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Summary. Solid sampling graphite furnace ZAAS is very 
efficient for homogeneity testing because of the low sample 
intake with this method. A number of biological reference 
materials were investigated for heterogeneity with respect to 
the laboratory sampling error. It was observed that in some 
cases the investigated material appears to contain a distinct 
particle fraction of much higher trace element content ("nug- 
gets") than in the average particles. It could be shown theo- 
retically and experimentally that in the case of nuggets in a 
material, statistical evaluation using a Poisson probability 
function was necessary to obtain realistic values for hetero- 
geneity. The measured homogeneity constants for certain 
elements in each material give an excellent way of calculat- 
ing the minimum sample mass necessary for reliable ele- 
ment determination. It is proposed to include this testing 
method in the certification campaign of new CRMs. 

serious problems. With luck these heterogeneities may be 
detected during certification analysis as encountered during 
the certification of a series of meat materials for metal con- 
tents [3]. Pig kidney, bovine liver and bovine muscle were 
tested and occasionally high lead contents, well above the 
average level, were found at low subsample sizes. Detailed 
investigation showed that few, but rather large cleavage frag- 
ments of calcium oxalate, just below the 125 #m particle size, 
occurred in the sample and that these crystals contained 
approximately 1% of lead. Such micro-heterogeneities 
would escape detection by classical homogeneity testing 
methods due to the relatively high sample intake require- 
ments. Solid Sample Zeeman Atomic Absorption Spectrom- 
etry (SS-ZAAS) with a graphite furnace operating at a sub- 
milligram sample intake level, shows correspondingly 
enhanced detection power for the identification of particles 
carrying extremely high analyte contents [4]. 

1 Introduction 

Homogeneity is considered to be the most vital pre-requisite 
for a candidate reference material, and therefore related test- 
ing methods deserve great attention. Environmental refer- 
ence materials, such as soils, sediments, waste materials and 
even plant and tissue materials typically consist of many dif- 
ferent solid phases with characteristic physical properties 
such as size, density and geometrical form and widely vary- 
ing contents of trace elements, which in some cases may 
cover four orders of magnitude [1]. 

Homogenisation of such complex mixtures to such a 
degree, that replicate subsamples of the size requested by 
modern trace analytical techniques, i.e. approximately 
100 mg, does not show significant differences within the 
limits of  the precision of the testing method, might be con- 
sidered an art rather than a science. 

It had been observed that conventional homogeneity 
testing, as introduced into candidate reference material 
production practices [1, 2] can overlook micro-heterogenei- 
ties in otherwise perfectly homogenised materials and cause 
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2 Experimental 

The analyses have been carried out with the Zeeman Atomic 
Absorption Spectrometer SM 20 (GR{YN-Analysenger~ite 
Wetzlar, Germany). The instrument is specially designed for 
the direct introduction of solid samples [5]. A large number 
of replicates were carried out mainly by the use of an auto- 
mated sampler for powdered samples which was described 
recently [6]. 

The methodology of solid sampling with GF-AAS has 
been described in detail [7]. The calibrations were performed 
with different CRMs. Because only the precision (scatter) of 
the results plays a role in this investigation, no special atten- 
tion was paid to overcome slight systematic errors caused by 
different calibrant and sample materials. The results are nor- 
malised so that the mean value is unity in all cases. 

The Reference Materials which are used for this homoge- 
neity study were certified by the European Community 
Bureau of Reference (BCR) [3, 8, 9] or by the National Insti- 
tute for Environmental Studies (NIES) (Japan) [10]. Two 
Reference Materials from the German Speciman Bank 
(GSB) are also used [11]. 

The SS-ZAAS data were checked for long term drift and 
if necessary corrected so that the regression of the content 
values on subsample terms remains constant. For all statisti- 



cal calculations and graphics the program "STAT- 
GRAPHICS" (V 2.6) of the STSC Inc. was used. 

3 Statistical considerations 

The concept of the sampling error se of an analyte element E 
in a powdered sample (i.e. the deviation of the distribution of 
an analyte in samples drawn from a bulk material), was dis- 
cussed by Wilson in 1964 [12], and can be represented in a 
simplified form (only two species and uniform sized par- 
ticles) by: 

~ / 0 1 " 0 2  ] /  P1"P2 1 (1) 
~ e = ( c ~ - c ~ )  - o -s " N 

In this equation: 
Pl and p2 = portions (mass fraction) o f  species 1 and 2 

in the sample 

cj and c: = content (mass fraction) o f  the analyte in these 
species 

01 and 02 = density o f  the materials o f  species 1 and 2 

0 = sample density 

N = number ofparticlesper unit mass o f  sample 

m = mass ofsubsamples 

The probability of obtaining these species in subsamples 
follows a binominal distribution. For a large number of par- 
ticles, this distribution closely approximates a normal distri- 
bution. 

In 1966 Gy [13] published a more practical concept, 
where the sampling error was described by different factors 
(particle shape, particle size, degree of homogeneity and the 
chemical composition), which can be useful in controlling 
the reduction of mineralogical field samples to laboratory 
size. The application of these equations is, however, difficult 
as the internal physical sample properties for pulverised bio- 
logical samples are not easy to assess quantitatively. 

In 1973 Ingamells and Switzer [14] introduced the sam- 
pling constant Ks, which includes all internal sample proper- 
ties determining the heterogeneity: 

RSD = ~/  Ks/m (2) 

In this equation the relative standard deviation (RSD) of 
analytical results is used to calculate the sampling constant 
K~. It represents the subsample mass necessary to ensure a 
relative subsampling error of 1% (65 % confidence level in 
case of a normal distribution), on the condition that the ana- 
lytical procedure is free of analytical error. 

However in general, random errors due to the analytical 
procedure dominate the overall standard deviation, or are 
not accurately known, so that a variance analysis cannot be 
performed to isolate the relative sampling error (RSE) using: 

RSE:  = RSD 2 - ~ (rel.anal.std.err.) 2 (3) 

With the advent of SS-ZAAS, the determination of sam- 
piing constants of trace elements, however, became easier; 
for sub-milligram samples it is generally true that the spread 
in the results is mostly dominated by the heterogeneous dis- 
tribution of the analyte in the material. Only the within-run 
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variation in the instrumental response, which is easy to 
determine, can give an additional contribution to the overall 
random error. 

In this case the sampling error can be expressed as the 
homogeneity constant he as defined by Kurtiirst et al. [15]: 

se = h e / f ~ -  (4) 

At a certain level of subsample mass, the distribution of 
analytical results may deviate significantly from normal [4, 
14, 16]. This is especially the case when a material contains a 
very small number of grains with extremely high analyte 
content ("nuggets") compared to the main material. In this 
case, results must be statistically treated using the Poisson 
probability function, where the probability P of obtaining a 
number of nuggets (x) in a subsample can be calculated by: 

zX" e+Z (5) 
P ( x ) =  x-~(-. 

where: 

x = number ofnuggest in a subsample o f  mass m," 

z = average number o f  nuggets in subsamples o f  mass m. 

With this type of distribution, f~- represents the stan- 
dard deviation of the number of nuggets in a large set of sub- 
samples. 

The total content c and the sampling error sE corre- 
sponds to (s. Fig. la-lc): 

C = Z ' C  n + C B 

S E ~ -  C~ 

where: 

(6) 

(7) 

c, = contribution o f  one nugget to the content with subsamples 
o f  mass m; 

c B =- basic content o f  the sample (without nuggets). 

If z is smaller than 1, the distribution is only right-sided 
because samples with no nugget (x = 0) are most probable. If 
z is larger, then the probability function is two-sided, but 
skewed, with a tail to larger x-values. With increasing z the 
probability function becomes more and more symmetric. 
From z = 9 the Poisson distribution reaches the shape of a 
normal distribution. Figure 1 gives some examples of the 
Poisson probability mass function. 
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A n  illustration of the nugget effect is given in Fig. 2 by se 
simulated analytical results (2a), the statistical evaluation fol- 
lowing the Poisson distribution for the nuggets (2b) and the u~ 6e 
influence of a larger sample mass on the nugget distribution ~_ 4e 
and the spread of results (2c). ,, 

For  nugget containing samples the homogenei ty  con- ~- ae 
stant obeys [Eqs. (4) and (7)]: 

he = c, f-z" m (8) a 

Both, cn and z, depend on the subsample mass m. 
However this equation can be transformed into terms which 
are independent  of m by writing Eq. (8) in the form: 

h e =  c , .  mJ~FT--m (9) 

where the number o f  nuggets per unit mass z /m and the contri- 
bution o f  one nugget f o r  samples o f  unit mass c, . m are constant 
for a given nugget-containing sample. 

Considering Eq. (6) and the fact that z can be expressed 
by the portion o f  the nugget material fraction PN by N-  p y • m, 
one can express the homogenei ty  constant as: 

he = (C--CB) • 1 (10) 
 'pN 

And considering that: 

e -  c B = a " P N  " CN (11) 

where: 

CN = content o f  the nugget material 

a = ratio o f  the densities o f  the nugget and the basic material 

Eq. (4) becomes: 

~/  a "PN 1 (12) S E ~- C N • 

N f - m  

The sampling error calculated from the nugget model  
[Eq. (12) ] corresponds exactly to Eq. (1), if one considers the 
"nugget conditions" (species1 = NuggetsN, species2 = basic 
materialB, ON = a0B) : 

C y > > C B  P N < < I  0 ~ 0B (13) 

For practical use and to compare different materials, the 
relative homogeneity constant He  is more appropriate: 

h E  
HE = - - -  (100%) (14) 

C 

so that Eq. (4) becomes: 

1 
R S E  = H E .  - -  (15) 

The relative homogenei ty  constant  HE represents the 
relative sampling error if a subsa .mple of unit  mass is used. It 
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Fig. 2. Simulated analytical data and evaluation of an "ideal" nugget 
effect, a Frequency histogram with a basic fraction of the content CB 
and fractions with different numbers of nuggets. The contribution of 
one nugget to the content Cn is chosen so large, that the fractions are 
totally separated, despite of a slight broadening effect by random 
analytical errors, b The distribution of the number of nuggets x in all 
subsamples of Fig.2a and the Poisson fit which gives an average 
number of nuggets in all subsamples of z = 0.6. The scale of the 
figures is chosen so that the nugget fractions and the means (c and z) 
of both types of clistribution are adjusted on the same vertical line, so 
Eq. (6) can be read directly from these figures, c Poisson probability 
mass function with an average of z = 3. This corresponds to a five 
times higher sample mass. Although higher numbers of nuggets are 
probable, the decreased contribution of one nugget has a stronger 
influence [s. Eq. (7)],.so that the scatter of results is smaller. 

corresponds to the square root of the sampling constant Ks. 
The use of HE is more convenient  for analytical purposes, 
when the sampling error is significantly different from 1%. 

There are three possibilities of determining the degree of 
heterogeneity as a property of a given sample: 

1. If all internal properties of the sample are known or can 
be determined, the Wilson equation (1) or the concept of Gy 
can be used [for nugget-containing samples Eq. (12)]. An 
example is given in [15] for a pulverised total wheat sample. 

2. If  an analytical method is available where all random 
errors can be determined, the sampling error SE can be calcu- 
lated by an analysis of variance from a sufficiently large set of 
analytical results. Then  HE (Ks) can be calculated using Eq. 
(15) [17, 18]. An example is given in this paper (Zn in Cod 
Muscle). 



3. I f  the sample mass can be reduced to such an extent  e.o 
that  the nugget effect appears (i. e. in practice z < 4), then c~ 
and z can be determined.  So the homogene i ty  constant  can 
be calculated using Eq. (8). The advantage of  this me thod  is i s  

211 
that no "broadening effect" due to random analytical or o 
instrumental  errors affect these values and no information • 7 1 0  

13- 
a b o u t  the internal parameters  is needed.  Like [4], this paper 
represents mainly a "worse case study", which focuses on an ~- 
investigation of  the rare samples which are found showing 
this kind o f  micro heterogenei ty  effects. 

0 

115 

4 Results  a 

a) Normally distributed results 
9 9 . 9  

As a test material  for reproducibil i ty and contaminat ion free 
9 0  operat ion of  the sampling procedure  BCR CRM-150 (Milk 

Powder) was used. Figures 3a and 4a show histograms of  the I 95 
S S - Z A A S  data. The results are normal ly  distr ibuted as }, 80 
clearly shown by the normal  probabil i ty plots in Figs. 3b and 
4b. ~ so 

..4 

In this case the analytical error is mainly caused by base- ~ ao 
line noise, because the determinat ions  were carried out  near "~ s 

E 
the l imit  of  detect ion with subsample masses between ~ 1 
0.2-0.4 mg. Blind measurements  (no sample loading) gave a o. 1 
s tandard deviation of  the same order. For  this sample the 
relative homogene i ty  constants Hca and Hpb are < 1 mg 1/2. b 

Figures 5a, b, and c show three series of  zinc determina- 
tions in BCR CRM-422 (Cod Muscle) with different sub- 
sample masses. Wi th  increasing sample mass the standard 
deviation decreases. I f  the RSD is reduced to the RSE 
[Eq. (3)] by considering the contr ibut ion of  the noise scatter, 
a fit o f  RSE over the subsample  mass with the regression 
function of  Eq. (15) gives a relative homogene i ty  constant  of  

2 S  
Hzn = 3.8 mg 1/2 (Fig. 6). 

This is the normal  case in biological materials,  where no 
2 0  

material  fraction with an extremely high analyte content  
exists and /o r  the different mass fractions are so large that 
there are many particles (z > 9) of  every material  fraction in ~ i s  
each subsample.  

@ 1 0  

b) Skew distributions 
S 

i f  a small particle fraction with high analyte content  exists in 
the sample, i. e. any subsample  contains only a few of  these 
nuggets (z < 9), an asymmetrical  distr ibution of  results 
appears, s 

Figure 7 a shows a histogram of  a lead determinat ion  in 
NIES No. 6 (Mussel) with a subsample  mass o f m  = 0.25 mg. 
The  distr ibution is skewed towards the larger contents. The 
class width was chosen in such a way that the shape of  a 
Poisson distr ibution can be recognised. The  columns can be I1 

interpreted as subsamples  with x particles of  high analyte 
@ 

content  (nuggets), where fractions with x = 0 to x = 3 are 
very probable and fractions with x = 4 to x = 6 appear only 
rarely. In Fig. 7 b the Poisson probabil i ty mass function for -~ 
z = 1.2 is plotted, which has a similar shape. ~u 

Figure 8 a shows a similar distr ibution of  a lead determi- 
nat ion in GSB RM 1 (Spruce Shoot). The  broad almost  rec- 
tangular  shaped mode  on the left side indicates a Poisson b 
distr ibution with an average of  approx. 1, in which the prob- 
ability o f x  = 0 and x = 1 is about  equal. Also the steps in the 
normal  probabil i ty plot  (Fig. 8 c) show that two fractions are 
superimposed.  In Fig. 8 a the designated fraction with one 
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Fig. 3. Normalised SS-ZAAS data from a lead determination in BCR 
CRM-150 (Spiked Skim Milk Powder) a Histogram and normal dis- 
tribution fit; b Normal probability plot 
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BCR CRM-150 (Spiked Skim Milk Powder) a Histogram and normal 
distribution fit; b Normal probability plot 
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Fig. 7. Normalised SS-ZAAS data from a lead determination in 
NIES No. 6 (Mussel Tissue) a Frequency histogram; b Poisson pro- 
bability mass function with a mean of z = 1.2 

Fig. 5. Frequency histograms and normal distribution fits of nor- 
malised SS-ZAAS data from a zinc determination in BCR CRM-422 
(Cod Muscle) for a subsample mass ofa m = 0.35 mg; b m = 1.0 rag; 
e m = 1.9 mg 
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Fig. 6. Regression of the relative sampling error on sample mass of 
the SS-ZAAS data ~om Fig. 5 with the function RSE = 3.8/m 1/2 

nugget is hatched with a different pattern. The distribution 
of the fraction with no nugget is always supposed to be nor- 
mally distributed (Figs. 8a, 9a, 10a, l l a ,  b). 

This partition considers a broadening effect. The tail 
towards higher contents indicates that the nugget size distri- 
but ion  is asymmetrical. Thus the shape of the fraction with 

one nugget must  be superimposed on the nugget size distri- 
bution. Joining the values in columns with equal numbers  of 
nuggets a Poisson probability fit o fz  = 0.82 can be achieved 
(Fig. 8b). 

c) multi  modal  distributions 

Figure 9a shows the histogram of results of  a cadmium 
determination in BCR CRM-184 (Bovine Muscle). It is 
highly skewed, but  moreover a distinct second max imum 
(mode) appears. In this case the contribution of one nugget 
to the total content  Cn is so large that with the used subsam- 
ple mass (m = 0.65 mg) the different nugget fractions are 
separated. 

A Poisson distribution fit for the nuggets in the sub- 
samples ofz  = 0.46 is possible, when a broadening effect by 
the nugget size distribution is taken into account. The two 
fractions of zero and one nugget can be identified with the 
normal probability plot (Fig. 9b) as two segments with dif- 
ferent slopes. 

Another  example of this effect is shown in Fig. 10a for 
the determinat ion of copper in a GSB RM (Herring-Gull 
Egg). The nugget fraction is very small, so the average 
number  of nuggets in subsamples of mass m = 1.3 mg is only 
z = 0.12. The separation of the fraction with one nugget is 
facilitated by using the normal  probability plot (Fig. 10b), 
which shows two slopes and small steps in the overlapping 
region. 
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Fig. 8. Normalised SS-ZAAS data fl-om a lead determination in 
GSB-RM I (Spruce Shoot) a Frequency histogram; b Distribution of 
the nuggets and Poisson fit (z = 0.82); e Normal probability plot 

An  almost  complete  separation of  the nugget fractions is 
seen in Fig. 11 a for the determinat ion  of  cadmium in BCR 
CRM-422 (Cod Muscle) for a subsample mass m = 0.6 mg. 
An  average number  of  nuggets z =0 .39  was de termined 
(Fig. I 1 c). 

If  the subsample mass is increased, the contr ibut ion of  
one nugget to the total content  becomes smaller and the 
average number  of  nuggets increases corresponding to the 
relation of  the masses. Figure 11 b shows the histogram of  an 
analysis of  the Cod Muscle material  with a subsample mass 
o f m  = 1.1 mg. The  second max imum is shifted closer to the 
first one and the number  of  results with one nugget is larger, 
so that an average number  of  nuggets of  z = 0.65 (Fig. 11 d) 
was found. 

o 09,-i ............................... i ......................... i,/ .... .,-: ....... 

95 i ........................... i ................ ¸ ......... i ̧ 
£ i . ~  J 
~_ 8 o ?  .............................. ~ ........ i . . . . . . .  

201 -: . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  

u 1 . !  . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . .  } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

0 .  I . . . . . . . . . . . . . . .  " . . . . . . . . . . . . . . . . . . . . . . .  ~ .. . . . .  ; - - !  . . . . . . . . . . . . . . . .  ~ 

8 1 2 

b content o? cadmium / tel. 

Fig. 9. Normalised SS-ZAAS data from a cadmium determination m 
BCR CRM-184 (Bovine Muscle). a Frequency histogram; b Normal 
probability plot 

5 Discussion 

The validity of  the nugget model  theory can be shown using 
the evaluated examples.  Table  1 lists the experimental ly 
de termined and calculated values oftf ie  materials  examined,  
including examples  from previous papers. 

The  excellent agreement  of  the average values calculated 
From all (n) analytical results with the contents  calculated by 
the nugget model  [Eq. (6)] shows that reliable designation of  
the fractions of  nugget numbers  (x) is possible. 

All  examples show an overall RSD which is significantly 
larger than the RSE, calculated from the nugget model  [Eq. 
(7)]. This reflects the fact that the RSD is also influenced by 
the instrumental  response scatter (baseline noise), while, 
with the determinat ion  of  the sampling error via the nugget 
model ,  none  of  the analytical and instrumental  random 
errors have any influence! 

Most  important  for the use of  certified reference mate- 
rials is that, even in the case of  a large nugget effect, the RSE 
is small enough at subsample  sizes of  200 mg; this mass is 
generally r ecommended  as the m i n i m u m  sample mass by 
CRM producers.  The  RSE thus gives only a small contribu- 
t ion to the analytical RSD; this is normal ly  in the range of  
5-10% [3]. 

Wi th  the demand  for normal ly  distr ibuted results dis- 
cussed by Pauwels et al. [19, 20], the port ion of  nugget mate- 
rial, PN, is the decisive factor. I f  this port ion is very small, a 
skewed distr ibution remains  possible with larger subsample  
masses. Al though Herr ing-Gul l  Egg (Cu) and Spruce Shoot 
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Fig. 11. Normalised SS-ZAAS data from cadmium determinations in BCR CRM-422 (Cod Muscle) a for a subsample mass of 0.6 mg and b for a 
subsample mass of 1.1 mg. c Distribution of the nuggets and Poisson fit (z = 0.39) of the determination in a. d Distribution of the nuggets and 
Poisson fit (z = 0.65) of the determination in b. 

(Pb) have an identical homogene i ty  constant  of  14 mg 1/2, the 
herring-gull egg material  requires subsamples  o f  approx. 100 
mg to obtain normal ly  distr ibuted results, while for the 
spruce shoot  mater ial  3 mg is sufficient. This difference is 
caused by the difference in the z /m-value  (0.09 and 3.2 m g  1, 
(Table 1). 

This effect can also be recognised with Cd in BCR 
CRM-422 and Pb in BCR CRM-184;  in the latter the 
H-value is larger, but  the subsample  mass  for normali ty  is 
smaller. Both samples have approximate ly  the same cn • m- 
value (0.36 and 0.34 mg) but  a significant difference in the 
z /m-value  (0.65 and 0.93 mg-1). 

Obviously the mode l  of  equal sized nuggets oversimpli-  
ties the consti tution of  real samples of  biological origin. The 
particle sizes o f  ground and sieved powders  cover a wide 
range, often several orders o f  magni tude  for the diameter.  It 
must  be assumed,  that the nugget particles also normal ly  
show such a size distribution. 

Typical particle size distr ibutions of  ground materials are 
right s ided (tail to large particles, often describable by a log 
normal  distribution). Because the volume and the mass of  
the particles both increase with t he th i rd  power  of  the diam- 
eter, the rare large particles contain the main por t ion o f  the 
analyte. These  particles create the nugget effect, while the 
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Table 1. SS-ZAAS results and evaluation of nugget-containing reference materials 

Reference material Results and evaluation 

Subsample mass for RSE for Content d Std. dev. d 
Identifcation Element Content a n m cB cn z HE u Z=9 5%RSE 1%RSE c m=200mg Content ~ Samp. err. e 

(mg/kg) (rag) (tel.) (rel.) (f~g) (rag) (mg) (g) (%) (rel.) (tel.) 

Mussel Pb 0.91 198 0.25 0.78 0.16 1.21 8.8 1.9 3.1 0.077 0.62 1.00 0.26 
(NIES No.6) 0.96 0.18 

Spruce Shoot Pb 3.1 100 0.26 0.73 0.28 0.82 13 2.9 6.8 0.17 0.92 1.00 0.32 
(GSB-RM 1) 0.96 0.28 

Bovine Muscle Cd 0.013 110 0.65 0.74 0.56 0.45 30 13 36 0.9 2.1 1.00 0.47 
(BCR CRM-184) 0.99 0.38 

Pb f 0.24 360 0.55 0.60 0.77 0.5l 41 9.7 68 1.7 2.9 1.00 0.71 
0199 0.56 

Herring-GullEgg Cu 2.0 h 121 1.3 0.96 0.35 0.12 14 98 7.5 0.19 0.98 1.00 0.19 
(GSB-RM) 1.00 0.12 

Cod Muscle Cd 0.016 144 0.6 0.77 0.57 0.39 28 14 31 0.78 2.0 1.00 0.41 
(BCR CRM-422) 0.99 0.36 

144 1.1 0.77 0.37 0.65 31 15 39 0.99 2.2 1.00 0.36 
1.08 0.30 

Pb g 0.08 116 0.89 0.81 0.44 0.43 27 19 29 0.73 1.9 1.00 0.42 
1.00 0.29 

%ertified or reference value; b calculated from Eq. [8] and Eq. [14]; Cidentical with sampling constant K d dmean content and standard deviation 
calculated from n measurements; ~ analyte content and sampling error calculated with the nugget model from Eq. [6] and Eq. [7]; 

r published in [4]; g published in [25]; h indicative value 

high number  of  smaller  nuggets (z > 9) mainly give a contri- 
but ion to the shape of  the basic fraction. 

This considerat ion explains why only a moderate  
broadening effect by the nugget size distr ibution must  be 
taken into account when evaluating the nugget fractions. 

The  de terminat ion  o fz  and c~ is rather artificial and does 
not  reflect the real physical propert ies of  the sample powder.  
Ingamells  pointed out, that the deve lopment  of  the sampling 
theory depends  on the proposit ion:  "The sampling charac- 
teristics of  most  mixtures,  in which a single e lement  X is of  
interest, may be duplicated by a hypothetical  mixture of  uni- 
form grain size which contains only two minerals,  each of  
different X-content"  [21]. 

Despite this l imitat ion of  the nugget model ,  it is evident 
that the sampling error is de termined by the fraction of  the 
largest nugget particles, which come out  with the method  
applied. The  calculation of  the homogenei ty  constant, there- 
fore can be assumed to be very reliable. 

6 Conclusion 

The existence of  nuggets in ground mineralogical  and geo- 
logical samples is to be expected and can be explained by the 
geochemical  composi t ion [22]. Nuggets in the samples which 
are under  investigation in this paper are postulated only by 
statistical evaluat ion of  analytical data. The  particles with 
extreme analyte content  somet imes  have an unexpected or 
surprising origin. 

For  the bovine muscle material,  LOcker et al. have shown 
the endogenous  source of  the nugget material  [23]. The calci- 

ficated capsules of  dead cysticercus bovis (larval stage of  the 
"ox tapeworm") accumulate  lead up to a 500 t imes higher 
content  compared  to the surrounding muscle tissue. These  
are ideal nugget-forming condit ions;  a very small mass frac- 
t ion contains a large analyte portion. 

The  exogenous origin of  nuggets in spruce needles  is 
explained by Wyt tenbach  et al. [24]. The inclusion of  par- 
ticles from anthropogenic  aerosols leads to a significant in- 
crease of  the material  content.  Al though it was shown only 
for some elements  that are detectable with neutron activa- 
t ion analysis (e. g. a luminium),  lead would also have a simi- 
larly considerable effect (external > endogenous) .  

The origin of  the nugget effect in the cod muscle can only 
be supposed.  Al though care was taken that  only the filet 
material  was collected, it is possible, that  remains of  bones - 
from which a higher lead and cadmium content  is known - 
are included in the reference material.  

The importance of  the analytical and statistical tools de- 
scribed in this paper for the certification of  biological and 
environmental  CRMs is evident: 

I f  possible, the presence of  small particle fractions with a 
very high analyte content  must  be avoided during CRM sam- 
ple preparat ion and production.  I f  present,  they must  be 
accurately assessed during the prel iminary homogenei ty  
study. 

The  uncertainty of  the certified content  given in the certi- 
fication report, gives information mainly about  the degree of  
mixing, segregation effects ("between-bott le" homogenei ty)  
and the random and systematic errors of  the methods  used 
for certification. In  addition, the certificate o f a  CRM should 
include information about  the sampling error to be 
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expected, if a certain subsample mass is used (micro- or 
"in-bottle" homogeneity) [3], or in order to evaluate the 
m i n i m u m  representative sample size of the CRM correctly 
[25]. 

For the determinat ion of the homogenei ty  constants of a 
CRM, which can give the user this information, SS-ZAAS 
proves to be highly suitable. Because of the small sample 
amount  heterogeneity effects clearly emerge. Random ana- 
lytical errors are known or determinable,  so that the degree 
of homogenei ty  can be calculated from a variance analysis of 
the analytical data. 

It seems to be impossible to determine and to describe 
exactly the physical parameters of real biological samples, 
the evaluation of the solid sampling data by the method pre- 
sented there gave the most detailed look yet into the distri- 
but ion of trace elements in real powders of biological origin. 
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