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1. Introduction

In the theory of large random matrices, how to dominate the norm of a
random matrix is a very important problem. This is the reason why many
authors are interested in this problem. For interesting works, see Geman
(1980), Jonsson (1983), Silverstein (1984) and Yin et al. (1984). In these papers,
they consider the norm of a sample covariance matrix, with different moment
requirements. The newest result of Yin et al. requires only the existence of 4th
moment.

In this paper, we consider a different type of random matrices, namely W¥,
L.e. a power of a square random matrix with iid entries.

The first result in this paper (Theorem 2.1) is

vl
Vn
here 62 is the variance of the entries of W. We assume only the existence of the
4th moment of the entries of W. From this result it is easy to show that the
spectral radius of W/ﬁ is not greater than ¢ with probability 1.

In proving the above result, a new kind of graphs has to be discussed
carefully, (§3), and the truncation method used in Yin et al. (1984) is also
important here.

As applications of the above result, we have solved two open problems

announced in the paper Geman-Hwang (1982). The solutions are in §5, §6 and
§7.

lim <(1+k)e*, as. (nis the size of W),

n—>w
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2. Limiting Behavior of Matrix Product Norm

In Sects. 2-4, we will prove the following theorems.

Theorem 2.1, Let {w;;: i=1,2,...,j=1,2,...} be iid random variables, and W, be
the n x n matrix (w;;) i,j=1,2,...,n. Suppose
Ew,, =0, Ew? =q¢% Ewi,<co. 2.1)

Then, for any positive integer k, we have

limsup <(k+1)d" as. (2.2)

n— oo

il
Vn
Here ||A|| denotes the operator norm of the matrix A.

Denote by A,(A), i=1,2,...,n, the n eigenvalues of the nxn matrix A. We
have

Theorem 2.2. Under the same conditions as in Theorem 2.1, we have

limsup max

n»o 1=2ign

<o as.

W
()

Vn
This result was earlier proved by Geman (see Geman 1984 or Hwang 1985)
under stronger conditions that Ew,, =0, Ew?, =¢2 and Ew}, <n" for all n>3

and some $>0.
Theorem 2.2 can be easily deduced from Theorem 2.1 as follows: For any

integer k=1, by Theorem 2.1,
W k
A ()]
n

1/k
<tk+1)" s as.

1/k

=limsup max

n— o 1€i<n

limsup max

n—ow 1=Z2iZn

1=

Zlimsup

n— o

7l

Letting k— oo we get Theorem 2.2.

3. Some Lemmas

At first we state the following lemma which can be found in Yin et al. (1984).

Truncation lemma. Let r be a number in the interval [3,2], {w;;i,j=12, ...} be
a set of iid random variables with Ew,,=0, E|w,,|*"<oo. For each n, let W,
denote the pxn matrix whose (i,j)-entry is w;, here p=p(n) satisfies
p/n—ye(0, ), as n— .

Then there exists a sequence of positive numbers 6 =39, such that

1.5-0,as n— o0,

2. P(W, % Wn, 1.0.)=0; here W,, is the p x n matrix, with the (i,j) entry
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W W 1{|le;<6"r}’

and the convergence speed of  to zero can be slower than any preassigned speed.

In fact, the truncation lemma can easily follow from the fact that for any
fixed n>0

| Wl P( max  max |W;/zn2")
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hence there exists a sequence of positive constant J,, 4,0 such that

P( U (Ql jgllmj;;(snnr»ao, as k—oco.

In order to prove Theorem 2.1, we need some combinatorics. Let
i1,05, 0500, De a sequence, we define a multigraph I'(k,m;i;,...,i5,,) as fol-
lows:

1. The vertices of this graph are i,,i,,...,i,,. Some of them may be equal.

2. There are 2km edges e;,e,,...,¢,,,. The ends of e, are i, and i,,,
(lygms1=11)- Any two of these edges are different even when they have the
same end sets. Sometimes we write i,i,  ; instead of e,.

3. To each edge e, there corresponds a number dir(e,), called the direction
of e,, such that ) .

) +1, if [(a—1)/k] is even
dir(e,) = . .
—1, if [(a—1)/k] is odd.

Two different edges e, =i i, ,, e,=i,i,,, are said to be coincident, if either
iy=iy, l,41=iy,, and dir(e)=dir(e,), or i,=i, ., i,., =i, and dir(e)=

a+1
—dir(e,).
A chain is a subgraph with vertex set {i,,i,, 1,..., 0} (1<a<b<2mk+1)
and edge set {e,.e,,,-..,€,_,}- We will denote such a chain by i i, ,...i,.

In the graph I' (k M ig,0s, .5 ia), We classify the edges as follows.
1. An edge i,_, i, is called an innovation if i, i3 new, i.e. i, iy, ..., i, ¥i,_;-
The set of all innovations will be denoted by 1.
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2. Let S be the set of all edges i,_, i, which coincides with an innovation,
and for any b<a, i,_, i, does not coincide with that innovation.

3. All other edges consist a set called T.

Ifi,i,, , 1,0, are two edges satisfying the following properties:

(1) b<a;

(2) i,i,,, is single up to i,, ie. it does not coincide with any edge of the
chain i, i,...1,.

(3) Either i,=i, and dir(i,i,, ,)=dir(i,i,, ), or i, =i, and dir(i,i,,,)=
—dir(i,,i,, ), then we say that i i, is coincidable with i,i, .

An edge of § is called singular if it is coincidable with just one innovation.

An edge of S is called regular if it is not singular, i.e. it is coincidable with
more than one edge.

The proofs of Lemma 3.1, 3.2, 3.3 below are similar to the proofs of Lemma

3.1, 32,33 in Yin et al. (1984).

Lemma 3.1. If in the chain i i,  ...1,, i,i,,, is single up to i, and i, has been
visited by i,i,...i, then i i, ,...i, contains an edge of T.

Lemma3.2. Let t be the number of equivalence classes of T under the equiva-
lence relation “coincidence”. Then if i,i,,  is a regular edge of S, the number of
edges with which i,i,, , is coincidable is not greater than t+1.

Lemma 3.3. The number of regular edges of S is not greater than twice the
number of edges in T
The chain

Lio=i,iy. i, (s

Ly=iy qisn oyt

Lo =lom-tye+1i@m—yk+2 - Lomi
are called segments.

Lemma 3.4, Let | be the number of innovations. Then the number of different

. 2km
ways to appoint the 2km edges to be of I, or S, or T, does not exceed ( )
(k+1)2km721+2m‘ 2l

Proof. Since the number of innovations are [, the numbers of S and T must be !
2k
and 2km—21, respectively. So there are ( 2lm ) different ways to select 2km

—21 edges from the 2km edges which are appointed to be of 7, and the others
to be of I or of S.

Now consider a segment L,. Note that every edge in the same segment has
the same direction. Suppose that L, contains u, edges of T. Then L, is split by
these u, T-edges into at most p,+ 1 subchains consisting of consecutive edges of
ITuS. Let the lengths of these subchains be v,v,,...,v, ,,, respectively (if
there are less than p_ +1 such chains, then some v; at the rear part of this list
are zero). Consider the ith subchain with v, edges. It is evident that if some
edge in this chain is of I, then the next one (if any) must be of I because of the
same direction of them. So there are only v, +1 possible appointments for this
chain, namely, IT7...I, SII...I, SSIi...I, S§S...S1, SS8S...5. So for the whole



Random Matrices and Two Problems of Geman-Hwang 559

e+ 1
segment L, there are at most [] (y;+1)<(k+1)**' ways to appoint the k

i=1
—u, non-T edges to be of I or of S. Thus, for the whole graph, there are at

2Zm

2m

¥ p+2m
most ] (k-+1y=*'=(k+1)-: =(k41)*m=21+2m ways to appoint the 2!
c=1
non-T edges to be of I or of S.

4. Proof of Theorem 2.1

Now we apply the truncation lemma for r=2% and p(n)=n. We need only to

prove
]}Vn )k

Define W;;,=w;;,—Ew,;;, and define W,=(W;;,), i,j=1,2,...,n. We shall

ijn ijn
( )k

limsup <(k+1)c* as. 4.1)

n—

prove that for any k=1

gz

limsup <(k+1)d* as. 4.2)

n—* o0

N

If (4.2) holds for any k=1, since

IS

R

n n

Vo v

=

Gl

and
1,1,...,1
- % 1,1,...,1 -
W, W, :M S H:]/n[Ew11n|—>0,
Vi Valo y/n
1,1,...,1
A
n
by (4.2) we obtain
\ ol
limsup (—l) - (‘n)
n-> 00 W ﬂ
i
(W) YalEw, ,|(k—Do*==" “.3)
R = ﬁ

from which and by induction we can deduce (4.1). Hence to prove Theorem
2.1, we need only to prove (4.2).
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For saving notations, we can assume that W, is an nxn matrix with iid
random entries w;;, such that

Ew,, =0, |w,|<61/n, Ew? <1 and Ew? <d. (4.4)

Here, without any loss, we suppose g =1, and instead of 2J we write J.
Under the condition (4.4), it is easy to see that

@yny=2  for 122,
wils (4.5)
d(éf)‘ 3. for IZ3.

It is enough to show that for any number z>(1+k)

(|G
"< (A ([(f) i (:/V;)k))
el (AITGAITY:

For any sequence m=m(n) of positive integers,

0. (4.6)

M8

But since

]

Z P(| (WY nfl 22) < (tr(Wk(Wk)T)m>ZZm k)

n

18 "MS

tA

Z*Zmn—mkEtr(VVnk(VVnk)T)m.

n=1

And we need only to show that for some positive integers m=m(n),

e o)
Y z72mpmmk E e (WHWH " < 0. 4.7
=1
We have
E,=Etr(WK WYY =3 EWy,;, Wiiy oo Wisie )
“Wiamens Wicssicas » Wins iz -+
) (wi(2m~1)k+2i(2m—1)k+1 Wi2mk+1i2mk)‘
Here, i,,i5,..c;izme tun over {1,2,...,n} and i,,,,.,=i;. For each
igs0ay .y iym, We can define a graph I'(k, m) as in Sect. 3.

2
By Lemma 3.4, there are at most ( ;lm>(k+1)2"m‘2’”"‘ different ways to

appoint the 2km edges to be of I or of S or of T
Let t denote the number of noncoincident T-edges. Because our graphs do

not have single throughout edges, we have I<mk and 1 <r<2km—2[if [Smk
1
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Next we bound the number of different ways to appoint each edge in a
canonical graph with given positions of the I innovations, | S-edges and 2km
—21 T-edges and with ¢ different T-edges. Since each edge is an element of the

o (2km)2 2km—21
left-upper 2km x 2km submatrix of W, so there are at most ( , )t "
different ways to appoint the ¢ different T-edges into their 2km —2! different
positions.

Each innovation in a canonical graph is uniquely determined by the edges
before it, and so is each singular S edge. By Lemma 3.2 and 3.3, there are at
most (t +1)**"~4 different ways to appoint the regular edges of S to their
positions. Here we should note that whether an S-edge is singular or regular is
determined by all the edges before it.

From the above arguments and (4.8), we get

mk

Ej< Y (2km> (k- 1)2km=21+2m nt+12kmiﬂ ((2km)2> f2km=21
m= 21

=1 =1 t

x (l+ 1)4km~—4l m’(é ﬂ)ka—Zl—t

mk 2km 21

pkm+1 Z (2km) (k+ I)ka—21+2m Z (ka)fit
o\ 21 t=1

. (t+1)6km—61 52km—2!(5ﬁ)_1.

IIA

0
Here ) A,=1, conveniented for saving notations.
t=1
By the elementary inequality

b\
a’(t+1)”§a”1( ) for (0<a<1,b>0)

_loga
we get
6km 61/6 \ 6km—6l
5Y/n

1 ¥y
8 2km)?

km~—1

mk 2 km
< km+ 32
AR

i=1

)(k + 1)2km—21+2m(2km)

If we select m=m(n)=A(n) logn such that
1. A(n)— .
2. A(n) 36 —0 then

6kmdl/®

_4’"57.40, (n— o0).
n
log 3
(2km)

Thus we obtain for large n
mk 2k
\En\ énkm+2 2 ( z;n) ((k—{— 1)2 5)km—£(k+ 1)2m
=1

énkm+2(1+(k+l) 51/2)2km(k+1)2m_
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Since z>(1+k) and § —0, we have

Y 2 E| S C Y (21 A (k4 1) 8P+ 1)/ 2"
n=1

s ipas

A
O
=

3
A
8

£
It
—

where O<n<l is a constant. Here the last series converges because
mflogn — co. The proof is finished.

Remark. In the proof of Geman (1984), he used the fact that the spectral radius
of a matrix does not exceed its Euclidean norm. The crutial step in his proof,
equivalent to the inequality below (4.6), is to estimate

I
Vn
In the computation, there is a little difference between the method given by
Geman and that in this paper.

2m 1 m
= (tr— Wan’) .
E n

5. Two Problems of Geman-Hwang

In Geman-Hwang (1982), they suggested the following system of linear equa-
tions with unknown n x 1 vector X,

1
X,=1,4+—= WX

n n
Vn

where W, is an nxn matrix whose (i, j)-entry is w;; and W={w;;: i,j=1,2,...}
is an infinite matrix of iid random variables, and 1, is the nx1 vector
(1,1, ..., D%

If X,=(X,,,...,X,)7", then for any integer m>1, Geman and Hwang
proved that as n— oo,

(5.1)

2

(X, X, 90 o X, )TN (1,,,, 1—“7 1m> weakly, (5.2)
under the conditions

1. Ew,;=0,0<Ew}, =0%<%;

2. E\W} | <n*" for any integer n=1; o is a positive constant.

Geman and Hwang pointed out that the computer simulations support (5.2)
even in the case of uniform distribution on [—1, 1], where ¢*=13.

We will prove that (5.2) is true even when o2 <1 and E{w},|<o0.

1
Theorem 5.1. Let X, be the solution of (5.1) whenever (I——— W,,) is non-
n

singular, otherwise define X,=0. Then (5.2) holds when Ew,, =0, Ew}, =¢*<1
and E|\w},| < co.
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Geman and Hwang (1982) suggested a system of differential equations

X, (0=0X, 0+ W, X,00,  X,0)=1, 53)

Vn
They proved that for any integer m=1, real T>0, X,,(-), ..., X, (*) (the first
m components of the vector X (+), the solution of (5.3)) tend to m iid Gaussian

processes weakly, as n— oo, on [0, T]. Each of these m processes has mean u(t)
=¢* and covariance function

k
C(t, s)=e*t*? g (89)
k

= (k)

They supposed among others the following moment requirement
Elw,,"<nf"  for all =2, and some $>0.

In the same paper, they conjectured that the analogous theorem should
hold for the equation

X,()=aX, O+ " X,(0+1, X,(0)=1, (5.4)

i

We will prove

Theorem 5.2. Suppose Ew,,=0, Ew}, =1, and Ew}, <oo. Let X,(t) be the
solution of

. 1

X,()=0X,(0)+—=

Vn

Then for any integer m=1, real T>0, X, (1), ..., X,,,(t) tend to m iid Gaussian
processes weakly on [0, T] as n— co. The mean of these processes is

W,X,0+p1,, X,0=1, (5.5)

t
p)=e"+p | e* ds:e“—{-ﬁ— (' —1), (5.6)
0
the covariance function is
o0 t 5
Clt,s)= Y L 2 (t“ e+ B | uk e du) (s" e+ p [ uFe™ du). (5.7
k=1 (k ‘) Q 0

Remark. When =0, Theorem 5.2 reduces to an extension of Geman-Hwang
theorem. When =1, Theorem 5.2 includes a proof of Geman-Hwang’s conjec-
ture.

6. Proof of Theorem 5.1

By the Truncation lemma; we can assume that the entries of W, are bounded

by 1/né, here 6=35,—-0 arbitrarily slow. We suppose 6 is defined as in the
proof of Theorem 2.1.
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Write Y=X,—1,, A= W;,/]/ﬁ. (5.1) is equivalent to
(I,—A)Y=A1,.

k-1
Multiply both sides by Y A’, we get

i=0
k .
Z,E(1,-AY=Y 4A'1,. (6.1)
i=1

We need the following lemma.

Lemma 6.1. Suppose

L {w;;i,j=1,2,...} are iid random variables; and W, is the matrix
iy 181, j=n);

2. Ew,,=0, Ew},=0% Ew? <oo. Then if ofi, k,n) denotes the i-th com-

(w; 3

W,
ponent of the vector (——

as n— oo, ﬂ

(a(il’ kla n): .- ( k i’l)) —_) Nm(O: Am)>

) L, for any distinct ordered pairs (i), k,), ..., (i, k,),

m? "nt

m= m?

2k 2k
Lo, 0,

where A, =diag(o
The proof of Lemma 6.1 is almost the same as the proof in the Appendix of
Geman-Hwang (1982). In fact, if we truncate all the entries of W, according to

the truncation lemma and then centralize them, without loss of generality we
can assume that

Ew;,=0, Ew} 55¢% |wy,|<6)/n and Ew* <d<oo.
Checking the proof of the Appendix, we find that in the expansion of

E]—[oc '(i;, k;;n) the main terms remain the same except the factor

j=
osl"‘+ tsmkmo o is exchanged by (Ew?)Stlstetsmkm)2 which  tends to
ghtkitotsmknOn the other hand, if vy, ..., v, are given integers satisfying v,
+otv,=s8k +.. . +s,k,, v,22,...,v,22 and at least one of them is strict,

m Tm?
then
1 w vj
E( 11)
=t \Yn

t i
and the total number of those terms with the factor []E (E—l—l) is o).
j=1 n
Hence the sum of all those terms tends to zero by the fact that 6—0.

m

Therefore, we get the same limits of E n o’i(i;, k

§50.2tn—t

n) as that gotten in the

]) m?

Appendix of Geman and Hwang. This 1mphes Lemma 6.1.
By truncation lemma and Lemma 6.1, it is not difficult to see that

k
(ImO)Zn—w+Nm(0,Zchilm), as n-— oo. (6.2)

i=1
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Here I, is the m x m identify matrix and (I,,0) is of order m x n. Also, if (Z,); is
k

the ith component of Z,, E(Z,)}— Y, 0*' as n— co. Here the reader has to note
i=1
that we have truncated the entries of W, at ﬁ o.
In order to prove Theorem 5.1, we notice that

X,=1,+Y=1,+Z,+A"Y.
Then, if t=(t,, ..., )", i=}/ — 1,

Eei" Um0 (Xn—1n) _ exp { 1t t’t . } < ]Eezt ImO)(Xn—1w) _ Foit’ (1,,,0)an

k
Eelt(ImO)Z p{ %t,tzg }
) =
+ exp{——%t/t'z ¢ } { 't

=a,+a,+as.

IlMg
\_.“,_..J

As n— o0, a, -0, by (6.2).
Now we estimate a,. We have for any ¢>0

a, < E|e 04T _ 1] <2P(|(1,,0) A* Y| Z8) + ().

Here ¢(g)= sup |¢"*—1|—0 as e—>0.
x|t e

We consider only those k, for which (1+k)'*o<1.
Let A=4, ,={weQ: HA"|| <#*}, where (1+k)'*o<n<l1, n is fixed. Evi-
dently P(4)—1 as n— oo by Theorem 2.1. Thus

P(I(1,,00 A“ Y| Z &) S P(I(L,,0) A" Y || Z &, |4} <)+ P(| A" Z7)

1
ég—z E|(I,,0)A*Y|? 1+ P(|4*| 27"

< E|A* Y2 1,4+ 1~ P(4), (6.3)

g2

since the components of A*Y 1, have the same distribution.
We have
AY=A T~ A Y+ A A*Y=A*Z + A*(4*Y),
0
A Y <145 Z, )+ 145 ] A° YT,
and
1A%

1,< Z,)1,. 6.4
T4 1Z.l || all (64)

|A* Y[ 1,2 -
By (6.3) and (6.4),
k

k m (Y 2
PUILO A Y1 2925 () ENZ,12+1-P()
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Let n— o0, we get

— mo( o\
lim P(I,0 4 Y1295 ()
J

g

<11ma1+a3_.82 ( _k ) 202’4‘4’(8)

n— 0

+ exp{—%t’t Y a“}—exp{—%t’t > 02’} .
j=1 j=1

Letting k— oo, and then ¢ —0, we see that the left hand side tends to zero.

So

lim

n— oo

Eett(l MmO (Xn—10) _ exp {

Nb—

7. Proof of Theorem 5.2

It is easy to verify that

X, (0)= i ?cl_ (;V_)kl (t" “‘+ﬁfs"e”ds> (7.1)

is the solution to (5.5).
Theorem 5.2 is a consequence of the following lemma.

Lemma 7.1. Let {w;:i,j=1,2,...} be a family of iid random variables with
Ew,=0, Ew? =1 and Ewi, <oo, and W,=(w;;, 1Sign, 1<i<n).
Let {g,(*), k=0, 1, ...} be a sequence of continuous functions satisfying

Fk

o k!

uMg

supTlgk(t)l <o, (7.2)
0=t=

where r>2, T >0 are positive constants.
Then for any integer m=1, as n— oo the stochastic process

e k
(Imo) Z 1 VV") lngk(t)a tE[O, T:|9
k=0

v

tends to an m-dimensional Gaussian process with iid components, each with mean
o0

1
20(t) and covariance function c(t, s)= Z (k ') 2.(t) g,(5).
Proof. Let

o0

1 (W,
Zn(t):‘(znl(t)" nn(t))T 2 k’ (]/‘) 1 gk(t)

We prove that the sequence {(Z,,(*),..., Z,, (), n=1,2,...} of stochastic
processes is tight in C™[0,T]. It is easy to see that we need only to show that
{Z,,(),n=1,2,...} is tight in C[0, T], 1 i<m.
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|44
Let An={a)e§2: A (a))gr}. By Theorem 2.1, P(4,)— 1. Let

Vi

P (0)= sup FAGEFACIR

tl s;fC)(T]
k W k
(i, k, n)={(W") 1"} =the ith component of ( ") 1,
V) )i Vn
We have
o
W0 1Z,0=Z, 01 3 i kol 252,
t S <&
t, 5[0, T]
hence
lim lim P( sup |Z,,(t)—Z,,(s)|>¢)
320 n-r oo |[t—s[<é
t,seT
o
<lim lim P(Z (i, ( ) s)
6—0 n—~> w0 k=1
— Tl 0
<lim lim [—E > 1, la(i, k, n) pil )+(1—P(An))]
=0 n—=w© & k=1 " k!
. o — 1 2 P (5) .
=})1_r)r(1) 11—2}0 - kgl ’l(c! El, |a(i, k, ).
It is easy to see that a(i,k,nm)l,,...,a(n kn)l,, i=1,2,....n, have an

identical distribution. Therefore

E1, lali, k, n)| SE21,, |, k, n)f?

1 Wk [l2q12
SE
[n 4n ﬂ
2kq1/2
§[ElA LV'l ] <r*
So,
T < Pu0)
lim lim P( sup |Z,(¢)— Zm(s)|>8)<hm~ Y r*=0.
§-0 n—oo  |t-s|<é -0 € 21 k!
t,seT

Thus, the tightness of the family {Z,,(-); n=1,2, ...} of stochastic processes

is established.
Finally we show that for any positive integer ! and ¢, ...,1,€[0, T], as

n— oo

Eexp{ > Zi Z, t)}—*em{—-i i iﬂv, g€ tq)}-

v=1 j=1 v=1 j=1 g=1

Here i=1/ —1 and {4,;} are real numbers.
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eﬁv(t):k=§+l ((]I;V%)k ln)v g]’;(yt)

Let

< (t)
=kz oc(v,k,n)g;;‘ , =1,...,n
=p+1 -
Let g,= sup g,(¢). The for any ¢>0,
tef0, T
lim lim P(e?,(t)|2¢) < lim lim 1 y B E1, |a(v, k, n)|
p—© n— o0 p—© n—»ooSk p+1 k'
A (7.3)
- 11m =0. .
8 P k §+1 k! B
On the other hand, by (7.2)
lim i L g(t)g(t)<11m ( i B )2=0 (7.4
pooo (ke 1 (kt)z x k poo \emg 1 k!
We have
m 14 © gk(tj) 1 m 1 1
Eexp<i Z Z Z a(v, k, n) —Eexp Ty Z Z Z }“wivqc(tﬂ tq)
v=1 j=1 k=1 k, 2v=1j=1q 1
m i © m r t.
<|Eexp {z Y YA, Y av k) g"(‘l)} Eexp{i S S vk n) S J)H
v=1 j=1 k=1 v=1 j=1 k=1 k'
m 1 p m l 2
: g 1 4 t
+Eexp{zz 2 Ay 2 alv kn) ’;C‘J)} p{_ﬁ Yy ( )L”g;;c(‘;) }
v=1 j= k=1 v=1 j=1 \j=1 :
m 14 g (t 1 m i 4
exp{—— Z Z (Z’lw l;cy)) e - Z Z Z ;Vjivqc(tl’t)
v=1 k=1 \j=1 . v=1 j=1 g=1
=a;+a;+ds.

By (7.3) lim lim a,=0. By Lemma 6.1, lim a,=0. And

p—© n— 00 n—w

4= v=1 j=1 gq=1 =
1 = 1 ! © 1 2
-l =3 £ B S g () s
1 m i i ) 1 2 )
§‘l_exp {——i Z Z Z /lvjlvq Z . (—k-;) g(tj)g(tq)}

exp{ Y Y Xl (¥ %)Z}HO, as p—co,

v=1 j=1g¢g=1 k=1

by (7.4). We finish the proof.
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Remark. Throughout this paper, we have assumed W, comes from a fixed
infinite random matrix. If we give up this assumption, and keep the others,
then conclusions in Theorem 2.1 and 2.2 are still true in the sense in probabili-
ty, and those of other theorems remain the same. If we strengthen the con-
dition as to E|w,|°® < oo, then Theorem 2.1 and 2.2 are also true.

References

[,

10.

. Geman, S.: A limit theorem for the norm of random matrices. Ann. Probab. 8, 252-261 (1980)
. Geman, S., Hwang, C.R.: A chaos hypothesis for some large systems of random equations. Z.

Wahrscheinlichkeitstheor. Verw. Geb. 60, 291-314 (1982)

. Geman, S.: Almost sure stable oscillations in a large system of randomly coupled equations.

SIAM J. Appl. Math. 42, 695-703 (1982)

. Geman, S.: The spectral radius of large random matrices. To appear in Ann. Probab.
. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
. Jonsson, D.: On the largest eigenvalue of a sample covariance matrix. Uppsala University,

Department of Mathematics, Report No. 16, October 1983 (1983)

. Hwang, CR.: A brief survey on the spectral radius and the spectral distribution of large

random matrices with iid entries. Contemporary Math. Radom Matrices and Their Appli-
cations. Am. Math. Soc. 50, 145-152 (1984)

. Silverstein, JW.: On the largest eigenvalue of a large dimensional sample covariance matrix.

Unpublished

. Yin, Y.Q., Bai, Z.D., Krishnaiah, P.R.: On the limit of the largest eigenvalue of the large

dimensional sample covariance matrix. Technical Report No. 84-44. Center for Multivariate
Analysis, University of Pittsburgh (1984)

Bai, Z.D.: Limiting properties of large system of random linear equations. Probab. Th. Rel.
Fields 73, 539-553 (1986)

Received January 1, 1985; in revised form April 10, 1986



