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Abstract. This paper attempts to outline the fundamental limits of the photoelectric 
measurement process, to give a simple picture of how their consequences can be estimated 
and to describe recent ideas and experimental work on how to use the current understand- 
ing ofphotodetection to make measurements previously thought to be beyond the quantum 
limit. 
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The detection of light with photoelectric detectors is a 
central part of nearly all optical experiments. Modern 
photoelectric detectors, such as photodiodes and 
photomultipliers, approach the theoretical limit of unit 
quantum efficiency, corresponding to the emission of 
one photoelectron for every photon reaching the 
detector. By measuring the mean photocurrent or 
counting the photoelectrons, a very high sensitivity and 
accuracy can be achieved. For some years the tech- 
nology of photoelectric detectors has been sufficiently 
advanced that their accuracy is limited only by funda- 
mental quantum mechanical measurement limits. 

Since more and more measurements are now 
reaching this quantum limit, the nature of the limi- 
tations which quantum mechanics imposes on photo- 
detection have been studied in detail in recent years, 
both theoretically and experimentally [-1-9]. One 
outcome of this research has been to show that it is 
possible, under certain conditions, to make measure- 
ments on light with greater accuracy than was previ- 
ously thought to be allowed by quantum mechanics 
[10]. 

The paper begins with a discussion of some pro- 
perties of quantum noise, and how it manifests itself in 
typical experiments. We then outline the principles of 
quantum optics, to place the discussion of quantum 
mechanical back action on a sound theoretical basis. 
The paper then concludes with an overview of some 
proposed and some experimentally demonstrated 
schemes for quantum non-demolition measurements, 
that is, measurements which evade the consequences of 
quantum mechanical back action. 

1. Noise Properties of the Photoelectric Signal 

For many years it has been known that even in the 
absence of external noise sources, the thermionically 
emitted current I flowing from the heated cathode to 
the anode of a vacuum tube exhibits fluctuations with a 
root-mean square (RMS) amplitude AI, independent 
of frequency, given by [11] 

A I = ( 2 e l A f )  ~/2 , (1) 

where A f  is the frequency interval over which the 
fluctuations are integrated, and e is the charge of an 
electron. These fluctuations were labelled shot noise, 
due to the sound made by audio amplifiers whose gain 
was such that these fluctuations were the dominant 
noise source. Shot noise is a consequence of the discrete 
nature of the electronic charge and the random manner 
in which electrons are ejected from the cathode and 
arrive at the anode. A photoelectric detector is similar 
to a vacuum tube, except that the hot cathode is 
replaced by a photocathode from which electrons are 
ejected due to the photoelectric effect. It therefore came 
as no surprise that the fluctuations in the photocurrent 
from a photoelectric detector always seemed to obey 
(1). However, the quantum theory of light, or quantum 
optics, has shown this to be more of a coincidence than 
a fundamental fact. 

The primary assumption of quantum optics is that 
the energy transmitted by a beam of light is divided 
into discrete packets, or photons, much as an electric 
current is made up of a flow of electrons. Detailed 
analysis shows that the arrival times of photons from a 
typical laboratory light source at the photocathode of 
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a photodetector exhibits the same Poissonian statistics 
as does the thermionic emission of electrons from the 
hot cathode of a vacuum tube. Thus the fluctuations in 
the photocurrent are due to the quantum nature of 
light, and are indistinguishable from classical shot 
noise, and so the resulting noise is still often called shot 
noise, as well as quantum noise. This noise determines 
the standard quantum limit (SQL), of the signal to 
noise ratio (SNR) which can be achieved with a 
photoelectric detector. 

The shot noise produced by a photoelectric de- 
tector is therefore an intrinsic property of the incident 
light, rather than of the detector. This raises the 
question of whether the light itself can be manipulated 
to improve the signal to noise ratio of the detection 
process. Much attention has been devoted to this 
problem in recent years, and a number of methods of 
altering the photon statistics of light to improve 
detection SNR beyond the SQL have been proposed, 
and a smaller number have been experimentally 
demonstrated [1-9]. 

2. How to Detect Quantum Noise 

Any real light source will contain a number of classical 
noise sources, most of which have 1/f frequency 
dependence. Consequently it is usually difficult to 
detect quantum noise in the dc or low frequency 
regions of the spectrum. However at high frequencies 
(typically > 10 MHz) the quantum noise can dominate, 
and provided the intensity of the laser beam is high 
enough (typically > 1 mW on the detector) and all the 
electronic components are quiet, the quantum noise is 
larger than the thermal noise of the detection system 
and it can be displayed on a spectrum analyzer. 

Figure 1 shows a typical spectrum analyzer display 
of the electrical power generated in the case of a 
photodiode with a dc quantum efficiency r/of about 0.6 
illuminated with 1 mW of laser light followed by an 
amplifier with a gain of 60 dB. 

3. The Signal to Noise Ratio 

The signal to noise ratio SNR serves as a practical 
description of the accuracy of a measurement. Using 
(1), the noise equivalent power Pnep, equivalent to the 
quantum noise associated with a light beam of average 
power P.w and frequency v is given by [12-14]: 

Pn~p=(hv Af P.v~/q)'/z , (2) 

where h is Planck's constant. In the case of light 
detection the quantum noise sets an upper limit 
SNRmax for the signal to noise ratio. This can be 
defined as the ratio between the average power P ,~  of 
the field and the power Pnep equivalent to the quantum 
noise detected 

SNRm" = PavJP,~p = (PavJ//hvAf) l/2, (3) 

where r/is the quantum efficiency of the detector. While 
SNRmax can be very large (for 1 mW of laser power at 
600 mm, r/=0.9 and Af= 1 kHz, SNRma, = 1.5 × 106) it 
nevertheless sets a limit to the smallest change in laser 
power which can be detected. The fact that SNRm, x is 
proportional to p]/2 poses a problem: In order to 
measure a beam with power P,v~ as accurately as 
possible, all the power has to illuminate the detector, 
and none is left to carry out an experiment. A 
beamsplitter which sends a fraction e of the beam 
intensity off for detection while retaining (1 - s )  of the 
power for the experiment will reduce the SNRmax for 
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Fig. 1. The noise generated in a photodetector in the frequency range 0-50 MHz. A dye laser beam with 1 mW power illuminates a 
silicon photodiode. An amplifier with 60 dB gain in the range 0.5-300 MHz amplifies the signal which is detected by a spectrum analyzer. 
The roll off at low frequencies is due to the amplifier. Individual features include laser modes and electric pickup. Two traces are shown, 
with the laser on and off. The quantum noise is the frequency independent difference between the two traces remove. 
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both output beams [13-15]. This is a direct conse- 
quence of (3). 

4. Quantum Mechanical Back Action 
of the Detection Process 

The above example is an experimental manifestation of 
the quantum mechanical back action of the measure- 
ment process. A beamsplitter is required in order to 
obtain information about the intensity. For this pur- 
pose some of the intensity has to be destroyed on a 
detector and consequently this measurement reduces 
the accuracy, or signal to noise ratio, for subsequent 
measurements, in this case the detection of the inten- 
sity of the second beam leaving the beamsplitter. 

According to Heisenberg's uncertainty principle, 
the measurement of an observable property of light, or of 
any physical system, necessarily disturbs the system. 
This quantum mechanical back action imposes limi- 
tations on optical experiments where it is desirable to 
know all the observable properties of a light field and 
simultaneously to use this light field for an experiment. 
However, there are practical situations where only one 
of the properties of the field is important. Take for 
example an absorption experiment [16]. The fraction 
of a light beam absorbed by an ensemble of atoms 
depends on the intensity of light, but not on the phase. 
In order to determine the fraction of light absorbed, the 
intensity has to be measured before and after the 
absorption process, and only the ratio of the two 
measurements is of interest. If, in this situation, the 
intensity of the light field could be measured in such a 
way that the quantum mechanical back action resulted 
only in an increased uncertainty in the phase, then for 
the purposes of this experiment the quantum mechan- 
ical back action of the measurement can be avoided. 
Such an intensity measurement is theoretically pos- 
sible, and is an example of a Quantum Non- 
Demolition (QND) measurement [17]. 

It is useful to have a simple, yet reliable represen- 
tation for the light in order to describe the effect of 
optical components such as beamsplitters, absorbers, 
amplifiers and nonlinear media on the fluctuations of 
light. Phasor diagrams, which were introduced in this 
context by Caves [18] and have since been used 
extensively in quantum optics, are such a represen- 
tation. They will be used in the remainder of this paper. 
The actual justification for this simple representation is 
more involved and in the next section an attempt is 
made to outline the theoretical basis for this model. 

5. Noise Properties of the Quantized Light Field 

The electromagnetic field is quantized [19] by express- 
ing Maxwell's equations in the form of the equation of 
motion for a classical harmonic oscillator, and then 

replacing the classical harmonic oscillator by its 
quantum mechanical counterpart. The energy in the 
quantized light field may only take discrete values, 
corresponding to the states of a quantum mechanical 
harmonic oscillator. The state of excitation of each 
mode, labelled by its wavevector and polarization k, 
of the quantized light field can be represented by Ink), 
where the integer nk is the number of quanta of 
excitation, or photons, in the mode k. The number 
states [rig) are eigenstates of the quantum mechanical 
harmonic oscillator Hamiltonian, 

H=hCOk(alak +½), (4) 

where he) k is the energy of a photon of the mode k, and 
the creation and annihilation operators a~ and ak are 
defined by: 

a g In ) = 1 + 1),  (5) 

ak Ink) = ~ Ink-- 1). (6) 

The properties of the number states are found by 
calculating the expectation values of certain operators. 
The most important of these operators is probably the 
number operator nk defined by: 

nk=a*kak. (7) 

The number operator is diagonal on the number state 
basis, and has the expectation value: 

(rig) = (rig [alak Ink) = rig. (8) 

It may also be shown that the photocurrent Ip 
generated by a photoelectric detector exposed to the 
mode k is proportional to (nk) [20]. 

Since the quantized light field was derived from a 
quantized form of Maxwell's equations, there also exist 
operators corresponding to the electric field amplitude 
and phase of a classical light wave. The electric field 
operator Ek(t) for the mode k at the point r is [21] 

. (  h<o  "x Ek(t) =' t ~  ) {ake-i<<°~t-k")--aZe i('>'<'-l''') } (9) 

where eo is the permittivity of free space and V is the 
quantization volume. 

The Hermitian phase operators eosd0 and sin4i are 
[21]: 

cos dOk =½ {(a~a k + I~, - 1/2a# .± ,,kt,~k~ ~± 1)- 1/2} , (10) 

1 {(alak+l-112 + + sind0k = ~- ) ak-- ak(akak + 1)- 1/2}. (11) 

For the case of a number state Ink) the expectation 
values of these operators are easily calculated, with the 
result: 

(nk IEk(t)Inky = (nkl cos41 Inky 

= (nkl sintil Ink)= 0. (12) 
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Hence even in the classical limit (nk >> 1) a number state 
corresponds to a light field with undefined phase. An 
experimentalist would also be interested in the root 
mean square fluctuations AI of the photocurrent 
generated by a photodetector illuminated by a number 
state, given by; 

Ai=C-]//(nk[ , 2 (akak) Ink> --(<nk[ a~ak Ink>) 2 , 

= 0 ,  (13) 

where C is a constant of proportionality. Therefore 
while the intensity of a light field in a number state 
could be measured without any theoretical limits in 
precision, no knowledge of the phase of such a light 
field can be obtained. A number state is clearly not a 
good description of the coherent light field produced 
by a single mode laser which typically consists of a 
large but fluctuating intensity, and a phase which 
fluctuates about a predictable mean value. 

6. Phasor Diagram Representation 

At this point it is convenient to introduce the phasor 
diagram [18] as a means of representing the state of the 
light field. The sinusoidally oscillating electric field 
component E(t) of a classical light wave with amplitude 
Eo, frequency co and phase ~b may be divided into two 
components with amplitudes X 1 and X2 oscillating 
90 ° out of phase: 

E(t) = Eo sin(cot + ~b) 

=X1 sin c o t + X  2 COScot, (14) 

where 

X 1 = E  o cos~b, (•5) 

and 

X2 = Eo sin q~. (16) 

Thus the amplitude and phase of a classical field is 
conveniently represented as a point plotted against 
axes representing the quadrature amplitudes Xt  and 
X 2 (Fig. 2a). 

For the case of the quantized light field, (9) may be 
written in a form similar to (13), where the quadrature 
phase amplitudes Xa and X2 become operators [-22]: 

a+a* a - a  t 
X I -  2 ' X 2 -  2i (17) 

Using these quadrature phase operators it may be 
shown that a number state is represented on a phasor 
diagram by an annulus [23, 24] (Fig. 2c). 

For  any possible state, the commutation relation 
for the operators Xl and X2 leads to an uncertainty 
relation involving their RMS deviations (AXI> and 
<aX2> [143 

<AX,> <AX2> >¼, (18) 
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2 
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Fig. 2. a Classical state, b vacuum state, c number  state, d 
coherent state, e Two squeezed states with reduced amplitude 
fluctuations (I) and reduced phase fluctuations (II). The size of the 
uncertainty area is identical to the initial coherent state, f 
Squeezed state with excess noise in one projection. Not  a 
minimum uncertainty state 

where 

<AXi> = / < ( A X i )  2 - - ( < A X i > )  2 , i =  1, 2 (19) 

and the triangular brackets indicate expectation 
values. The simplest case satisfying (18) is where (A X1 > 
= (AXz> = 1/2. This case is commonly referred to as 
the standard quantum limit (SQL), and the expression 
(3) for the maximum signal to noise ratio SNRmax of a 
measurement made on a light field assumes this 
symmetric distribution of the minimum allowed fluctu- 
ations in the two quadratures. 

Before discussing a more useful set of basis states to 
represent a real light field it is interesting to investigate 
the properties of the vacuum state Ink=0>. For a 
number state, the RMS deviation AE k of the electric 
field is: 

AEk =/<nkt  E 2 Ink> --(<nkl E Ink>) 2 (20) 

( hco'k "~ ( ½) "~. 
= + (21) 

Clearly in the case of the vacuum state Ink = 0> there is a 
finite electric field oscillating at all frequencies in every 
mode k with an amplitude corresponding to half a 
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photon. The fluctuations in the quadrature phase 
amplitudes for the vacuum state are (AXe)=  (AX2) 
=1/2, thus satisfying (18). For fluctuations where 
(AX1) (AX2)=I /4 ,  the case where (AX1)=(AX2) 
corresponds [25] to the minimum energy content, so it 
is not surprising that the vacuum fluctuations occur- 
ring in nature, for laser as well as thermal light, have this 
symmetric distribution of uncertainty between the 
quadrature phase amplitudes. 

On a phasor diagram, the vacuum state is represen- 
ted by a circle of uncertainty, of diameter 1/2 in 
appropriate units [I] (Fig. 2b). These zero point fluctu- 
ations appear in the Hamiltonian (4) as a zero point 
energy which, due to the continuous and infinite nature 
of frequency space, can be shown to be infinite, How- 
ever, since it is not possible to detect a photon from 
the vacuum state (since (01 ata 10)=0), the infinite 
zero point energy represents a non-detectable offset 
to all energy measurements made on light fields. 

The inability of the photon number states to 
describe a coherent light field led to the development of 
the coherent states [20] IC~k), which are linear combi- 
nations of number states: 

[ek)=e-}l,~12 ~ (ek)", , 2. ~ Ink). (22) 
.:oVn! 

The coherent states are a good representation of the 
light field produced by an ideal laser operating well 
above threshold [20, 21]. On a phasor diagram 
(Fig. 2d) a coherent state is represented by a circle of 
uncertainty identical to that representing the vacuum 
fluctuations (Fig. 2b) displaced from the origin by a 
vector whose length represents the mean amplitude, 
and whose angle from the X1 axis is argo. It is 
worthwhile noting, that in these diagrams the size of 
the regions of uncertainty is independent of the 
intensity of the state. In the case of coherent states, and 
the vacuum state, the left and right hand sides of (18) 
are equal, and these are therefore minimum un- 
certainty states. Using the fact that a coherent state is 
an eigenstate of the destruction operator [20], we find 
that the mean photon number (nk) and its RMS 
fluctuations (Ank) for a field in the state [C~k) are 

(nk) = (O~kl atkak I~k) = ]ctkl 2 (23) 

and 

( Ank) =/(~Xk[ (atkak) 2 I~k) --((~k [a[ak [~k)) 2 = I~kl. (24) 

Since the photocurrent I generated by a photodetector 
illuminated by a light field in the state [(Xk) is propor- 
tional to (nk) , it may be shown that the RMS 
fluctuations in the photocurrent AI in the frequency 
interval Af are given by; 

(25) 

which is identical to (1). These fluctuations, whose 
amplitudes are independent of frequency and propor- 
tional to the square root of the mean photocurrent, are 
commonly referred to as shot noise or quantum noise. 

The phasor diagram provides a useful way of 
thinking about the quantum origin of shot noise. In the 
case of large field amplitudes ([~kl >> 1 for a coherent 
state) the photocurrent is essentially proportional to 
the square of the total electric field amplitude (X~ 
+X~). The magnitude of the vector sum of the mean 
electric field amplitude and the vacuum fluctuations will 
fluctuate, consequently so will the photocurrent, and 
the magnitude of these fluctuations will be propor- 
tional to the product of the vacuum noise amplitude 
and the mean amplitude of the coherent state. Thus 
shot noise may be regarded as a beating effect between 
the mean amplitude of the coherent state and the 
vacuum fluctuations. Finally, since the vacuum fluctu- 
ations have equal Fourier components at all fre- 
quencies, the photocurrent fluctuations or shot noise 
also have this property - they form a white noise. 

7. Techniques for Evading the Standard Quantum 
Mechanical Limits of Measurement 

As shown in the last section, the state of the quantized 
radiation field may be described using the two quadra- 
ture amplitudes ( X l )  and ( X 2 ) .  For coherent states, 
as generated by a laser, the fluctuations are symmetri- 
cally distributed in these two quadratures, so a de- 
tector which could measure the two quadratures 
independently would not show an improvement in 
SNR. However, the uncertainty principle (18) sets a 
limit only on the product (AX1) (AX2). Asymmetric 
distributions of fluctuations between the two quadra- 
tures are possible. These asymmetric uncertainty dis- 
tributions are the key to evading the standard quan- 
tum mechanical measurement limits, and two 
strategies have been demonstrated for exploiting them. 
Both these strategies are realized using the properties 
of nonlinear optical media. 

7.1. Strategy 1: Squeezing 

A state of the radiation field where the fluctuations in 
the two quadratures X1 and X 2 are unequal is said to 
be "squeezed". On a phasor diagram the area corre- 
sponding to the fluctuations is no longer circular but is 
"squeezed" into an elliptical shape (Fig. 2e) [26]. In the 
case of a minimum uncertainty squeezed state 
((AX1) (AX2)= 1/2) the fluctuations in one quadra- 
ture will be below the SQL, and measurement of this 
quadrature is now possible with a SNR .... greater than 
that predicted by (3). 

Squeezing has recently been demonstrated in 
several types of nonlinear media, and asymmetries or 
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squeeze ratios of < A X ~ )/< A X2 > of up to 10 have been 
deduced from experiments [5]. In this paper we will 
not discuss the details of this technique and refer 
instead to the excellent review articles available [1, 2, 
253. 

Squeezing has the disadvantage that any loss 
process, such as absorption, diffraction or the use of 
beamsplitters, will reduce the squeeze ratio since 
vacuum fluctuations with <AXI>=(AX2)=I/2 are 
mixed in [18]. Thus a squeezed state of light is very 
susceptible to technical problems connected with beam 
propagation. In addition, to date only squeezed 
vacuum states have been generated in experiments 
concerned with the propagation through nonlinear 
media. Only experiments with laser diodes [7] have 
generated light fields with non-zero mean amplitude, 
and intensity fluctuations below the SQL. 

7.2. Strategy 2: Quantum Non-Demolition 

If a measurement could be made on one quadrature, 
say Xa, in such a way that the back action of this 
measurement caused increased fluctuations in Xz 
without affecting X~, then repeated measurements on 
Xt could be made without decreasing the SNR. This is 
therefore an example of a QND measurement. 

Consider an interaction in a nonlinear medium 
between the beam to be measured, called the signal, 
with quadratures (X], X~), and a second beam at a 
different frequency, the probe, with quadratures 

i i (Y1, Y2). The superscript i indicates the input into the 
medium, o the output. The quadratures of both the 
signal and the probe leaving the medium, o o ( X l ,  X2)  and 

0 0 (Y1,Y2), are coupled by the interaction with the 
nonlinear medium. 

It has been shown [22] that interactions which can 
be described by a Hamiltonian containing a coupling 
term proportional to (a*a b'b), where a* and a act on 
the signal and b* and b act on the probe, generate the 
following interesting output quadratures: 

X ° :  AXi~ + BXi2 + CYi 2 
0 i 

X2 = X2 (26) 
yO = AY] + BY/2 + CXi2 

0__ i 
Y 2 - Y 2 .  

Here the constants A, B, and C are determined by the 
nonlinearity. 

The two important points are that X ° = X~, so there 
is no back action on this quadrature, and that yo 
contains information about X~. Thus a measurement 
of X~ can be made without introducing fluctuations, 
provided that the nonlinear coupling is sufficient 
which means C > B and C > A. Note that in contrast to 
the case for a squeezed state, the maximum signal to 

noise ratio SNRm. x for the measurement of X~ is still 
given by (3). However, the output signal beam (X °, X °) 
can be used for an experiment, despite the fact that X ° 
has been measured with the highest possible accuracy. 
For a direct measurement, (3) implies that to achieve 
this accuracy it would be necessary to annihilate all the 
photons on the detector. In addition it is possible to 
measure X~ repeatedly with the QND process with no 
change in SNRm,x. Each consecutive QND measure- 
ment of X~ has the same signal to noise ratio. 

The other quadrature of the signal has been 
modified in this process, since the fluctuations intro- 
duced by the measurement process have been added to 
it. Thus the scheme improves the measurement for one 
quadrature only. The uncertainty area of the signal and 
probe beam will be larger at the output than at the 
input, the output beams cannot be minimum un- 
certainty states (Fig. 20. 

8. Detection of One Quadrature Only - The Hetero- 
dyne Detector 

Both squeezing and QND require the selective mea- 
surement of one quadrature only. This can be achieved 
by using a heterodyne detector as shown in Fig. 3. The 
signal beam (at frequency 09) is superimposed with a 
second laser beam (local oscillator at frequency co + f2) 
on a beamsplitter and the beat signal at frequency f2 
generated by a photodiode is monitored. 

Figure 3 shows a phasor diagram representation of 
a heterodyne detector for the simpler case where both 
the signal field and the local oscillator have the same 
frequency (O = 0). For typical local oscillator powers, 
the photocurrent is proportional to the square IRI 2 of 
the phasor representing the field incident on the 
detector. It can be seen from the vector addition of the 
signal and local oscillator phasors that 

IRI 2 = 51SI 2 + (1 - 5)IZOI 2 + 215(1 - 5)] 1/2 

x ILOI (cos (#Lo<Xls> "~ sin qgLo<X2s>), (27) 

SO that by adjusting the phase of the local oscillator 
with respect to the phase of the signal, either <X~s ) or 
<X2~ ) can be measured. The generalization of the 
above result to the case where f24= 0 is straightforward. 

A special case is the situation where the input into 
the heterodyne detector is the vacuum state. This is a 
common situation, a beamsplitter used to split off 
some intensity towards a detector is an example. The 
phasor diagrams can be used to represent this case 
elegantly and it becomes obvious that the quantum 
noise components of both inputs combine to the 
output quantum noise [18]. Thus the quantum noise of 
the vacuum state is the origin of the reduction of the 
SNR of the beam downstream of the beamsplitter. 
This is another interpretation of the back action of the 
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X 1 
~ ~ S i g n a l  

X21 ,~ILO[ ~ ....... ~... Second 
/ "~LO ~"~:~:~::~ ....... output 

o sLc°l IC~lo r I ,RI ~'I~--~_E ILO I 
X2 ~ IS[" ~'~LO 

X 1 

Output 
Fig. 3. The homodyne detector represented by phasor diagrams. 
Signal S and local oscillator LO are mixed on a beamsplitter with 
power reflection e. For simplicity only classical states are shown, 
and the two signals have the same optical frequency. By adjusting 
the phase of the local oscillator, any projection of the signal onto 
the axes X~ and X2 can be selected 

measurement process. However, it has been demons- 
trated experimentally that the noise contribution of 
the second port of the beamsplitter can partially be 
eliminated by using a squeezed vacuum state as the 
input [-10]. 

9. QND Experiments 

A complete experimental demonstration of an optical 
QND measurements has to satisfy the following three 
conditions: 

1. The information about X 2 appears on Y1- This 
can be demonstrated by modulating X 2 and detecting 
Y~, thereby determining the degree of transfer between 
these two quadratures. 

2. Not only classical modulation but also the 
quantum fluctuations of X 2 must be transferred to Y~. 
This requires a measurement of the correlation be- 
tween the fluctuations in X 2 and Y~. This result has to 
be larger than the correlation which can be deduced 
from individual measurements of X 2 and Y1 [29]. 

3. Successive identical QND measurements 
should yield the same signal to noise ratio. For this 
purpose several identical QND detectors have to be 
built and operated simultaneously. 

A number of nonlinear processes have been pro- 
posed for QND measurements, amongst these are 
four-wave mixing in optical fibres [28, 29], a passive 
optical fibre tap [-30], parametric down conversion [-27, 
31, 32], optical rectification [31] and strong field 

interaction in atoms with a 3-level system. Some of 
these experiments will now be discussed in detail. 

The nonlinearity used in the first example [-28, 29] 
is the nonlinear Kerr effect in optical fibres. It is easy to 
see how this process can couple the quadratures of two 
light fields: The refractive index of the nonlinear Kerr 
medium is intensity dependent, thus the intensity 
fluctuations of the signal field will modulate the 
refractive index which in turn will modulate the phase 
of both the signal and the probe field. However, the 
refractive index does not respond to changes in the 
phase. Thus the phase of one field does not affect the 
amplitude of either field. For fields where the mean 
electric field amplitude is much greater than its fluctu- 
ations, we can interpret the quadratures Xa and Y1 as 
the phase and X2 and Y2 as the amplitude, and the 
desired coupling between signal and probe fields is 
established in this nonlinear process. 

Provided losses are neglected, the nonlinear Kerr 
interaction can be represented by (clata+czbtb 
+ e3a*ab*b) in the Hamiltonian and it may be shown 
[28] that (26) holds for this interaction term. In this 
case the constants A, B, and C in (26) are proportional 
to the third order nonlinear susceptibility X 3 of the 
medium. For a fibre of about 100m length and laser 
powers of 130 mW at 647 nm and 60 mW at 676 nm for 
signal and probe respectively, the coefficient A has a 
measured value of 0.3, B of 0.8 and C of 0.58 [28]. In 
order to model the real experiment, the loss mecha- 
nisms in the fibre and the generation of phase noise due 
to light scattering have to be included. The experi- 
mental results confirm this theoretical model and the 
condition 1 is satisfied in these experiments. 

In order to increase the constants A, B, and C, 
higher intensities are required inside this long fibre. 
However, this would generate stimulated Brillouin 
scattering and add even more phase noise. An alterna- 
tive approach is to shorten the fibre and to increase the 
power dramatically by forming a ring cavity out of the 
fibre, with finesse much larger than one. Such an 
experiment has been carried out [29]. Two indepen- 
dent laser beams at 647 nm and 676 nm generated in the 
same Krypton laser were transmitted into a cavity 
made of 13 m of polarization preserving fibre. The 
cavity length was locked for maximum transmission of 
both beams. A finesse of about 12 for the signal at 
647 nm and of 7 for the probe at 676 nm was achieved. 
Considerable problems with the stability of the beha- 
viour of the fibre cavity and with residual sources of 
phase noise were encountered. However, it was still 
possible to demonstrate the transfer of quantum noise 
from the signal to the probe fields - conditions 1 and 2 
were satisfied in this experiment. 

Other experiments [33] in very long fibres (500m 
of polarization preserving fibre) using a Nd : YAG laser 
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at 1.32 ~tm as the signal and a He Ne laser at 1.52 ~tm as 
the probe have demonstrated the transfer of modu- 
lation from signal to probe and thus have satisfied 
condition 1, but the losses in the fibre are still too large 
for a demonstration of condition 3. However, a 
detailed theory of QND measurements in a lossy Kerr 
medium has been developed [34] from which the ideal 
experimental parameters can be predicted. 

A different group of experiments uses parametric 
down conversion as the nonlinear process which 
selectively couples the quadratures of the signal and 
probe fields. A combination of an optical parametric 
amplifier (OPA) and a Faraday Rotator can generate a 
QND signal [27, 32]. The amplifier is pumped with a 
laser beam at 526.5 nm, and nonlinearly couples the 
two orthogonally polarised components of an incident 
beam at 1053 nm which serve as the signal and probe. 
The parametric amplifier by itself does not satisfy the 
requirements for a QND detector, however in combi- 
nation with a Faraday rotator set at the correct angle it 
allows the signal component to travel unaffected 
through the system while the probe component is 
modulated by the signal. The Z 2 nonlinearities used in 
this process can be much larger than the Z 3 values for 
the nonlinear Kerr effect. Currently available materials 
and lasers should provide a significant QND effect. 

Experiments using quantum noise limited pulse 
trains from a cw mode-locked Nd:YAG laser have 
already demonstrated the transfer of information from 
the signal to the probe, and have satisfied condition 1 
1-27]. Further work is required in order to demonstrate 
the transfer of quantum fluctuations. At present, these 
experiments use optically non-resonant Z z materials, 
however it is expected that resonant materials, such as 
calcite may be advantageous due to their strongly 
enhanced nonlinearity [16]. Since any losses are 
detrimental to the experiment, a careful balance exists 
close to resonance between absorption and nonlinear- 
ity. Experiments in resonant solid state materials have 
not yet been reported. 

A different proposal [35] for a QND detector, 
based on resonant materials, is to use the nonlinearity 
of an atomic 3-level system. A possible 3-level system is 
available in barium (Fig. 4), or in rubidium. The two 
dipole allowed transitions in the system are assumed to 
be driven by separate lasers, each tuned close to 
resonance. If the intensity of one field (the signal field) is 
sufficient to induce a light shift [36] in the middle 
(6s6plP1) level, then any fluctuation in this intensity 
will cause the refractive index seen by the other field 
(the probe field) to fluctuate, and consequently the 
phase of the probe field after interaction with the atoms 

atomic beam J 

Signal X 1 X 2 

Y~~!~: :  i::iiiii Probe Y1 .... ~:~:~:~'~ :~:*:~*~: 

frequency e 2 

Signal 

Optical cavity 

mode spacing 5 Heteredyne detector 

Phase shifter 

Probe 

v \ ~ Sum and difference 
~._  ~ ~ detection for the 

measurement 
of correlations 

Fig. 4. Schematic diagram of resonant atomic QND 
experiment 



Quantum Noise - A Limit in Photodetection 299 

will also fluctuate. This scheme is suggested as a 
possible QND detection scheme because there is no 
obvious mechanism through which the measurement 
of the phase of the probe field could have an effect on 
the intensity of the signal field. 

The detunings and intensities of both fields will 
have to be optimized with the aim that the amplitude 
fluctuations of the signal couple strongly to the light 
shift (small signal detunings) while the light shift 
couples strongly to the phase of the probe (large probe 
detunings). Amplitude fluctuations of the probe should 
have no effect on the signal. This experiment will 
almost certainly require a sub-Doppler atomic beam. 
While the atom density available in an atomic beam is 
low in comparison to a solid, this is compensated by 
the large near resonant increase in Z 3. In order to 
achieve the required intensities, it may well be neces- 
sary to use either a cavity to enhance the intensities in 
cw experiments or to use quantum noise limited trains 
of pulses from modelocked cw lasers. 

10. The QND Absorption Experiment 

One direct application of a QND measurement would 
be the QND absorption experiment shown in Fig. 5 

Coherent state 

I   sptt Vacuum state 

Absorber 

[16]. Before we can see the advantage of this arrange- 
ment we first have to note the fact that the sensitivity of 
an ordinary absorption experiment is limited by the 
quantum noise. In order to measure an absorption 
signal it is necessary to measure the intensity of the 
light both before and after it passes through the 
absorbing medium, and to record the difference be- 
tween the two measurements. The intensity of the light 
upstream of the absorbing medium is generally deter- 
mined by inserting a beamsplitter to split off an 
intensity reference beam. As discussed before, the use of 
the beamsplitter reduces the SNR for both the re- 
ference and the signal beam. Also, the reflection 
properties of the beamsplitter are such that the result- 
ing fluctuations in the photocurrents from the two 
detectors cannot be electronically subtracted. Thus the 
minimum detectable absorption signal is determined 
by the quantum noise in the photocurrents and the 
SNR of the absorption measurement is given by the 
SNR of the smaller of the two photosignals. A 50% 
beamsplitter would give the best possible result. Since 
the absorption process is generally independent of 
phase, a QND intensity measurement which confined 
its back action to disturbing the phase could be used to 
replace the beamsplitter used to generate an intensity 

a 
Output 

Xl  Xl 
Signal ' ~ X  l A 

X _ 2 l v x Xl I 
" - 

Probe Y - : ' ~ ~ n e d i u m  ~ i i i ~ ~  

Heterodyne detector 
for Y1 only 

Spectrum ~ 
analyzer 

Fig. 5. a The standard absorption experiment. 
The beamsplitter required for the reference 
beam has a vacuum as the second input. The 
properties of the beamsplitter are such that the 
quantum fluctuations recorded in detectors 1 
and 2 cannot be subtracted electronically, b The 
QND absorption experiment. A QND 
measurement of the signal amplitude is made. 
The electric output from the heterodyne detector 
which is proportional to the phase fluctuations 
of the probe beam (Y1) can be used as a 
reference and the quantum fluctuations in the 
signal (Detl) can be subtracted electronically. 
Phasor diagrams show the mean field and the 
fluctuations of the signal beam 
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reference. This has the advantage that the quantum 
fluctuations of the amplitude of the signal field could be 
measured on a separate probe beam without influenc- 
ing the absorption process. This would permit the 
subtraction of the quantum noise from the photocur- 
rent generated by the photodetector downstream of the 
absorbing medium. Thus there is no fundamental limit 
on the sensitivity of such an absorption experiment, a 
part from the noise added by the absorption process 
itself. 

11. Condusion 

Light can be described by quantum mechanics in terms 
of the expectation values of two conjugate operators, 
or quadrature phases. Coherent light, such as the light 
emitted by a laser, typically has a symmetric distri- 
bution of fluctuations in these quadratures. These 
fluctuations give rise to quantum noise in ordinary 
photodetection, limiting the signal to noise ratio (SNR) 
achievable. To measure the intensity requires the 
absorption of photons on the detector, thus reducing 
the SNR for the remaining light, and this is a manifest- 
ation of the back action introduced by the measure- 
ment process on a quantum mechanical system. How- 
ever, recent experiments have demonstrated techni- 
ques by which measurements can be made beyond the 
quantum noise limit as long as only one quadrature is 
of interest. Such QND measurements have been 
demonstrated in optical fibres, using the nonlinear 
Kerr effect, and in optical parametric amplifiers. Other 
experiments in solids and atoms are in preparation. So 
far only the transfer of modulation and of the quantum 
fluctuations from signal to probe have been demon- 
strated, and a sequence of QND measurements with 
undiminished SNR has not yet been demonstrated. 

Apart from demonstrating the fundamental limits 
of measurement processes, these techniques will have 
increasing application in high sensitivity measure- 
ments. They will contribute to the development of ultra 
sensitive interferometers, for speculative projects such 
as the detection of gravitation waves or for technical 
applications such as improved navigation using more 
sensitive laser gyroscopes. In addition, the quantum 
noise limit will probably be reached in optical com- 
munications and in optical storage techniques. Thus 
these cur ren t ly  exot ic  measu remen t  schemes discussed 
here might  one day  be as c o m m o n p l a c e  as lasers are  
now. 
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