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Abstract. A sodium-filled Fabry-Perot resonator shows many different types of irregular behavior. 
A sophisticated experimental apparatus allows reproducible measurements of  oscillation scenarios 
leading to chaos and thus permits a detailed classification of  the different phenomena. A quantitative 
explanation - featuring a new mechanism - for the best reproducible class of  chaotic oscillations is 
given. 

PACS: 42.50.Tj, 42.65.Pc 

Nonlinear resonators, i.e., resonators containing a nonlinear 
optical medium, are an important class of systems for study- 
ing chaos in optics. They feature a combination of  an optical 
nonlinearity and a feedback provided by the resonator. In or- 
der to study their behavior it is necessary to understand both 
the microscopic behaviour under the influence of  the light 
field and the effects of the resonator. The system we study 
is a Fabry-Perot resonator filled with sodium vapor that is 
known to show self-oscillations due to spin precession in the 
ground state under the influence of  a static magnetic field [1 ]. 
These oscillations can become chaotic if the magnetic field is 
not perpendicular to the optical axis [3, 4]. In this paper, we 
show the experimental requirements for reproducible mea- 
surements on this system and discuss the parameter ranges 
where agreement with the model can be expected. 

1 Theoretical Description 

1.1 Microscopic Model 

In [1] the theoretical model describing the behavior of  spin- 
1 atoms in a static magnetic field under conditions of  strong 

pressure broadening was presented in detail. Starting from 
the density matrix formalism, the final set of  equations was 
obtained using adiabatic elimination techniques. The dynam- 
ical variables are m = (u, v, w), the expectation values of 
the Cartesian components (x, y, z) of the spin in the sample, 
and, as introduced in [2], the population s of the excited 
state. The quantization axis ~z is defined by the direction of  
the laser beam. In their most generalized form, the equations 
of  motion are 

m = - %ffm +D~ff x m + ~ z ,  (la) 

= - FeffS + Y -- 2 W ,  (lb) 

.Y = P_ + P+, ~ = P_ - P+ .  (lc) 

Here P+ and P_ represent the pump rates due to the ~7+ 
and a_ light, respectively, inside the resonator, D.~ff is the 
effective Larmor frequency, "/eff and Feff are the effective de- 
cay constants of  the ground state orientation and the excited 
state population, respectively. Generally, the effective quan- 
tities are functions of  P±, w and s. Equation (la) describes 
the precession of  m around the direction of  the effective 
magnetic field with angular frequency ID.effl, with the driv- 
ing terms being proportional to the difference between the 
two pump rates and the damping terms "/eff. Equation (lb) 
describes the excitation due to the light field which decays 
with Peff and includes the dependence on the longitudinal 
orientation component w. 

1.2 Resonator 

The feedback in the system under study is provided by a 
Fabry-Perot resonator. Assuming the resonator time constant 
to be small compared to the relaxation rates of  the medium, 
the electric field can be eliminated adiabatically. Thus, the 
influence of the resonator on the pump rates is described by 
the Airy function 

P~ = Po,± Ay(R, R±, ~±) ,  (2) 

1 - R  
Ay(R, R±, ~ i )  = 1 + R 2, - 2R± cos(~±) '  (3) 
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P0,± being the pump rates that would be present without a 
resonator. Apart from the mirror reflectance R, this function 
depends on the cavity detuning, the absorption coefficient 
C<L, and the refractive index n± (for ~7± light, respectively), 
the latter two being linear functions of w and s 

c~±(w, s) = %(1 4- w - 2s), (4a) 

n±(w, s) = 1 + (no - 1)(1 -4- w - 2s). (4b) 

Here, c~0 and no are the values of the absorption coefficient 
and the refractive index for the actual light frequency in the 
absence of nonlinear effects. Working in a chiefly dispersive 
regime we can neglect the dependence on c~i 

R± = R exp(-ct±Lexp) ~/~exp(-aoLexp) (5) 

and thus, the argument of the Airy function is 

27cLexpn+(w, s) 
qz±(w, s) = A = ~0 + ~l ,±(w,  s), (6) 

2~r L~xpno (7) 
~0 ~ - A 

It has to be emphasized that no spatial dependences are in- 
cluded in this model, i.e., the light field is assumed to be a 
plane wave interacting with a uniformly distributed nonlin- 
ear medium. 

1.3 Control Parameters 

In our experiments we use only (7+ polarized light, and thus, 
in the following discussions only the "+"-indexed quantities 
will appear. As can be seen from (la) and (lb), the important 
parameters in this system are the magnetic field and the 
pump rate inside the resonator. This rate depends on the 
laser power, measured in terms of P0, and on the detuning 
of the linear resonator ~0: 

[ °aY0 ] P ( w , s ) = P o  Ay(~o) + (phi(w, s) ~-~- + . . . .  (8) 

Thus P0, referred to as resonator phase shift in this article, 
determines the pump rate in the absence of nonlinear effects 
- via the local magnitude of the resonance function - and 
the coupling strength of the nonlinear feedback - via the 
local slope. 

Fig. 1. Schematic experimental setup 
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The transmitted intensity is recorded by a digital storage 
oscilloscope controlled by a microcomputer. 

The resonator phase ~0 has to be controlled with very 
high precision because of the sensitive dependence of P 
on ~0. Given the resonator parameters mentioned above, 
unwanted phase fluctuations should be small compared to 
27r/30. On the other hand, being a control parameter, ~0 
should be able to be varied over a range of 27r. It is thus 
crucial for the experiment that both these requirements are 
met simultaneously. 

2.1 Phase Stabilization 

As seen in (7), qo0 is the ratio of the resonator length and 
the dye laser wavelength. For ~0 to remain constant, both 
have to be stabilized simultaneously to the same reference, 
in order to avoid a relative drift. The reference we use is 
a stabilized helium-neon laser. The experimental resonator 
and an additional confocal reference resonator with a FSR of 
750 MHz are stabilized to the helium-neon wavelength. The 
stability of the dye laser relative to the reference resonator 
is monitored using the polarization stabilization scheme de- 
scribed by H~nsch et al. [6]. Any deviations due to drift are 
fed back to the Stabilok reference cavity, thus locking the 
dye laser frequency to the helium-neon reference as well. 
The stabilities obtained in the individual regulation loops 
are: 

reference rel. to He-Ne laser: 0.5 MHz 

experiment rel. to He-Ne laser: 2.5 MHz 

dye laser rel. to reference: 2.0 MHz. 

They imply a worst case instability of ~0 of 1/200 of the 
free spectral range of the experimental resonator. 

2 Exper imenta l  Setup 

The nonlinear resonator we use consists of a heated quartz 
tube containing a small quantity of solid sodium in an argon 
atmosphere of about 200 mbar, sealed by identical mirrors 
forming a symmetric confocal resonator with a length of 
150 ± 1 mm (Fig. 1). The resonator has a free spectral range 
(FSR) of 1 GHz and a finesse of about 30, including linear 
absorption. The magnetic field is created by three pairs of 
Helmholtz coils. The laser light is provided by an argon- 
ion laser pumped ring dye laser with a built-in stabilization 
(Spectra Physics Stabilok) (Fig. 2). The laser was operated 
at a frequency of about 90 GHz above the atomic resonance, 
with a power of about 150mW in front of the resonator. 

2.2 Phase Variation - The "Optical Vernier" 

By using the described stabilization scheme, with all stabi- 
lization loops locked, the experiment and reference resonator 
lengths will be integer multiples of the helium-neon wave- 
length, while the dye laser wavelength will be an integer 
fraction of the reference resonator length: 

Lexp = N1 "~ref, 

Lref = N2 ,~ref, 

Lref = N3 ,~dye , 

L e x p _  ~)0 __ N1 N3 

Adye 27c N2 

(9) 
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Fig. 2. Detailed experimental setup. Abbre- 
viations: EOM electro-optical modulator, 
Woll Wollaston prism, Pol polarizer, A/2 
halfwave plate, A/4 quarterwave plate, PZT 
piezo translator; the diode symbols denote 
optical isolators. Vacuum systems, beating 
and Helmholtz coils are not shown 

Here, Lex p and Lref denote the round-trip lengths of the ex- 
periment and reference resonators. The exact values of the 
integers N1, N2 and N3 can obviously not be controlled. 
Thus, in the worst case, the phase might be perfectly stabi- 
lized at a value separated by ~r from the value desired. A 
small amount of fine tuning is possible by shifting the work- 
ing point of the reference length stabilization, but certainly 
not over half a FSR. The only other possible variation is a 
shift to an adjacent resonance - changing the frequency by 
a full FSR. 

A method was developed to perform arbitrary phase 
changes without having to leave the locked state of the sta- 
bilization. As it is based on the principle of a vernier scale 
such as that on a (metric) slide caliper, we introduce it as 
the optical vernier. Without making use of the vernier scale, 
only lengths of m millimeters, m integer, can be measured 
exactly by aligning the zero line of the vernier scale with 
one of the lines on the main scale that are equally spaced 
by one millimeter. Using the vernier scale, one looks for the 
coincidence of a line at a distance of 9n/10mm from the 
zero line on the vernier scale with the (m + n)th line on the 
main scale, thus being able to exactly measure a length of 
m . n  millimeters. 

Here, the ratio of the different line spacings corresponds 
to that of the helium-neon and the dye laser wavelengths, 
being approximately 15/14. A change from one stabilized 
state in the reference resonator (with a FSR of Uref) 

Lref  = ra- -~dye ", " /"dye = m .  Uref (10) 

to an adjacent resonance for both the length stabilization and 
the dye laser stabilization is analogous to the comparison of 
adjacent lines on both scales of a caliper: 

Lref --+ Lref -1-/~ref = (7i% -]- 1) )~dye, 

[ /~ref- --- -~dye ] 
/"dye --~ /Jref frt~ 

/~dye J (1 1) 

Are f - -  Ady e 
/Ydye ---+ /"dye - -  //ref 

"~dye 

With the approximation given above, this leads to a fre- 
quency skip of approximately 1/14 of FSR of the reference 
resonator, i.e., approximately 50 MHz. 

Technically, jumping to adjacent resonances is achieved 
by applying a fast voltage step to the PZT driver circuit, 
resulting in a sudden length change of the reference res- 
onator of approximately one helium-neon wavelength. Sub- 
sequently the exact resonator length will be attained by the 
length stabilization circuit that did not notice the fast change 
to the same working point on another resonance. Finally, 
since the locking to the Stabilok works slowly, the Stabilok 
reference will finally be adjusted to provide the matching dye 
laser wavelength. The procedure can be repeated in both di- 
rections, limited only by the adjustment range of the PZT. 
Here, the full FSR of the nonlinear resonator (1GHz) can 
be covered by a variation of the reference resonator mirror 
spacing of 20/4 helium-neon wavelengths (~ 3.1 gm). This, 
together with the fine tuning mentioned before, makes it pos- 
sible to adjust to any desired phase. Thus we are able to trace 
any phase-dependent scenario over its full range without the 
restriction of repetitive phase scans. This includes the possi- 
bility to reproduce large phase changes in both directions in 
order to study hysteresis loops as well as to perform phase 
stabilized measurements of a particular oscillatory behavior. 

3 Experimental Results 

3.1 Phase Scans - Generalized Bistability 

As a first step in a series of measurements we look at the 
behavior during a phase scan in order to have an overview 
of phase-dependent changes. As can be seen from Fig. 3, an 
obvious hysteresis loop can be observed: While increasing 
the phase from values far from resonance, a long sequence of 
quasiperiodic behavior is followed by periodic behavior and 
a period-doubling sequence into chaos. After that, the sys- 
tem will switch into a state of high transmissions, go through 
another sequence of oscillations and finally, switch to low 
transmission. If the phase is then decreased, the system will 
remain in the low transmission state for a wide phase range. 
It will not switch to higher transmission until the quasiperi- 
odic regime is reached again. This kind of behavior can be 
called generalized bistability, as there is a phase range where 
a fixed point and a chaotic attractor coexist. 
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Fig. 3. a Increasing and b decreasing phase scan. The system passes 
through adjoining ranges of  quasiperiodic (QP), simple periodic (P1) 
and period doubling (PD) behavior. In range H there are oscillations 
in a higher transverse resonator mode 
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Fig. 4. a Measured and b simulated time series of quasiperiodic oscil- 
lation 

As the hysteresis is not only present during fast phase 
changes, the oscillatory regime in the upper branch can only 
be reached via the proper history of phase variations using 
the vernier mechanism. Once the system has accidentally 
switched from the chaotic regime to the high transmission 
regime, in order to reproduce a measurement of a chaotic os- 
cillation, one has to run through the whole loop again. With- 
out such a possibility to reproduce and stabilize a specific 
phase value, it would only be possible to perform single-shot 
measurements of chaotic oscillations. It is doubtful whether 
large-scale evaluations of such measurements would produce 
very meaningful results. 

3.2 Transverse Effects 

In this experiment we cannot ignore the geometrical prop- 
erties of laser beam and resonator. As opposed to what was 
assumed in the model, there are no plane waves and infi- 
nite plane mirrors, but a confocal resonator and a Gaussian 
beam mode-matched to the empty resonator. The transverse 
structure of the beam implies a transverse dependence of 
the dynamical variables and thus a transverse distribution 
of absorption and refractive index. As is shown by Nalik 
et al. [7] this leads to a change in the mode structure of 
the resonator. We observed that upon switching up to the 
higher transmitting state, mode switching occurs. The trans- 
verse structure in this state can be described as a superposi- 
tion of low-order Gauss-Laguerre or Gauss-Hermite modes, 
which is very sensitive to deviations from an exactly mode- 
matched incoming Gaussian beam. As such deviations can 
occur with very small alignment inaccuracies of geometrical 
fluctuations in the laser jet, they are hardly measurable let 
alone reproducible. For that reason, we insert an aperture 
into the resonator to prevent premature mode switching and 
restrict our measurements to the region before the switch- 

ing even though there are ranges of oscillatory and chaotic 
behavior in the high transmitting state as well. 

3.3 Individual Oscillation Types 

As can be seen from Fig. 3, there is a wide range of quasi- 
periodic (torus) oscillations. This starts from heavy breath- 
ing, goes through more or less nonlinear amplitude modu- 
lation with the modulation depth finally going to zero and 
ends up with a simple periodic signal. A typical example of 
this type is shown in Fig, 4a. Any oscillation in this region 
is temporally stable and can be observed over at least some 
minutes. 

After going through a phase range of simple periodic 
oscillations with increasing amplitude, a period doubling se- 
quence is reached that can be resolved up to period 4 and 
then enters chaos. Measurements in the chaotic range can 
be performed with rather good stability, though the sen- 
sitivity on phase changes is naturally much higher as in 
the quasiperiodic regime. Working close to the switching 
threshold may lead to accidental switching, but the parame- 
ter range can easily be regained with the procedure described 
above. About one hundred time series were recorded in the 
chaotic regime, one record containing 25,000 8-bit samples 
with 10ns time resolution. A typical example of a chaotic 
oscillation is shown in Fig. 5a. 

All types of oscillations could easily be reproduced an 
arbitrary number of times even after some hours or in another 
experimental session, being characterized using an on-line 
display of phase portrait and first-return map of a recorded 
time series. (The return map of the time series of Fig. 5a is 
shown in Fig. 6a.) 

Nearly all the chaotic time series wer evaluated over their 
full length with an attractor dimension estimation program 
using the Grassberger-Procaccia algorithm [ 10]. The dimen- 
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Fig. 6. a Measured and b simulated return maps of chaotic time series 
shown in Fig. 5 

sion values covered a range from 1.55 to 2.25, mostly be- 
tween 1.70 and 1.95, where similar dimension values corre- 
sponded to similar signal shapes, phase portraits and return 
maps. Estimations of Kolmogorov entropies were performed 
as well. 

4 Compar i son  to the Model  

4.1 Nonlinear Mechanisms 

In our theoretical approach we consider two physical mech- 
anisms that induce nonlinear couplings. One is the light-shift 
effect, that gives an additional contribution to the longitudi- 
nal component of  the magnetic field f2z proportional to the 
laser detuning from the atomic resonance and to the differ- 
ence 2 between the individual pump rates (see [1,5]). The 
second mechanism was not considered in this context before; 
it is based on the effect of  radiation trapping or radiation dif- 
fusion. This effect is known to counteract the build-up of  a 
ground state orientation due to optical pumping [8]. As it 
is a diffusive effect, it is strongly dependent on the spatial 
structure of light field and excitation distribution [9]. Never- 
theless, it is introduced here phenomenologically as a reab- 
sorption of fluorescence with a spatially invariant probability 

leading to an additional incoherent pumping [11]. This adds 
a predominating contribution to the ground state relaxation 
rate %ff that oscillates with the excitation s. It also causes a 
prolongation of  the lifetime of  the excited state population, 
thus decreasing Fell. 

4.2 Numerical Results 

The set of  differential equations (la) and (lb) was integrated 
using the Runge-Kutta algorithm. The parameters were cal- 
culated from the experimental parameters as far as possible 
or adapted to match experimentally observed dependences 
on parameter changes. The parameters that explicitly intro- 
duce frequencies, i.e., the Larmor frequencies, were exact. 
The results are: 

• The nonlinear scenario, i.e., the sequence of  different 
kinds of oscillatory behavior could be reproduced with sim- 
ilar individual phase ranges. 

• The coexistence of  fixed point and chaotic attractor 
(generalized bistability) was confirmed. 

• Quasiperiodic oscillations could be reproduced both in 
the fundamental and in the modulation frequency (Fig. 4b). 

• Chaotic oscillations could be reproduced both in os- 
cillation frequency and modulation contrast (Fig. 5b) with 
similar looking return maps (Fig. 6b) and phase portraits. 

• Dimension and entropy values of simulated chaotic os- 
cillations agree well with those evaluated from the exper- 
iment. For an example, the chaotic time series shown in 
Figs. 5a and 6a gives a correlation dimension of 1.90 4- 0.02 
and a / ( 2  entropy of 1.8 :k 0.2/~ts; the simulated time series 
shown in Figs. 5b and 6b gives a correlation dimension of  
1.94 ± 0.02 and a K2 entropy of  1.7 ± 0.2 gs. 

Neglecting the effects of  radiation trapping and assum- 
ing the population in the excited state to be zero, a three 
dimensional model containing only the (u, v, w)-vector re- 
mains, having the light-shift effect as the prominent nonlin- 
ear mechanism [5]. Using this model, the chaotic oscillations 
before the switching to the high transmitting state cannot be 
simulated. This model shows a narrow range of  chaotic be- 
havior in the high transmitting state, where the condition 
0 A y / 0 ~  < 0 is valid (see [5]). The scenario thus simulated 
resembles the one we could observe in the switched-up state. 

On the other hand, it is possible to write a three-dimen- 
sional model by neglecting the light-shift contribution in- 
stead and considering only a transverse magnetic field ~ = 
~2~x. This three-dimensional model would involve the spin 
components (v, w) perpendicular to the direction of the mag- 
netic field and the excitation s. This second reduced model 
shows - for the same values of the parameters - qualita- 
tively the same behavior as the full four-dimensional model. 
A quantitative reproduction cannot be expected here, since 
the oscillation frequencies are determined by the absolute 
value of the magnetic field vector and the neglected longi- 
tudinal component is at least of the same magnitude as the 
transverse component. 

5 Conclusion 

With a high standard of  stabilization reproducible measure- 
ments of chaotic scenarios are possible. Exact control of  
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phase changes reveals a kind of generalized bistability, i.e., 
the coexistence of  a fixed point and a periodic or chaotic at- 
tractor in a hysteresis loop. A four-dimensional model  shows 
very good agreement with the experiment, regarding signal 
shapes, frequencies, return maps, attractor dimensions, and 
entropies. A reduction of  the model  shows that the mecha- 
nism of  radiation trapping, though considered here in a very 
simplified way, is responsible for the chaotic behavior in the 
parameter  range studied here. 
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