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Abstract. A few models of nonlinear optical systems, known experimentally to possess both stable 
and unstable dynamical modes, are approximated by different dynamical models and integrated by 
different numerical methods. It is shown that the onset of instabilities and chaotic behavior in the 
same physical system may be dependent on the model used and on the numerical method applied. 
Finite order difference schemes should be applied with caution to infinite dimensional dynamical 
systems displaying irregular behavior. 

PACS: 42.50.Lc, 42.65.Hw 

Great influence of computers on the development of deter- 
ministic chaos [1] is self-evident. The advent of the former 
triggered an explosion of interest in the latter. The past few 
decades exhibited an enormous increase in the number of 
publications dealing with chaos and in the number of peo- 
ple entering the research of chaotic phenomena. There are 
very few fields of human scientific endeavour not affected 
by deterministic chaos, that is, by the methods of nonlinear 
(NL) dynamics, and by computers. 

This is especially befitting NL optics, which even boasts 
an adjective "nonlinear" in its name. Some of the most beau- 
tiful examples of chaotic motion came from NL optics. Al- 
most all new ideas in the theory of chaos, from the early 
ones (such as period doubling in iterative maps) to the more 
recent ones (such as defect mediated turbulence) were speed- 
ily observed in NL optical systems. This very Special Issue 
testifies the strength and the breath of research into chaotic 
phenomena in optical systems. 

However, when one relies on computer simulations, it 
happens that instead of observing chaos in a physical system, 
one observes chaos in the dynamical model used to describe 
the system or in the numerical method used to treat the 
model [2]. This may sound obvious to a NL dynamicist, 
but precisely because of enormous proliferation of chaotic 
research, we think that another reminder will not be out of 
order. Thus, we explore here the problems that may occur 
when one, without due caution, attempts to deal with NL 
optical systems using simplified models and methods. 

* Permanent address: "Zrak" Company, 71000 Sarajevo, Yugoslavia 

The existence of such problems is known for long time. 
The original Lorenz model is known to be an incomplete ap- 
proximation to the corresponding Navier-Stokes equations. 
The higher order models (the 5 component or the 7 com- 
ponent) offer different dynamical behavior in most cases. 
Consequently, our setting will be more restrictive. We will 
show that the same physical system, described by one and 
the same continuous dynamical model, but treated by dif- 
ferent numerical schemes, may lead to different long-time 
behavior. Even though different numerical schemes can be 
understood as different discrete dynamical models, we prefer 
to refer to this as the computational chaos. 

Different things might go wrong when one deals with the 
chaos on computers. First, and most benign, are the problems 
with the computers themselves. They possess finite machine 
(roundoff) error, finite memory, and operate on a finite range 
of rationals. Owing to the finite error and the finite observa- 
tion time, there is no way to distinguish a very long periodic 
orbit from a quasiperiodic or a chaotic trajectory. However, 
usually something else goes wrong before one is confronted 
with the problems with computers. Nonetheless, it is very 
disturbing when the same algorithm executed on two differ- 
ent computers produces different results [3]. 

Second, and more often, there are the problems with nu- 
merics. Most come from inadequate discretisation of contin- 
uous temporal models. As a rule, iterative maps are poor ap- 
proximations to real physical systems. Discretisation 
changes fundamentally the nature of a continuous dynam- 
ical model. There should be no problem as long as the limit 
h ~ 0, where h is the integration step, recovers the continu- 
ous behavior. Unfortunately, such a limit may not be attain- 



110 M. Belid etal. 

able in a chaotic system. Chaotic behavior implies t --+ co, 
and this cannot be reached when h is getting smaller. 

The next set of problems is concerned with the over- 
all numerical procedures by which chaos is obtained. Here- 
to belong steady-state analyses which yield multistability or 
chaos, or the fitting procedures in boundary value problems 
leading to chaos. To these also belong complicated discreti- 
sation procedures applied to partial differential equations or 
other infinitely dimensional dynamical systems. The exam- 
ples presented in this paper are from this class of problems. 
We present three examples of spurious chaotic or multistable 
(periodic) responses of NL optical models. We stress the fact 
that the underlying physical systems are all displaying real, 
experimentally observed chaos in some regions of their pa- 
rameter space. 

The first two examples come from the field of optical 
phase conjugation (OPC) in photorefractive (PR) media [41. 
During an OPC process a piece of PR crystal is illuminated 
by three laser beams: two counterpropagating pumps A1 and 
A2, and a signal A4. Due to interaction of these fields, a 
fourth wave As is generated in the crystal, counterpropa- 
gating to the probe A4 and being its PC replica. The pro- 
cess is described by a set of four slowly-varying envelope 
wave equations, augmented by two-point boundary condi- 
tions. One of the examples displays the emergence (or sup- 
pression) of chaos through a process of ever more accurate 
solution procedure for the wave equations. The other dis- 
plays the appearence of multistabilities and chaos during the 
process of fitting boundary conditions. 

The third example comes from the field of optical bista- 
bility (OB) in NL optical ring resonators. A transverse ex- 
tension of the Ikeda model [5] is treated by two different nu- 
merical algorithms: an FFT-based beam propagation method 
[6] and a Crank-Nicholson (CN) procedure. While the dif- 
ferences could be surmised to exist all the way to the chaotic 
region, we depict only the differences in P4 (period-4) so- 
lutions, which qualitatively look very similar, but belong 
to conceptually very different classes of solutions. A sim- 
ilar type of argument ("qualitatively similar, but in detail 
wrong") could be applied to all examples presented. 

The paper is divided into five sections. Sections 1 and 2 
contain presentations of the OPC examples, Sect. 3 contains 
a presentation of the OB example, and Sect. 4 offers some 
conclusions. 

1 Computational Chaos in Optical Phase Conjugation 

OPC in PR media is described by the following set of wave 
equations in the plane wave and one grating limit [7]: 

OzA1 = QA4, O~A~ = - QAT , (la) 

OzA'~ = - QA~ , OzAs = QA2 , (lb) 

where the derivative is in the propagation direction and Q 
is the amplitude of the (transmission) grating which has de- 
veloped in the crystal. The amplitude of the grating satisfies 
a dynamical equation of its own: 

"rOtQ + eQ = g (A1A~ + A~As),  (2) 
1 

where ~- is the relaxation time, c is a parameter dependent 
on various internal electric fields (describing photorefractive 
crystals according to the theory of Kukhtarev et al. [8]), g 
is the wave-coupling parameter, and [ = SIAii'- is the total 
intensity. The detailed dependence of these parameters on 
electric fields is of no interest here. It suffices to say that 
when there is an external field applied to the crystal, param- 
eters e and g are complex numbers, otherwise they are real. 
It is known [7] that this system is apt to develop instabilities, 
and the extra phase shift introduced by the external electric 
field exerts a profound influence on the irregular behavior. 

We treat (1) and (2) using increasingly more accurate 
numerical methods and monitor changes this procedure is 
causing in the behavior of the system. Temporal derivatives 
in (1) are neglected, due to slow response of the crystal, 
which is described by the relaxation-type equation (2). It can 
be assumed that the wave amplitudes are following adiabat- 
ically the formation of gratings. This separation of temporal 
and spatial derivatives allows a convenient integration pro- 
cedure, in which time is divided into small intervals, and 
in each interval the process is considered as a diffraction of 
waves by the quasi stationary grating amplitude. Our inter- 
est is not focused on the detailed z-dependence of the fields, 
but on the dynamics of the OPC process. 

The treatment of the dynamical equation (2) proceeds 
along the following lines. In the simplest approximation, an 
iterative map is constructed: 

Qn+l = ~ g (A,A~ + A~A3),~ . (3) 

The procedure is to start the iterative loop with some ar- 
bitrary chosen value Q0 and to iterate until a stable fixed 
point, or a periodic orbit, or a chaotic response is obtained. 
In between iterations, the fields are calculated by solving (1), 
either analytically (for g real), or by a fourth order Runge- 
Kutta (RK) algorithm, or by a shooting procedure. If there 
exists a fixed point of the map, then a unique solution is 
found; if there is a fixed point of the composed map (i.e., 
the map iterated a certain number of times), a periodic orbit 
is obtained. We point out that unique solutions are the same, 
regardless of the method by which they are obtained. The 
problems arise with instabilities. 

In the next approximation, (2) is integrated formally as a 
first-order linear differential equation: 

t 

Q(t)=exp(-e-t)[Q(O)+/q(t')exp(~t')dt'l'(4)-c ~- 

0 

where q is an abbreviation for 9(A1A~ + A~A3)/I .  Assum- 
ing that q is approximately constant across the (small) time 
interval, one obtains: 

Q(t + At)  

=q(t)s [ 1 - e x p ( - e @ ~ t ) l  + e x p ( - - ~ ) Q ( t ) .  (5) 

A convenient feature of this formula is its natural depen- 
dence on the discretisation parameter At /T  = h. Presum- 
ably, the most accurate results are obtained when h --~ 0. 
The worst case is when h --~ oc, and this corresponds to 
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Fig. la--e. Bifurcation diagrams of the PC wave intensity/3 as a func- 
tion of the input signal intensity/4 for different values of the discreti- 
sation parameter h. a h = ee, the map (3); b h = 33, RK method; c 
h = 25, the same method; d h = 25, the map (6); e h = 1, RK. The 
other parameters are: c = (0.0598, 0.0186), 9 = (0.0654, -0.2068) 
(complex numbers), C1 = 0.25, C2 = 0.64 

l l l  

steady-state, i.e., to the map from (3). In this manner a gen- 
eralized map in the complex plane is formed: 

Qn+l = q~ [1 + e x p ( - e h ) ]  + e x p ( - e h )  Q n ,  (6) 
C 

with h being the principal control parameter. Below we de- 
pict how different choices of  h affect the behavior of  the PC 
wave. 

As a next refinement, a RK algorithm is applied to (2). 
Qualitatively, similar behavior is observed. In the end, a 
fairly complicated code is applied to the full system of  equa- 
tions (1) and (2), in which the spatial part is treated by a 
two-point shooting procedure, and the dynamical  part is fol- 
lowed by an RK algorithm. Many of the instabilities ob- 
served by simpler models are suppressed, but, as reported 
[7], chaos can still be found for some values of  parameters. 
These instabilities, however, are not more realistic than the 
ones seen in simpler models. 

Figure 1 presents bifurcation diagrams which depict the 
PC in tens i ty /3  as a function of the signal intensity I 4. The 
series of figures displays suppression of instabilities as the 
accuracy parameter h and the methods are varying. For the 
chosen set of parameters there is no chaos in the original 
model. The most varied behavior is visible in Fig. 1. Go- 
ing to the left from unique solutions (limit cycles), the first 
instability noted in all cases is quasiperiodic motion on a 
torus. This motion is interrupted by a number of periodic 
windows. Some windows open through frequency locking, 
some open through inverse intermittency. Ones that open 
through intermittency, close by executing period doubling 
to chaos. Thus, the whole wealth of chaotic phenomena can 
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Fig. 2a, b. Bifurcation diagram for a the map, and b RK method, 
when g is large. As compared with Fig. 1, the diagram has become 
more chaotic as g increased. Here e = (0.6636, 0.0737), 9 = (2.993, 
-6.6173), and h = 1 



112 M. Belid etal. 

be observed in the case of computational chaos. Numerical 
instabilities follow the same routes to chaos as do the real 
physical systems. 

Figure 2 shows an example of chaos in the underlying 
dynamical model. It is obtained by increasing the wave cou- 
pling parameter 9, and displayed by using two different nu- 
merical procedures: RK and (5). Qualitatively, and even in 
the detail, the diagrams are very similar. There is less order 
for large g, which corresponds to high dimensional chaos. 
We defer discussion until Sect. 4. 

2 Chaos in a Boundary Value Problem 

The values of a and 5 could be given in terms of the 
missing values Ild and I4d on the z = d face of the crystal: 

a2 _ 4C2[ld 5 -  C2 - - f l d  1. (10) 
]-2 d ' [4d 

Likewise, they could be given in terms of I20 and [30 (or, 
equivalently, vo and wo) missing on the z = 0 face: 

x ( C  1 -']" C2)  -~- v 0 - 1 
a 2 = 4C1C2x 

c1 + Cev b ' 
( l l )  

5 = x(c v  - - C vo - C2v  
C, + C2~ b 

Our second example from OPC deals with multistability and 
chaos obtained through a fitting procedure for boundary- 
value problems. The system is similar to the one described 
by (1) and (2), except that the two-wave mixing of the pumps 
is added and both transmission and reflection types of grat- 
ings are assumed to be present. The corresponding equations 
are of the form: 

IOzA1 = 9(QTA4 -- QRA3) - ~ h A 1 ,  (7a) 

IOzA~ A* - = g(QT 3 Q R A * )  - 711A* (7b) 

IOzA3 = - g(QTA2 + Q*RA1) , (7c) 

'q* A* ~ (7d) IOzA~ = - g(QTA~ + '~R 2 , ,  

where QT = AIA'~ + A ' A 3  and QR = A1A~ + A~A4 are 
the steady-state grating amplitudes, and ~/is the two-wave 
mixing parameter. Note that now steady-state equations are 
considered, and at least part of the problems with multi- 
stabilities stems from this fact. This system is described in 
more detail in [9]. 

The intensity part of the solution of (7) can be written in 
terms of two functions v and w: 

u(v) - (v + 5) u(v) + (v + 5) 
11 = I4d , I2 = I4d , (8a)  

2 2 
cosh w(v)  - 1 cosh w(v)  + 1 

I3 = I 4 d  , I4 = I4d , (8b) 
2 2 

which are given as quadratures: 

w(v) = } f ( x )  dx (9a) 
' 

* 1  

1 

coshw(x) 
in v(z) + u(x)  dx = 29(z - d),  (9b) 

1 

where f ( v )  = av "~/29, u(v) = [(v + g) 2 + f211/2, and I4d = 

[4(Z = d).  
In this manner, the original two-point boundary value 

problem is transformed into an initial value problem. The 
values of both variables are known on the z = d face of the 
crystal: Vd = 1, Wd = 0, however, the input parameters a 
and 5, which figure in (9) through f and u, depend on the 
missing boundary values, and so do the intensities as well. 
The evaluation of a and 5 is provided by a self-consistent 
iterative map procedure. Sometimes during this procedure 
unstable situations arise, leading to chaotic output. 

where x = v0(coshw0 + 1)/2C4 and b = 7/g .  O1, C2,  and 
C4 denote the given boundary conditions for intensities. Note 
that C3 = / 3 ( z  = d) = 0. The problem of fitting boundary 
conditions is resolved as follows. One starts by choosing 
arbitrary initial values for a and 5; from these Ila and I4a 
are calculated using (10). I20 and/3o (i.e., v0 and w0) are 
found by evaluating the integrals in (9). This enables the 
calculation of the new values for a and 5 by (11), and the 
procedure is repeated until convergence. In this manner, a 
map is defined in the parameter plane and the procedure 
corresponds to the evaluation of the fixed points of the map. 
An interesting question is what happens if the map becomes 
unstable. ~' 

The instabilities set in for 9 > 2 and are investigated by 
standard methods of nonlinear~dynamics, i.e., by evaluating 
the fixed points of the map and of its arbitrary compositions. 
Such fixed points may reveal the nature of the transition to 
chaos, if there is one. However, seeing such instabilities in a 
map does not mean that they exist in a real crystal, nor that 
they exist in the continuous model. This is a familiar danger 
when instabilities follow from a steady-state analysis and not 
from a time-dependent (dynamical) treatment of the process. 
An illuminating discussion of this point can be found among 
von Neumann's collected works [10]. The existence of such 
instabilities should be verified experimentally. 

A phase diagram for a set of parameters is shown in 
Fig. 3. A typical bifurcation diagram around the chaotic re- 
gion is depicted in Fig. 4. Thus, stable and unstable solutions 
are found depending on the strength of couplings. Different 
types of unstable behavior are observed: quasiperiodic mo- 
tion on a toms and period doubling to chaos. Chaotic behav- 
ior in this context means that the intensity reflectivity does 
not settle onto any particular value. Even though each of 
these values represents an allowed solution to the boundary 
value problem at hand, it is unlikely that all of them are 
dynamically accessible to the system. 

The procedure presented here allows one to obtain mul- 
tistable or chaotic solutions from a stead-state analysis. The 
situation is similar to computational fluid dynamics, where 
multiple solutions are found to the stationary potential flow 
equation with given boundary conditions. The spurious solu- 
tions could not be invalidated within the mathematical model 
or numerical procedure, but with the use of an external ther- 
modynamical criterion - the entropy production principle. 
This is what von Neumann and von Karman had to say about 
the multiplicity problem in a discussion at a conference in 
1949 [10]: 
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Von Neumann: "The question as to whether a solution 
which one has found by mathematical reasoning really oc- 
curs in nature, and whether the existence of several solutions 
with certain good or bad features can be excluded before- 
hand, is a quite difficult and ambiguous one. One must be 
terribly careful in accepting such extra solutions." 

Von Karman: "I would like to say something about this 
question of uniqueness of solutions. I don ' t  think that there 
is any reason that if  you put a problem in a form which has 
no physical  meaning, there shall not be two solutions. And 
I think the case of stationary motion as such belongs to this 
category, because it can occur only as a limiting case." 

Similar reasoning could be applied to our system. Insta- 
bilities found are obtained through a mathematical proce- 
dure. Steady-state situation has been assumed. There might 
exist physical  criteria not contained in the model  which could 
preclude the development of instabilities. Long time instabil- 
ities obtained in the systems in which temporal derivatives 
are neglected from the beginning, can lead to spurious solu- 
tions and chaotic scenarios that are not observed in real life. 
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This question, in our opinion, is inadequately addressed in 
the literature. 

3 Transverse Instabilities in Ring Resonators 

The last example deals with a passive optical system consist- 
ing of a ring cavity and a homogeneously broadened 2-level 
medium. The model  has been presented in detail elsewhere 
in this Special Issue [11]. It is concerned with the appearence 
of periodic spatial structures due to transverse mode insta- 
bilities. This phenomenon is known as the cooperative fre- 
quency locking [ 12]. A particular aspect of this phenomenon 
is considered, namely the symmetry breaking of the mode 
profile under the influence of spatial transverse modulation. 
This aspect is sensitive to numerical handling. 

The model  is a standard ring cavity of a length L contain- 
ing a medium of thickness d [5]. The paraxial wave equation 
for a single transverse mode is given by 

(iOz+ ~--~O2)En(X, z) 

ic~(1 + iA)  1 
- -  - -  E n ( x ,  z ) ,  (12) 

2 1 +  4.rn 

where En is the electric field after n resonator passes, k is 
the wave number, ce the absorption coefficient, and A the 
atomic detuning. The corresponding boundary conditions are 
given by 

En(X, O) = T1/2 A(x) + t~exp(ikL)En_l(X, d) , (13) 

where T is the transmittivity of  the input mirror, R is the 
overall  reflectivity of  mirrors comprising the cavity, and 
A(x) is the input beam profile. A Gaussian profile is chosen 
for A, with added harmonic modulation of  the form: 

A(x) = A0[1 + A,~ cos(k,~x)] exp( -x2 /o -2 ) .  (14) 

Thus, the model  possesses inversion symmetry about the 
center of  the beam. We are interested in the spontaneous 
breaking of this symmetry. 

The model  is treated numerically using two independent 
methods: a CN algorithm and a beam propagation 
method based on the fast Fourier transform (FFT). The gen- 
eral agreement between the two methods is very good, espe- 
cially in the case of  unique solutions and low periodic orbits. 
However,  for higher orbits and higher Fresnel numbers of  the 
cavity, considerable differences appear. While  these differ- 
ences should be expected in chaotic regions, where at most 
one can expect qualitative agreement, we present here a low 
periodic case, where numerical differences lead to qualita- 
tively different solutions. This is the case for P4 solutions for 
A0 = 0.85, Am = 0.15, k~n = 10, and ~r = 0.06. The other 
parameters are: T = 0.1, R = 0.9, kL = 0.4, c~L = 0.01, 
and ceLA = 10. 

It should be noted that the general behavior of the in- 
tracavity field on the lower OB branch and in the absense 
of modulation, changes from a fixed point to P2 and P4 
orbits and then via a quasiperiodic region to chaos, as the 
amplitude A0 of  the input beam is increased. This behavior 
is the same for both numerical methods. As the modulation 
is turned on, however, a new qualitative moment  appears: 
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Fig. 5a, b. Steady P4 beam profiles obtained 
after 1000 round trips for a Crank-Nicholson 
method, b beam propagation method. Numbers 
1-4 denote the order in which the profiles repeat 

symmetry breaking of  the allowed modes. Some modes of  
the system break the z --+ - z  symmetry inherent in the 
model and some remain symmetric. Spontaneous breaking 
of  spatial symmetries can lead to the coexistence of various 
attractors. Such phenomena are experimentally observed. It 
is with respect to this behavior that the methods differ. 

One such instance is observed in the P4 solution which 
is formed for the aforementioned values of  the parameters. 
The differences are not that much pronounced in the beam 
profiles, but in the fact that the CN mode remains symmetric, 
while the FFT is symmetry-broken. This is visible in Fig. 5. 
The dancing FFT mode could be more properly denoted as 
the P4-P2 solution, since the profiles are pair-wise mirror 
images of  each other. 

Figure 6 presents the time signal of  the tip of the beam for 
both methods. It displays how the beams settle into steady- 
state profiles. While initially they go through similar dy- 
namical phases (though with different time constants), the 
symmetry breaking transition is missing in the CN beam. 
The profiles of both beams at N = 200 round-trip times 
(not shown) are very similar and both are symmetric, how- 
ever, then the FFT profiles undergo a slow transition to an 
asymmetric mode and remains as such. 

The point to display is not that the FFT method is superior 
to CN. They are both more or less equally wrong for unstable 
or chaotic systems. The point is to become aware o_f the 
shortcomings of  numerical methods when describing long- 
time behavior of  unstable and]or chaotic systems. Applying 
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independent numerical methods can help understanding of  
the underlying model. 

We should note in passing that the plane wave Ikeda 
model  with round-trip time iterations has been compared 
by Le Berre et al. [13] to the Ikeda model  with time-delay. 
Both models are derived from the same physical  system. 
They found that the two show considerable differences in 
the unstable behavior and, particularly, that the map model  
leads to erroneous conclusions about the route to chaos and 
the dimension of attractors. 

4 C o n c l u s i o n s  

The overall conclusion is that different numerical approxi- 
mations of the same physical  system may lead to different 
results depending on the numerical scheme applied. Long- 
time behavior is difficult to predict accurately in unstable or 
chaotic systems. Sooner or later exponential separation of 
initially close points on a trajectory encompasses any finite 
accuracy tolerance, no matter how small it is. 

Another conflicting requirement is that in order to follow 
motion near bifurcation points or on a strange attractor, long 
observation times are necessary, whereas for accuracy to be 
maintained, small integration steps must be chosen. Small 
tolerances that initially have to be set up translate into fi- 
nite intervals in which the results can be trusted, and this 
contradicts the requirement t ~ e~ built-in in the definition 
of most chaotic phenomena. The behavior at t ~ ~ can 
not be properly investigated by numerical schemes which 
require A t  -+ 0. 

Simple as they are, these facts are often overlooked. No 
numerical algorithm can predict accurately the state of a 
chaotic system after a long period of time. Unpredictabili ty 
is the essential feature of deterministic chaos. Even though 
the fundamental purpose of a numerical simulation of  dy- 
namical systems is to provide for their temporal evolution, 
the following of chaotic trajectories often is meaningless. 
Nonetheless, progress has been made recently along these 
lines by the introduction of shadowing techniques [14]. 

In spite of  reservations mentioned above, the models in- 
troduced here, each on its own, represent interesting ex- 
amples of nonlinear dynamical  models. The disturbing fact 
that they show different long-time behavior when treated by 
different numerical methods is of little relevance. *In other 
words, different numerical algorithms used to treat the same 
physical  system may introduce dynamical  models with vastly 
different behavior. On the level of models it is impossible 
to decide which one is better or more accurate in describing 
chaotic behavior. Qualitatively, they all give similar results, 
and in detail they are all wrong. Their relevance to the real, 
physical  world can not be assessed properly without exper- 
imental evidence. 
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