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Abstraet. An approximate method for the analysis of planar-waveguide distributed- 
feedback lasers is extended to include a nonvanishing reflectivity at the ends of the structure. 
An index grating structure with parasitic losses is investigated. An expression for the small- 
signal gain coefficient ~oMN as a function of the output power PM~o,t normalized to the 
saturation power Ps, coupling coefficient ~, complex reflectivity ~ of end reflectors, and 
waveguide parameters is presented. 

PACS: 42.60B, 42.60D, 42.80F, 42.80L 

Distributed-feedback action was first demonstrated 
by Kogelnik and Shank [1, 2] in an active medium 
with index or gain modulation. Since these pioneering 
works [1, 2] the linear theory (see, for example, [3-6]) 
as well as nonlinear theory (see, for example, [7-10]) 
have been the subject of many publications. 

By using only linear analysis, the eigenvalue equa- 
tion for lasing frequencies and threshold gain charac- 
teristics can be derived. The nonlinear analysis [7-10] 
makes it possible to relate the power output to the laser 
parameters, but requires complicated computer calcu- 
lations. Therefore, it is not very useful for the design 
process. 

Haus has found [11] an approximate analytic 
formula describing the output power normalized to the 
saturation power as a function of the small signal gain 
coefficient, loss coefficient, and the coupling coefficient. 
The approximate analysis presented by Haus [11] has 
been developed in [12-14]. The results obtained are in 
good agreement with exact computer solutions [7, 8] 
for all regions of DFB laser operation that are likely to 
be of practical interest. 

However, the above approximate analysis is devel- 
oped for TEM waves. Thus, it cannot be applied 
directly for studying nonlinear operation of real dis- 
tributed feedback lasers, where the waveguide effects 
have to be taken into consideration. 

The first, an approximate analysis of waveguide 
DFB lasers have been presented for the planar strut- 

tures in [15] and for the metal waveguides in [18]. In 
these studies the end reflectivity of the structures has 
been neglected. However, a more realistic description 
of DFB structures requires inclusion of the end 
reflectivity. It is especially difficult to give a complete 
and exact description of gain saturation with parasitic 
losses taking into account end reflectors (e.g., real 
structures), because of the large number of characteris- 
tic parameters and variables that are involved in the 
description and up to date this problem has not been 
studied. 

The main purpose of our paper is to present an 
approximate analysis of the nonlinear operation of  the 
planar DFB laser taking into account nonvanishing 
end reflectivity as well as waveguide effects. It provides 
a method of solution for this kind of the structures 
requiring only simple numerical calculations. Similar- 
ly, as we have done for bulk DFB structures [12-14] 
and for planar DFB structures [15] without end 
reflectivity, we have based our method on the energy 
approach by, using the appropriate threshold-field 
distribution of DFB laser in an exact energy theorem. 

In the following section, we derive the approximate 
formula for the output power. The approximate for- 
mula obtained including end reflectivity is general and 
could be used for studying nonlinear operation of 
different planar DFB lasers. In order to compare 
results obtained for the structure with nonvanishing 
end reflectivity with those for the structure with zero 
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end reflectivity [-15] we perform calculations for wave- 
guide Nd lasers. Moreover, these kind of the lasers are 
potentially important for fiber-optics communication 
because of the relatively low loss of optical fibers at 
1.06 ~tm. In addition, thin-film Nd lasers would be the 
most practical structures for possible integration with 
other passive thin-film optical elements and wave- 
guides, which could be made of the Nd-laser host 
materials because of the low scattering and absorption 
losses at the Nd-laser wavelength. The conclusions are 
presented in Sect. 2. 

I. Energy Relation 
for Planar Distributed-Feedback Structure 

In order to compare the results obtained for a structure 
with end reflectors to the characteristics of a planar 
DFB waveguide laser with vanishing reflectivity, we 
use the same assumptions as in [15]. Thus, we confine 
our analysis to the index variation and envelope gain 
saturation of the active medium with no mode compe- 
tition, since the characteristics of the planar DFB 
waveguide laser with vanishing reflectivity have been 
derived only with these assumptions [-15]. 

An energy relation-for a planar distributed feed- 
back waveguide laser with index variation can be 
written in the following form [15]: 

d (IRNI --ISNI 2) = 2(% -- t~ML ) (IRNI 2 + ISul z) 

-2[IRNI 2 Im{~l} + ISNI 2 Im {42}] + SN R*q/ 

+ RNS*q/ , (1) 

where 

~//= - - I m { ~ 2 } -  Im  {~4} + j [ R e  {~2}--Re{~4}] • 

Ru and SN are the complex amplitudes of two counter- 
running waves of the Nth longitudinal mode of the 
laser, ~UL is the loss coefficient taking into account 
scattering losses of the Mth laser mode at total 
reflection at the non-ideally smooth boundary surfaces 
of the waveguide. According to [-16] the loss coefficient 
~ML for TE modes is 

/'1,12 __ i.12 ~3/2 
.. "11.2 ~,'~f ' ~effMJ 
~ML = z'~0 

neffM 

h2s + h2a 
x (2) 

2 2 2 2 ' 1 k n n + l ( k  n n.) t-~- / (  O F  elf M - -  s )  / O F  elf M - -  

w h e r e  h, and ha are the mean peak-to-valley heights of 
the boundary surfaces, ko is the wave number in 
vacuum, neffM is the effective index of the Mth wave- 
guide mode and ns, n,, and na are the planar waveguide 
refractive indices (Fig. 1), t is the thickness of the 
unperturbed waveguide. The mode gain ct N may be 

Fig. 1. A guided-wave DFB laser with end reflectors 

written as 

oo ko - ^ 2 
gMN -- 2floMP -Joo dxn(x) (~ - ~MNloss) goM(X), (3) 

flOM = koneffM, 

where ~MNloss is the volume loss coefficient and #o2M(x) 
describes the transverse field distribution of the Mth 
waveguide mode in the periodic structure, floM is the 
propagation constant of the Mth waveguide mode, 
n(x) describes the transverse index distribution and the 
normalization factor 

P= ~ dxo~2oM(X). (4) 
-oo 

The coupling coefficient is described by x and in 
general, is a function of tooth shape. The complex 
constants ~i represent the reaction of all partial waves 
excited by RN and S N in periodic structure back on 
themselves. They are derived and discussed in more 
detail in [,-17]. 

For the homogeneous laser medium, when spatial 
hole burning effects and mode competition are disre- 
garded, the gain coefficient ~ can be written in terms of 
the small signal value %MN as 

~= ~OMNf(X'Z) 
1 + (IERMNI 2 + IEsMNI2)/ps' (5) 

where IERMNI2 + IEsMNI 2 describes the total power of the 
MNth mode in the structure, f (x ,  z) describes spatial 
distribution of small signal gain in the medium and Ps 
is the saturation power. We assume that 

ERMN(X , Z) = ~MN~X~OM(X) RN(Z), (6) 

ESMN(X , Z) = dMNSOM(X ) SN(Z), (7) 

where dMN, is a real amplitude of the MNth mode. 
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Because of the nonvanishing reflectivity at 
z = 7+ L/2 where Lis the length of the laser, we have new 
boundary conditions for the amplitudes of ERMN and 
ESM N. They can be written in the following form: 

ERMN(X , Z = - -  L/2) = oMeJWZ~ E s M N ( X ,  Z = - -  L/2) , 

I1--0MeJW~[ 2 7 dXIEsMN(X,Z=--L/2)[2=PSMNout (8) 
--CX3 

and 

ESMN(X, Z = L/2) = o~eJWMERMN(X, Z = L/2), 

I1-0Me~t2 ~ dXIERMN(X,z=L/2)I2=PRMNout, (9) 
-oo 

where PS~Nou~ + PR~No,t = P~No,, is the power of the 
MNth  mode escaping at the ends of the structure and 
0Me~°M = ~ describes the complex reflectivity, qM is a 
real quantity and represents the amplitude reflectivity, 
which depends upon the transverse field distribution of 
the MNth  mode i.e. depends on M number. 

Using the boundary conditions (8, 9) and (6, 7) we 
can relate the amplitude ~¢MN with the output power of 
the M N t h  mode. We can find that 

Id~CMN[2 = PMNout 
PI1 - OueJ~'~12 [IRN(L/2)I z + ISu(- L/2)12]" 

(10) 
Integration of the energy relation (1) from z = - L / 2  to 
z=L/2, while taking into account boundary con- 
ditions, (8, 9), gives 

11 -QMeJt°Ml 2 [IRN(L/2)I 2 + ISN(-- L/2)I 2] 
L/2 

= 2  ~ (O~MN--~ML)(IRNI2+ISNI2)dz 
- L / 2  

where fN(Z)= IRNI 2 + [SNI 2 and r =  I1 --oMeJ'~[2fN(z). 
This formula is exact and relates the small-signal gain 
in the medium to the output power and system 
parameters for a distributed feedback planar structure 
with end reflectors. It has a form similar to the energy 
relation for the small-signal gain coefficient presented 
in [15] yet it is more general, as it takes into account 
nonvanishing end reflectivity. We use it as the starting 
point for an approximate analysis. 

Similarly, as it was done in [15], we confine our 
analysis to the case where the partial waves are 
neglected, i.e. ~ = 0, and assume that RN and SN are 
proportional to the threshold field distribution for 
structure with end reflectors. Thus, according to [4], 
we have 

RN(Z ) = sinh~,N(Z + L/2) -T- eM ej'p~ sinh 7N(Z-- L/2), (13) 

SN(Z) = T- sinh~N(Z-- L/2) + oMe j'pM sinh yN(Z + L/2), (14) 

where the complex propagation constant YN is the 
solution of the eigenvalue equation 

~N = T-jx sinh~,NL 

(1 - -  0M ej2wM) 

x (1 - 0MeJ~°Me- ~,z) (1 -T- oMeJWMe~L) (15) 

and x is the coupling coefficient. The upper sign applies 
to even modes and the lower to odd modes. 

By using the threshold-field distribution (13, 14) for 
RN and SN and putting ~i = 0  Eq. (12) can be rewritten 
for the normalized small signal gain aOMN L, the nor- 
malized propagation constant 7NL= F N, and the nor- 
malized loss coefficient aMLL in the following form 

aoMNL= r + 2  I d¢aMLL,/N(Q+2 [. d ~ / ~ )  dX•2M(X)aMNIos,L 
- 1/2 - t/2 

[ 1/2 ~ / (  ~ ) ] - - 1  d ko g2M(/~(Z) 2 ~ ~/N(~)p--~o M ~dxn(x)e~M(x)f(x,~/L) 14 PRMN°m+PsMN°ut 
- 1/2 - Ps ' 

L/2 

- 2  ~ ([RNI2Im{~}+ISNI2Im{~3})dz 
- L / 2  

L/2 L/2 

+ql ~ SNR*dz+ql*n ~ RNS*dz. (11) 
- L/2 - L/2 

By application of (3, 5), we can rewrite relation (11) as 
follows: 

f L/2 L/2 L/2 
~0MN = r + 2  ~ dZaMLfN(Z)--O-Ii S dzSn R*-q l*  ~ dzS~RN 

- L/2 - L/2 - L/2 

(16) 

where 

TN({) = I~N[ 2 + 19NI 2 and r = I1 -QMeJWu]2fN({ ), 
and 

~N(Z) = sinh FN({ + 1/2) T- OM ejv~ sinh FN(¢ -- 1/2), (17) 

q~N(Z) = T sinh FN(¢-- 1/2) + qMe j~M sinhFN(Z + 1/2). (18) 

L/2 &fiN(Z)kp~o M S dz[ISNf2Im{~,}+lRNI2Im{{2}]} + 2  I ~ dXe~M(X)aMN,oss+2 L/2 
- L / 2  - oo - L / 2  

x 2 5 dz f fN(z )  dxn(x)g~M(x)f(x,z 14 PRMN°utWPsMN°ut e°2M( (z) -* 
-- L/2 IJOM -- • Ps 

, (12) 
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Fig. 2. Normalized small signal gain of the TEol mode vs 
normalized coupling coefficient, with the amplitude reflectivity 
OM as a parameter. The normalized output power is PMNout/P s 
= 0.01, the thickness of the waveguide is t = 10 Bm, and phase of 
the complex reflectivity ~ is ~0 M = 0 

~OMN L • 

Fig. 4. Normalized small signal gain of the TEol mode plotted 
against the normalized coupling coefficient, with lpM as a 
parameter, for two levels of the normalized output power, 

/ PMNoot/Ps=0.01 and PMNoRJPs=10, the amplitude reflectivity 
QM=0.01, and thickness of the waveguide t=3.5 Ixm 

Fig. 3. Normalized small signal gain of the TE01 mode as a 
function of the normalized coupling coefficient, with Ou as a 
parameter for Pv~.qouJPs= 0.01, t= 10 ~tm and ~pu=II/2 

Equation (16) is an approximate expression relating 
the normalized small-signal gain coefficient aoMNL to 
system parameters. We use it to derive the characteris- 
tics of a planar DFB laser with end reflectors. 

The plots of Figs. 2-6 are obtained by the approxi- 
mate relation (16). Calculations are performed for an 
appropriate transverse field distribution OVoM(X) of the 
unperturbed planar structure with thickness t for 
which the zero-order Fourier coefficient of a Fourier 
series of the grating expansion vanishes. Since the 
volume losses aMNloss are negligible compared with 
scattering losses aML we take into consideration only 
aUL in our calculations. The data of the scattering 
losses for each thin-film thickness and given transverse 
mode number are obtained by (2) for the mean peak- 
to-valley heights of the boundary surfaces ha=hs 
=0.01 i.tm. 

In Fig. 2 the normalized small signal gain a 0 M N  L is 
plotted versus the normalized coupling coefficient ]x[ L 
with the amplitude reflectivity Ou, as parameter, for the 
normalized output power PMNout/Ps=0.01, the thick- 
ness of the waveguide t = 10 pm and the phase of the 
complex reflectivity ~ ,  ~Pu = 0. For small values of the 
coupling coefficient the feedback mechanism is caused 
by the Fabry-Perot resonator. Thus, in this region of 
operation, when the amplitude reflectivity increases 
the small-signal gain required for given output power 
level decreases. For  large coupling strength we observe 
a different behaviour of the characteristics. In this 
region of operation the distributed feedback mecha- 
nism dominates. An increase of the amplitude reflectiv- 
ity causes an increase of the small-signal gain because 
of the strong competition for this phase of the complex 
reflectivity between Fabry-Perot and DFB modes. 

When the phase of the complex reflectivity is 
changed, (Fig. 3), we observe a for small coupling 
coefficient similar behaviour of characteristics as for 
~Pu = 0. But for large coupling strength the small-signal 
gain is not sensitive to the amplitude reflectivity, and 
characteristics for increasing I~c[L tend towards the 
similar characteristics of structure without end 
reflectors. 

Competition between the feedback mechanism 
caused by the mirror resonator and the feedback 
mechanism of the index grating is also observable in 
Fig. 4. In this figure the signal gain aouNL of the TEol 
mode is plotted as a function of [x[L for four values of 
the phase lpu. The results are obtained for two levels of 
the output power, PMNout/Ps = 0.01 and PMNout/Ps = 10, 
QM=0.01, and the thickness t=3.5 ~tm of the wave- 
guide near cutoff of the TE1N modes, below this point. 
The characteristics presented in Fig. 4 are more sensi- 
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Fig. 5. Normalized small signal gain coefficient oftheTEol mode 
vs normalized coupling coefficient, with phase of the complex 
reflectivity as a parameter, for two levels of the normalized output 
power, PmNom/Ps = 0.01 and PMNo,t/P~ = 10, the amplitude reflec- 
tivity ~M=0.5, and the thickness of the waveguide t=3.5 gm 
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Fig. 6. Normalized small signal gain of the TEol mode as a 
function of the normalized coupling coefficient, with thickness of 
the waveguide as a parameter, for two values of the amplitude 
reflectivity, QM=0.01 and ~M=0.5 and phase of the complex 
reflectivity, lpM = 0 

tive to the phase ~p~ for coupling coefficients. For 
example, the maximum difference between the curves 
plotted for various phases is for [x[L-0.1. For this 
coupling coefficient both feedback mechanisms act 
with the same strength. We also notice that for a high 
output-power level the small-signal gain is less sensi- 
tive to the coupling coefficient. 

Figure 5, shows a similar dependence for the 
amplitude reflectivity QM = 0.5. In this case the charac- 
teristics strongly depend upon the phase ~PM of the 
complex reflectivity N. Note that for a high output 
power level, PMNout/Ps= 10 curves go through their 
minima within the given range of [~c[L. Thus, for each 
phase of the complex reflectivity and given thickness of 

the waveguide there exists an optimum coupling 
strength that results in the minimum small-signal gain 
required to maintain that power. For PMNout/Ps = 0.01 
only the curve for ~PM =/7 passes through its minimum. 
For other phases minima are shifted towards large 
coupling strengths that are out of the range shown for 
the coupling coefficient. 

In Fig. 6, the normalized gain coefficient of the 
TEol mode is plotted against the normalized coupling 
coefficient, with thickness of the waveguide as a 
parameter. The results are obtained for two values of 
the amplitude reflectivity, QM = 0.01 and QM = 0.5 and 
the phase ~0 M-- 0 of the complex reflectivity. Note that 
all curves shown in Fig. 6 go through a minimum 
within the range of the IKI L shown. When the thickness 
of the waveguide increases the value of the optimum 
coupling coefficient related to the minimum value of 
the small-signal gain increases. In addition, a compe- 
tition between the feedback mechanism of the index 
grating and the feedback mechanism caused by mirror 
resonator can be observed. Firstly, when the normal- 
ized coupling coefficient increases the small-signal 
gain for 0M = 0 is less then the small-signal gain for 
QM = 0.01 required to maintain the same output-power 
level. In this region of operation the feedback mecha- 
nism of the mirror resonator dominates. For the 
"critical" coupling which is a function of the thickness 
of the waveguide the small-signal-gain coefficient is 
equal for both amplitude reflectivities. For large 
coupling strength the small-signal-gain coefficient for 
Qu=0.01 is less then the small signal gain for QM =0.5 
required to maintain the same output power. In this 
region of operation the distributed feedback mecha- 
nism dominates, and an increase of the amplitude 
reflectivity causes an increase of the competition 
between DFB modes and Fabry-Perot modes. This 
results in the increase of the small-signal gain required 
to maintain a given output-power level. 

2. Conclusions 

In this paper we present an approximate method of 
analysis of nonlinear operation of the planar-wave- 
guide distributed feedback laser with end reflectors. An 
approximate formula for normalized small-signal-gain 
coefficient ~0mNL as a function of system parameters, 
taking into account waveguide effects as well as end 
reflectivity, is obtained. 

The characteristics presented in this paper show a 
strong influence of the amplitude reflectivity and phase 
of the complex reflectivity on operation of the planar 
waveguide DFB lasers. Competition between the feed- 
back mechanism caused by the mirror resonator and 
the feedback mechanism of the index grating is ob- 
served. Also we find that for each value of system 
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parameters, i.e. the amplitude reflectivity, phase of the 
complex reflectivity, thickness of the waveguide and 
output power level, an optimal value exists of the 
coupling coefficient which is related to with the 
minimal value of the small-signal gain required to 
obtain a given output power level. 

In order to compare characteristics of planar 
waveguide DFB lasers with and without end reflectors 
[15] calculations have been performed for the wave- 
guide DFB Nd laser. However, the approximate 
formula presented in this paper is general and can be 
used for studying nonlinear operation of different 
planar DFB lasers with end reflectors, e.g., injection 
lasers. 

Since it is difficult to give a complete description of 
gain saturation of such lasers by an exact computer 
solution of the corresponding nonlinear equations 
because of large number of parameters and variables, 
we are convinced that the presented technique facili- 
tates the design of real structures and calculation of the 
optimal coupling strength for distributed feedback 
planar devices with nonvanishing end reflectivity. 
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