos(41 + 42) (29c), the 
change 4o+42 o ~ 4°+42°+360 ° should not alter the value of 
~($2, 4 °, 4°). In Fig. 7, we show that this is indeed approx- 
imately the case; the solid line in the figure shows two sep- 
arate measurements of  the pair A2nfX(f2 ), A2nfY(f2 ) (with 
about 30 s between them). Note that the phase steps in 0o, 01 
are calibrated independently with an interferometer to within 
4 °. The large increases in ~ located at successive phase  
steps are because the transition 4 1  - ] -  4 2  - - +  4 1  - ~  4 2  "~- 3 6 0  ° 

passes through the maximum value of ~i(f2, 41,42) [asso- 
ciated with the fluctuations of e.g., (X1 + AX2)]. By the 
technique illustrated in Fig. 7, we first measure the inference 
error A2nfX(f2 ) followed by the (approximately) conjugate 
inference error A2nfY(f2 ) and hence quantify the errors in 
determining the conjugate pair (X1, Y1) from measurements 
of  the spatially separated quantities (AX2,-AY2). 

In order to demonstrate the EPR paradox, we must of  
course refer our measurements to the value of unity on the 
fight-hand-side of  the inequality in (49a, b), which opera- 
tionally corresponds to the vacuum-noise level gt0s of  the 
signal beam (mode 1) alone. This is done by setting A to 
zero and blocking all beams from the NOPA. Such mea- 
surements are performed both before and after Ai2nfX(f2) 
and A2nfY(f2 ) are recorded, with a typical trace of  this shot 
noise level shown as the dashed curve in Fig. 7. It is clear that 
b o t h  z~2nfX(~) and z~2fY(~) are smaller than the vacuum- 
noise level of  the signal beam alone. In particular, from 
this trace we find that relative to ~P0s, A~fX(f2)  = 0.835 :k 
0.008 [ ( -0 .78  4- 0.04)dB] and A]nfYU2) = 0.837 + 0.008 
[ ( -0 .77  4- 0.04) dB] resulting in a product of  inference vari- 
ances Ai2nfX(D)Ai2nfY(g2) = (0.70 4-0.01) < 1. This clearly 
satisfies the inequality in (49a, b) thus providing a realization 
of the original EPR paradox for continuous variables. 

In addition to the quantities A]nfX(f) ), A2nfY(~ ) and the 
vacuum-noise level ~V0s, we also record the phase-insensitive 
noise of the signal beam (mode 1) from the NOPA relative 
to the vacuum-noise level of the same mode, from which we 
can determine the quantum noise gain Gq. The results for the 
product Ai2nfX(f2)AZnfY(f2 ) derived from measurements as 
in Fig. 7 are plotted against this quantum noise gain Gq(g-2) 
in Fig. 8. The solid theoretical curve drawn in the figure is 
the result of  (32d) of Sect. 1, with the measured normalized 
frequency aJ = 0.56 and loss L o v e r a l l  = 0.37 found from the 
squeezing traces as discussed in Sect. 3.1. Apart from the 
discrepancy between the measured loss (0.31) and the loss 
determined from the squeezing data (0.37), there is otherwise 
no fitting of theory for these data. The statistical uncertainties 
in determining the inference variances are very small for a 
single trace as in Fig. 7; the vertical error bars drawn in Fig. 8 
are mainly determined from trace-to-trace fluctuations of the 
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shot-noise level due to LO intensity fluctuations and drifts 
in the analysis frequency Y2 of the spectral analyzer. The 
horizontal error bars are also derived from our observations 
of trace-to-trace fluctuations of the phase-insensitive noise 
of the signal beam resulting from variations in green pump 
power. We believe that these error bars fairly reflect the true 
uncertainties since the quantities A?mfX(g?), A2nfY(~), the 
phase-insensitive noise of the signal beam, and the vacuum- 
noise level are not simultaneously recorded. Clearly from 
Fig. 8, there is reasonably good agreement between the the- 
ory and the experimental data. 

4 Discussion and Conclusions 

In this paper, we have investigated the quantum noise in 
the output of a nondegenerate optical parametric amplifier 
(NOPA) and have obtained relatively good agreement be- 
tween our measurements and the theory of a narrowband 
NOPA (subthreshold optical parametric oscillator). The 
quantum correlations of the quadrature-phase amplitudes for 
the spatially separated signal and idler beams have led to a 
demonstration of the Einstein-Podolsky-Rosen paradox for 
continuous variables. The observed variances for the infer- 
ence of the optical amplitudes of the signal beam from those 
of the spatially separated idler beam are such that the prod- 
uct of the two inference variances is less than one, which 
is the lower bound from the Heisenberg uncertainty rela- 
tion according to EPR. On the other hand, as Bell and oth- 
ers have pointed out [36], the original system discussed by 
EPR has a perfectly local deterministic description since its 
Wigner function is non-negative. From (38) of Sect. 2, we 
likewise find that the Wigner function is everywhere posi- 
tive for the NOPA. The Wigner function describes the system 
in an extended position-momentum phase space as opposed 
to a wavefunction description in either position or momen- 
tum space. Thus following the discussion by Bell [36], we 
see that the Wigner function for either the original EPR 
gedanken experiment [22] or for the system of the NOPA 
[20, 21] provides a local hidden-variables description which 
resolves the EPR paradox. In this sense, our demonstration 
of the EPR paradox addresses only an apparent nonlocal be- 
havior in a wavefunction description which disappears when 
we pass to the larger phase-space of position and momen- 
tum. In other words, with the aid of the Wigner function, 
we find that the quantum description for the system of the 
NOPA as well as for the system originally discussed by EPR 
is consistent with deterministic local realism. Therefore no 
paradox exists either in our system or in theirs; the local real- 
ism demanded by EPR is not violated in these cases. In more 
explicit terms, the uncertainty relations of (43a, b) applied lo- 
cally to either signal or idler fields are not in conflict with the 
inequality in (49) which refers to cross correlations between 
these fields. This formal statement is succinctly summarized 
by the picture of fluctuating field amplitudes in Fig. lb. 

On the other hand, there of course do exist conflicts be- 
tween a realistic view and quantum theory in many systems 
with discrete variables [27-31]. To explore analogous irre- 
ducible conflicts with continuous variables, we may follow 
the suggestion by Bell [36] and investigate a system with a 
Wigner function having negative values, which offers a nec- 
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2 2 requires AinfXAinfY < 1. The solid curve is the result from (32d) of 
Sect. 1 with normalized frequency w = 0.56 and Loveral I = 0.37 (as in 
the squeezing trace in Fig. 5) 

essary but not sufficient condition for a violation of a locality 
inequality. An example of such a system can be found if we 
go back to (35, 37), where we see that the non-negativeness 
of the Wigner function for our system comes from the as- 
sumed vacuum-state input. If  the input to the system instead 
has a Wigner function with negative values (for example, a 
single-photon state [9, 38]), then the Wigner function for the 
output will likewise be negative in some regions. Hence non- 
local correlations between signal and idler beams might exist 
that could give rise to a true paradox in the modem sense 
of the Bell inequalities. In this case, the paradox could not 
be resolved by way of the Wigner phase-space distribution 
because of its non-positive character; it would not be a true 
probability distribution that could serve as a hidden-variable 
distribution. Whether or not there might exist some other 
type of hidden-variables description based on another one 
of the infinite set of phase-space quasi-probability distribu- 
tions for the system just described is unknown and depends 
upon the successful generalization of Bell inequalities to the 
case of continuous variables. We hope that our experimental 
demonstration of the original EPR paradox for continuous 
variables will serve as a first step toward theoretical and 
experimental efforts in this direction. 

Beyond the relevance of our experiment to these funda- 
mental issues, the correlation properties of the fields gen- 
erated by the NOPA can also be utilized in precision mea- 
surement [2, 15] and quantum communication [16]. As we 
have demonstrated in this paper, the quantum fluctuations 
of signal or idler beam individually are quite large and can 
approach the saturation photon number of the subharmonic 
field near threshold (for our system, n0 ~ 104 with Gq of 
the same magnitude). On the other hand, the fluctuations 
for the signal and idler beams are strongly correlated such 
that when subtracted, the quantities V~(Y2) ~ 0 in the ab- 
sence of loss. Hence if we encode coherent information on 
the beams, this information can be "shielded" from "unau- 
thorized" detection by the large excess noise in each beam, 
with the signal-to-noise ratio being very poor for an indi- 
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vidual beam alone. However, since this excess noise can be 
efficiently subtracted, the information can be recovered in 
the duN-beam measurement of V~(J2) with signal-to-noise 
ratio much greater than unity. Of course such a technique 
can also be employed with correlated classical noises but 
the signal-to-noise ratio for the dual-beam measurement is 
then limited by the vacuum noise level from the two beams. 
Following this lead, we have performed a preliminary ex- 
periment in quantum communication similar to the scheme 
by Hong et al. [16]. With the quantum correlations of the 
fields from the NOPA, we have observed an improvement in 
signal-to-noise ratio of 2 dB as compared to the best possible 
improvement with a classical source. 
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