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Abstract. The delay-differential equation system describing the passive optical ring cavity is inves- 
tigated. A survey of different bifurcation scenarios into chaos of the solutions on one branch and 
specific transitions between different branches of the multistable system are discussed. Precipitation 
via a heteroclinic cycle and crisis induced intermittency are found. 

PACS: 42.65.Pc 

Nonlinear optics exhibits a variety of temporal and spatio- 
temporal structures. In the moment there is much interest 
in transverse instabilities which involve a high number of 
degrees of freedom. Some years ago there have been some 
publications concerning optical delay systems. Although sys- 
tems with time delay require a highly complex mathematical 
analysis, detailed information is requested in order to under- 
stand a great number of real physical systems, e.g., class B 
laser. Since the understanding of these systems is far from 
being complete, we have performed numerical investigations 
with the delay-differential equations of Ikeda [1]. 

These equations are infinite dimensional in time and de- 
scribe an optical ring cavity. However, in most cases the 
equations are treated in a simplified version (Ikeda map). It 
was doubted whether the map describes the dynamics of the 
system in a sufficent manner [2] and in some later papers 
these doubts were confirmed [3-5]. For this reason we will 
treat the ring cavity in the original description of Ikeda and 
without any simplifications. The delay-differential equation 
system (ddeq) reads: 

Oaf(t) 
- [ ~ ( t )  + 1 / 2 ]  - 2/c~LIE(t  - 3 ' r ) l  2 

Ot 
x {exp[2o~Lq)(t)]- 1}, (1) 

E(•) = VFTEi Av R E ( t  - 3'T) exp[aLqS(t)] 

x e x p { - i a L A c e [ ~ ( t )  + 1 / 2 ]  - i 6 } .  (2) 

The meaning of the variables and parameters is as follows: 
E(t) is the complex, slowly varying envelope of the electric 
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field at the inner boundary of the input mirror and ~(t)  is the 
atomic inversion averaged over the two-level medium with 
length L. The dimensionless time t is scaled on the longitu- 
dinal relaxation rate 3' and the delay-parameter 3"r gives the 
time the light needs to travel once around the cavity. The 
parameter 6 represents the empty-cavity detuning. Other pa- 
rameters are the atomic detuning Ace, the amplitude of the 
input field outside the cavity El, the absorption a, and the 
susceptibility X = aAce. R and T are the reflectivity and 
transmittivity of the input and output mirrors respectively. 
For further details see [5, 6] and references cited therein. 

In recent papers some aspects of the simulation of the 
delay-differential equation system were explained. In the 
first, an example for each of the different routes to chaos 
was given [6], in the second, one of the routes was investi- 
gated by using a Lyapunov analysis [7]. In the third paper the 
linear stability analysis of the equations was performed [5]. 
In this article we shall show a survey of the three different 
routes to chaos in the relevant 6 - 3'r space of parameters. 
In addition, we will examine some typical processes of fun- 
damental interest. These include precipitation and intermit- 
tent transitions between different branches. Both phenomena 
might be relevant for switching processes in real optical de- 
vices. These extended investigations give us more details 
on the possible temporal structures and bifurcations in the 
ring cavity. This information is also highly requested when 
analysing the spatio-temporal structures in the system. At 
the moment it is not feasible to analyse a transverse system 
including time delay because of the infinite number of di- 
mensions not only in space but also in time. For this reason 
only systems with either transverse coupling (see, e.g., [8]) 
or with time delay are treated. The information of the delay 
system and of the system with transverse coupling give help 
for an analysis of the complete system. 
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Fig. la, b. Bifurcation structures in the parameter space: a Cavity de- 
tuning ~ vs delay-parameter 7r  at Ei = 3, R = 0.95, aL = 4, 
xL = 12~r; b Extended part of the parameter space 6 vs 7"v (description 
see text) 

1 Bifurcation Structures in Parameter Space 

In [6] the authors presented three different routes to chaos for 
different values of the parameter ~ with increasing parameter 
7-r: Intermittency route at 6 = 0 = ~5 = 27r, period-doubling 
route at d = ~r, and quasi-periodicity at 6 = u r  . 3  We are 
now interested in the question how these different routes 
turn into each other by continuous variation of & To this 
end, we computed a section through the parameter space, 
keeping all parameter constant except 5 and 7 r  (El = 3, 
R = 0.95, c~L = 4, x L  = 127r). It should be stressed, that 
7 r  and a are not independent from each other and therefore 
special setups are requested for a real experiment. 

The result of  our calculation can be seen in Fig. 1, where 
the empty-cavity detuning a vs the delay-parameter 7 r  is 
shown. The arrows in the left of the ordinate of  Fig. ta  
mark the three routes to chaos ah'eady mentioned. The letters 
A,B,C stand for the intermittency route, the quasi-periodicity 
and the period-doubling route respectively. 

In Fig. la the reader recognizes a bold line beginning on 
the right hand side at 3'r  ~ 5, 6 ~ 0.87r. It is continued at 
7 r  v 0.3, 6 = 0, leading to the top again and is continued a 
third time in the lower left. At this line the first Hopf bifur- 
cation occurs when 7 r  is increased. On the left of it (at small 
values of ",/r) the attractor is a stable fixed point (marked by 
FP), on the right of  it periodic, quasi-periodic and chaotic 
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Fig. 2. Stationary solutions of the averaged inversion • vs the outside 
input amplitude Ei 05 = ~rc, "yr --+ 0) 

solutions exist. The figure shows the behaviour of the sys- 
tem on the lower branch but the dashed continuation of the 
bold line is the boundary of  the first Hopf bifurcation on 
the upper branches because (5 goes modulo 2rr. In Fig. 2 the 
multistability curve shows three stable branches for E i = 3. 
In the following we use the position of  the branches relative 
to the inversion to classify them in upper, middle, and lower 
branch. 

The periodic solutions on the lower branch are marked 
by Pi, (i indicates the periodicity). For the period-doubling 
route they were discriminated up to the P64-solution for some 
values of the parameters. A sequence of period-doublings at 
~5 = rc is shown in [6]. 

The mode-locking region (F) lies in the upper part of 
the figure between the period-4 and the period-2 solution. 
At the left boundary of this region the system undergoes a 
second Hopf bifurcation. As explained in detail in [6] a new 
frequency w2 is generated, which is incommensurable to the 
first one, cot. In this reference for the case of ~ = 3 re, mode- 
locking of the two frequencies was found, beginning at a 

3 A winding-number w2/cot = ~ and ending at co2/cot = ~. 
modified devil's staircase (nonstandard Farey sequence) is 
found by applying the Farey tree construction. The explicit 
calculation of the winding numbers is given in [6]. The val- 
ues of  the frequencies have been identified by Fourier spectra 
of  the time series. It should be stressed, that our definition of 
the winding number is arbitrary and the reversed definition 
(031/032) is suited as well. 

Figure lb shows a detail of Fig. la, demonstrating the 
occurrence of  period-doubling and mode-locking in narrow 
neighboured regions of parameter space. For 6 = 7r the 
period-doubling route can be followed up to period-4 in this 
diagram. At increasing values of  /~, the branches between 
the periodic solutions shift to the left and the mode-locking 
region (hatched) occurs. In this region the widest resonance 
(co2/col = ~, marked by P6) is also shown. All other res- 
onances are much smaller and cannot be resolved on this 
scale. It should be noted, that the period-doubling sequence 
is only interrupted by the mode-locking region, it continues 
in part again at higher values of  "yr. 

In the mode-locking region specific period-doubling bi- 
furcations occur, e.g., the transition cv2/aJ1 = ~- to a CVz/cVl = 
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10 There are quasi-periodic and even chaotic solutions be- 12" 
tween the mode-locked tongues. This indicates, that there 
is probably no complete Farey sequence for any parameter 
set. For the chosen values of parameters the regions with 
irrational winding-numbers do not form a Cantor set. 

2 Coexistence and Jumps Between the Stable Branches 

The property of multistability of the system was explained 
in detail in [5] (see Figs. 1 and 2 of this reference). Here 
we investigate specific dynamical solutions of the different 
branches: The coexistence of periodic and chaotic solutions, 
crisis induced intermittency between two branches and the 
process of precipitation from one branch to another one. 

Out of a variety of solutions we discuss three cases in the 
parameter space. Each of them is found in large regions of 
the parameter space. In Fig. la the three points are indicated 
by an X and numbered in the following sequence: 

(1) Coexistence of periodic solutions (~ = 0, 3,7- = 
1.75); 

(2) Precipitation from upper to lower branch (g = 1.77r, 
7~- = 2.15); 

(3) Intermittent jumps between middle and lower branch 
(6 = 1.37r, ~/~- _ 3.1). 

We shall give explanations of the processes in the next 
three Sects. 

2.1 Coexistence of Periodic Solutions 

By a variation of the initial conditions it is possible to select 
the branch on which the system starts its trajectory. Two co- 
existent periodic solutions on the upper and the lower branch 
were found in this way. Figure 3 shows the positions of the 
attractors relative to each other in three-dimensional physi- 
cal phase space spanned by the real and imaginary part of 
the transmitted electrical field and the atomic inversion. In 
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Fig. 3. Two coexistent solutions on lower (L1) and upper (L2) branch 
at ~ = 27r, 7~- = 1.75 in the three-dimensional physical phase space 
spanned by the variables Re{E}, Im{E}, and ~b 

the parameter region under consideration there exist only 
two stable oscillating branches. The different limit-cycles 
are labeled with (L1) and (L2) in Fig. 3. 

Similar to the scenario described in Sect. 1 for the lower 
branch, the first Hopf bifurcation on the upper branch takes 
place at lower values of the parameter .3,~- compared with 
the Hopf bifurcation on the lower branch. In Fig. 4 details 
of the two attractors are displayed. A detailed examination 
of the time-series (Fig. 4c) and the power spectra (Fig. 4d) 
shows that the solution on the upper branch oxcillates about 
three times as fast as the solution on the lower branch. The 
ratio of the frequencies is CO(L1) :W(L2 ) ~ 0.341 . . . .  The Hopf 
bifurcations on the different branches generate limit-cycles 
with different frequencies. 

Figure 3 shows that the two attractors lie very close to- 
gether. The separating saddleorbit between the two branches 
can be crossed at other values of the parameters. This case 
will be treated in the subsequent Sects. 

2.2 Precipitation Between two Branches 

We will consider now the case of unstable solutions on one 
or two branches and one stable solution on the third branch. 
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Fig. 5a--c. Sequence of phase space projections in the plane of the 
complex electrical field Ira{E} vs Re{E} and power spectra at 6 = 
1.7~r, 7T = 2.15 on the three branches with different transient times, a 
Saddlefocus on the upper branch (t/TT ~ 100 to 110); b Saddlefocus 
on the middle branch (t/TT ~ 220 to 230); e Stable solution on lower 
branch 
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Such a transition between the branches was called precipi- 
tation [6, 9]. 

For  example at 6 = 1.7~r, ",p- = 2.15, the lower branch 
shows a stable period-2 solution. By choosing the initial con- 
ditions to be on the upper branch, one gets a quasi-periodic 
saddlefocus at first. 

The quasi-periodicity and the saddle property of  the so- 
c5 

lution can be seen in Fig. 5a; the trajectory spirals inwards 
and outwards the unstable stationary point and the region --:. 

c b  
visited by the trajectory is expanding slowly in phase space. 
The power spectrum shows two incommensurable frequen- ~ 
cies with ratio COl/~ 2 ~ 1/11. A local stability analysis has -~ 1 
yet to be performed to prove the conjectured saddlefocus 

behaviour. ~ 1 
The solution is not stable for long times: After about < 

300 cavity transit times the trajectory comes near to the 
saddle which seperates the two branches and precipitates to 0 
the middle branch (see Fig. 6c). This branch again is a quasi- e 
periodic saddlefocus but only with an one-dimensional stable 
manifold (see Fig. 5b). Both branches are connected by a 
heteroclinic orbit with an one-dimensional manifold (the thin 
black line connecting both saddles in the figure) while falling 
from the upper to the middle branch and by a heteroclinic 
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Fig. 6a-c. Heteroclinic orbit at 6 = 1.79r, 7T = 2.15. a and b projection 
of the trajectory in three-dimensional physical phase space, spanned by 
the complex electrical field E and the inversion O: a Time t / T T  runs 
from 150 to 160; b t / T T  ~ 225 to 238; C Time series with initial 
conditions on upper branch for t / T T  = 0 to 400 
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orbit with a two-dimensional manifold while passing from 
the middle to the upper branch. The terminology is explained 
in [10]. 

After overcoming the saddle between the middle and the 
lower branch after some transients the system shows the 
period-2 solution of the lower branch (Fig. 5c). 

In three dimensions, the behaviour of the trajectory be- 
tween the upper and the middle branch can be described 
by the formation of a heteroclinic cycle which transforms 
into a homoclinic orbit on the middle branch. Both are only 
transients to the stable solution P2 on the lower branch. A 
presentation of the whole precipitation process from upper to 
middle and then to lower branch is given in Fig. 6. Here, the 
one-dimensional heteroclinic connection between the upper 
and the middle branch can be seen as a sharp line in compar- 
ison with the two dimensional connection from the middle to 
the lower branch, which spirals around it. This phenomenon 
of  precipitation is found also in completely different regions 
of  the parameter space. 

It turns out that precipitation is linked with the occurence 
of long transients. Presumably, the trajectory is wandering 
around in certain regions of phase space until it finds a path 
where it can cross the regular or fractal boundary seperating 
the different solutions. 

An experimental evidence for the appearance of hete- 
roclinic cycles in nonlinear optical systems such as ours, 
i.e., systems involving both eletric field and inversion as 
dynamical variables, gives [11]. There, a laser with feed- 
back is considered. In analogy to the Ikeda ddeqs (1, 2), the 
equations describing this setup have been derived from the 
Maxwell-Bloch equations, too. 
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2.3 Intermittent Jumps Between two Branches 

Also this type of bifurcations has been found in large regions 
of  the parameter space. As an example, we shall consider 
first the route to chaos for the system being on the lower 
branch at ~ = 1.3~r, and 1.0 _< 3~r _< 4.0 (see Fig. 7). 

The first Hopf bifurcation takes place at 77 ~ 0.687 . . . .  
a sequence of  period-doublings starting from a period-1 so- 
lution and leading to quasi-periodicity at "/r ~ 1.89 joins. 
The quasi-periodic region ends at ~ r  ~ 2.22 with a period- 
2 solution which is doubled again for larger values of the 
delay-parameter. 

At values of  g,r >_ 3.1, the bifurcation diagram Fig. 7 
shows a widening of  the attractor. This behaviour extends 
to values ~ r  > 4.0. This sudden change in the size of a 
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Fig. 7. Bifurcation diagram for the imaginary part of the electrical 
field Im{E} at 6= 1.37r. Variation of the bifurcation parameter: 
1.0 < 2~r _< 4.0 
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Fig. 8a-e. Intermittent time-series of the inversion and the transmitted 
intensity at 6 = 1.37r, ~/r = 4.0. a Intensity and b Inversion, both for 
t/~/r = 0 to 425; e Intensity for t / f r =  200 to 1900 

chaotic attractor is interpreted as a crisis, which is defined 
as a "collision between a chaotic attractor and a coexisting 
unstable fixed point or periodic orbit" [12]. 

A better understanding of  the type of  crisis is given by 
Figs. 8a,b. The time-series of  the transmitted intensity of  
light and of the inversion is drawn. The figures were com- 
puted at parameter values ~5 = 1.37r, "y~- = 4.0 and with the 
initial conditions of  the lower branch. One can see that the 
widening of the attractor is not transient but intermittent. The 
intermittent behaviour is a steady state solution (Fig. 8c). 

The time-series of  the inversion shows that the trajectory 
is in the domain of  the middle branch when the transmitted 
light intensity is high and on the lower branch when the 
intensity is low. The position of the separating unstable fixed 
point between the two branches was found in a calculation 
for 7~- --+ 0 to be at @~ = -0 .2535  . . . .  

The subsequent investigation shows that this crisis in- 
duced intermittency is an intermittent bursting: The first 
Hopf bifurcation on the middle branch takes place at ",/T = 
0.1370 . . . .  While increasing ~/~- the generated limit-cycle 
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expands in phase space and collides at 0.35 < 7~- < 0.36 
with the separating saddle between the middle and the lower 
branch. Trajectories with initial conditions in the former 
basin of  the middle branch now fal l  to the lower branch. 
This mechanism can be explained by the two-dimensional 
model  of precipitation (see [6]). 

In contrast to the middle branch, the trajectories of  the 
periodic solution of  the upper branch are l imited to its basin 
of attraction. Therefore, a crossing of the boundary and a 
subsequent transition to other branches is not possible. The 
same behaviour holds for the other periodic, quasi-periodic 
and even chaotic solutions (see Fig. 7). Above -y~- ~ 3.1 the 
chaotic attractor on the lower branch collides with the sep- 
aratrix and extends to the saddle between middle and upper 
branch. In terminology of  [13] we can call this behaviour 
attractor widening. 

3 Conclus ions  

When investigating the behaviour of the ring cavity system 
on the lower branch a rich bifurcation structure is found. The 
period-doubling route is the main route to chaos in this sys- 
tem when the delay-parameter  is varied. It is interrupted by a 
mode-locking region but continues afterwards. By variation 
of  the other parameter (e.g., the input field El), we expect 
that similar bifurcation structures will be found. 

At  higher values of  the delay-parameter  the property of 
multistabili ty becomes important: The coexistent solutions 
on the different branches tend to expand in phase space and 
the saddles between the branches cross, In great areas of the 
considered parameter space the phenomenon of precipitation 
occurs and we have distinguished three different cases. 
• The solutions on different branches are periodic. In this 
case the two dimensional model  of precipitation holds. 
• Only one of  the solutions involved is regular while the 
others are not. Here, the precipitation takes place in an at 
least three-dimensional phase space by the formation of  a 
heteroclinic cycle. 
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• If  the solutions on all of  the involved branches are irreg- 
ular the attractor widens in a crisis. The time-series shows 
intermittent bursts. 

The transitions and jumps between different branches dis- 
play very long transients. It takes many oscillations until the 
system can cross the basin boundaries, which are formed by 
regular or chaotic saddleorbits. The very complex behaviour 
in a three- or higher-dimensional phase space shows again 
that one has to consider the complete, infinite dimensional 
delay-differential equations if  one wants to obtain the full 
dynamics of  the multistable ring cavity. 
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