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Summary. Breakthroughs in sensor technology have 
augmented the chemist's measurement repertoire by in- 
troducing new kinds of detectors with improved selectivity 
and the capacity to perform simultaneous multi-species mea- 
surements. Thus, the electronic revolution has qualitatively 
and quantitatively changed the data matrices to which 
the analyst/problem-solver has access. The new chemical 
subdiscipline of chemometrics is developing powerful 
mathematical and statistical data analysis tools to exploit 
the electronic windfall and enhance data interpretation. 
Principal component analysis and graphical procedures have 
been used to examine the multivariate suitability of current 
reference materials in matching the concentration ranges 
and matrices for various food analyses. Principal component 
analysis has been useful in developing and exploring quality 
control information for the routine analysis laboratory. 

Introduction 

The past decade has been revolutionary to the measurement 
sciences. Microprocessor control and computer aequisiti6n 
of data have increased the rate at which data are obtained. 
It is now possible to obtain large numbers of measurements 
in a fraction of the time previously required for much smaller 
efforts. Breakthroughs in sensor technology have augmented 
the chemist's measurement repertoire by introducing new 
kinds of detectors with improved selectivity and the capacity 
to perform simultaneous multi-species measurements. Thus, 
the electronic revolution has qualitatively and quantitatively 
changed the data matrices to which the analyst/problem- 
solver has access. In addition, the increasing demand for 
multi-species accuracy assessment is challenging the capacity 
of reference materials to provide validation. The new 
chemical subdiscipline of chemometrics is developing 
powerful mathematical and statistical data analysis tools 
(instruments of reasoning) to exploit the electronic windfall, 
enhance data interpretation and strengthen our inferences. 
The approach of data affluence requires re-examination of 
the analyst's tools and the analytical chemist's role in pro- 
blem-solving. The analytical chemist is no longer just a 
supplier of data, but has assumed an increased role in 
converting data into useful information. 

Analytical chemists who have participated in the mea- 
surement revolution have also lead the search for improved 
methods to exploit the power of increased measurement 
capacity and to interpret the large data matrices that they 
are producing. Unfortunately data tables containing large 

numbers of measurements yield slowly to traditional data 
analysis tools because these techniques are limited to hand- 
ling one or two variables at-a-time. Furthermore, while 
human beings are very good at recognizing patterns, they 
are generally limited to dealing with two or three dimensions 
at a time. The p-variable problem requires a p-dimensional 
examination of the data. During the past decade an in- 
creasing number of data-burdened researchers [1 - 6 ]  have 
"rediscovered" the power of multivariate statistical methods 
to enhance their exploration of large data matrices and 
multi-dimensional problems. The underlying principle or 
philosophy which has characterized much of the work in this 
area is that what makes problems complex is the existence of 
many interacting variables and that the one variable at-a- 
time has inherent limitations. A new chemical subdiscipline, 
chemometrics, has been developed to exploit multivariate 
techniques for chemical problem solving. 

Chemometrics is the chemical discipline that uses 
applied math and statistical methods to (1) design or select 
optimal measurement procedures and experiments, and (2) 
to provide maximum chemical information by analyzing 
chemical data. While chemometricians concern themselves 
with all steps in chemical problem solving [7-9] ,  this dis- 
cussion will be limited to techniques that enhance data inter- 
pretation. 

We begin by emphasizing that data are not information. 
As indicated earlier, data are easy to collect. Any machine 
can be programmed to mindlessly acquire numbers. What 
one really needs is information. We may view a database as 
a domain that requires probes and tools to extract relevant 
information. Just like the measurement process itself, 
appropriate instruments of reasoning need to be applied to 
the data interpretation task. The tools should serve in two 
capacities; to summarize the data, and to assist in interpreta- 
tion. The objectives of summarizing are simply to show the 
data. That is, to provide a means by which the totality of the 
database can be viewed. We wish to present many numbers in 
a small space. In addition, the summary should make the 
large data sets coherent. This means that it should be possible 
to compare numbers of different magnitudes without a bias. 
The summary should provide a means to explore re- 
lationships among numbers from different measurement 
domains, geological, chemical, biological, atmospheric, and 
even social and economic characteristics. The objectives of 
the interpretive aids are to reveal the data at several levels of 
detail. Exploring the fuzzy data picture sometimes requires a 
"wide-angle lens" to view its totality. Other times it requires 
a "close-up lens" to focus on fine detail. The tools that we 
apply in this process should provide this flexibility. 
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Graphical techniques are particularly useful in addressing 
these data analysis objectives. They are useful at 
summarizing because tables of numbers become "pictures". 
They are non-theoretical, i.e. they do not require detailed 
models for effective use. Graphical tools are also 
advantageous because their interpretation requires little 
formal statistical training. Conventional numerical statisti- 
cal procedures formulate hypotheses about anticipated 
behavior and focus attention on the expected. Graphical 
data analysis tools are powerful because they tend to focus 
attention on the unexpected. It is important to emphasize 
that while the graphical approach to exploratory data analy- 
sis has certain advantages over the numerical procedures, 
the empirical approach described here should be viewed as 
complementary to the more robust treatments that statistical 
methodologies afford. The fact that we cannot, by ordinary 
graphical techniques, construct simple representations for 
multidimensional data suggests that a dimension reduction 
technique must be applied to the data if we are to exploit 
the power of the graphical approach. 

Methods: principal component and factor analysis 

Two closely related techniques, principal component analy- 
sis and factor analysis, are used to reduce the dimensionality 
of multivariate data [10-12]. Factor analysis attempts to 
explain the correlation among a large set of variables in 
terms of a small number of underlying factors. Factor analy- 
sis begins with the assumption that the data come from 
a specific model where underlying factors satisfy certain 
assumptions. In this technique the emphasis is on trans- 
forming the underlying factors to the observed variables in 
order to enhance the interpretability of the data. I f  the factor 
model is incorrectly formulated or the assumptions are not 
met, then factor analysis will give erroneous results. Factor 
analysis has been successfully used in many chemical 
problems where adequate understanding of the system 
permits good initial model formulations [13]. Principal 
component analysis is similar to factor analysis in many 
respects. However, it employs a mathematical transforma- 
tion of the original data with no assumptions about the form 
of the covariance matrix. The aim of this procedure is to 
determine a few linear combinations of the original variables 
which can be used to summarize the data set without losing 
much information. The remaining discussion is based upon 
this method of reduction and its use in summarizing and 
displaying complex data sets. 

As indicated earlier, the key feature of many complex 
systems is that many variables interact with one another. 
Principal component analysis quantifies the variable interac- 
tions by computing the matrix of correlations for the whole 
database. The matrix of correlations is decomposed 
(factored) into two matrices by the mathematical tool of 
eigenanalysis. The scores matrix and loadings matrix provide 
a means by which one may derive the best, mutually indepen- 
dent axes (dimensions) that describe the data set. These 
axes are the so-called principal components. They are linear 
combinations of the original variables that arise out of the 
natural associations among the variables. They do not re- 
quire the analyst to make any assumption about the data/ 
variable structure. The utility of constructing a new set of 
axes to describe the data is that most of the total variance 

(information) in the data set may be concentrated into a few 
derived variables. This means that instead of having to depict 
the data on dozens of bivariate plots prepared from the 
original sample measurements, we can compute the location 
or principal component score of each of the observations 
in the new data space. Thus, we may depict most of the 
information on just a few two dimensional principal 
component score plots. This process may be viewed as pro- 
jecting the original data from its multi-dimensional represen- 
tation down to two dimensions. As with any projection, 
information is lost; but this technique maximizes the reten- 
tion of information and quantifies the amount of informa- 
tion contained within each projection. In most chemical 
systems it is possible to depict 8 0 -  90% of the total informa- 
tion in less than a half dozen plots. While the information 
about relationships between the objects (samples) is obtained 
from the scores matrix, quantitative information about 
relationships/interactions among the variables is contained 
in the loadings matrix. 

The second interpretive aid provided by the principal 
component analysis consists of interpreting the principal 
components. Recall that the principal components arise out 
of the natural associations among the variables and that 
they consist of linear combinations of the original variables. 
These variable groupings permit us to generalize behaviors 
into latent variables or features. By examining the contribu- 
tion that each of the original variables makes to the linear 
combination we can begin to explore the "mechanisms" that 
define the data structure. These contributions are called the 
loadings. When several variables have large loadings on a 
feature they may be identified as being associated. From this 
association one may infer chemical or physical interactions 
that may be interpreted in a mechanistic sense. A small 
loading of a variable on a feature indicates that the variable 
is not associated with the other variables that comprise the 
latent variable; and, that it is unimportant in making dis- 
tinctions along this dimension. The key element of this proce- 
dure is that we have developed a quantitative scale for char- 
acteristics which were not explicitly measured. The data have 
suggested how the variables may be grouped into latent 
features that summarize system behavior. 

Having described this mathematical tool we shall now 
examine how it can be used to explore the structure of 
a multivariate database. The importance of multipurpose 
biological-reference materials for accuracy assessment have 
been described [14-16]. Adequate accuracy assessment re- 
quires reference materials (RM's) that approximate the 
sample matrix being investigated and that the analytes (for 
which the RM's are certified) approximate the chemical form 
and concentration range present in the unknown samples. 
Many existing reference materials have been used by analysts 
for single species accuracy assessment in food and nutritional 
studies. It was often possible to obtain RM's which could 
fulfill the key requirements of matrix and concentration 
similarity for one analyte at a time. However, the increased 
use of multi-species analytical methods has revealed the 
limitations that the available RM's afford for multi-species 
accuracy assessment. The need for a wider variety of RM's  
for inorganic analysis of foods has been described [l 6]. Using 
principal component analysis Wolf and Ihnat illustrated the 
problem of adequately representing a variety of food 
matrices in multi-species analysis. A similar analysis is pro- 
vided here to illustrate the utility of principal component 
analysis in the analysis of multivariate data. 
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Results and discussion 

Average concentrations for nine inorganic nutrient concen- 
trations for twenty-four food groups [17] were obtained from 
the literature [18]. The elemental concentrations for nine 
certified reference materials [19] were also tabulated and 
subjected to principal component analysis as outlined earlier :~ 
and detailed in the literature [20-22]. The first principal 
component accounts for 58% of the original variance and 
consists mainly of a relationship to magnesium, potassium, ,- 
calcium, iron and phosphorus. The loadings indicate that N 

3 
while each variable contributes to every principal com- o 
ponent, different groups of correlated variables are major 
contributors to the principal component• The second prin- 
cipal component, consisting mainly of contributions from 
molybdenum, copper and zinc, accounts for approximately 
14% of the original variance in the database. The third 
principal component consists, mainly, of the variance con- 
tributed by sodium content in the food (accounting for 
approximately 11% of the total data variance). 

An important step in the exploratory analysis consists of 
transforming the original data into principal component 
scores. The scores indicate where each original data point 
(food group or RM) in 9-variable space lies along the new 
compound principal component axes. Figure 1 shows a plot 
of scores from the first two principal components. The 
cumulative eigenvalues of these two axes indicate that 72% 
(58% + 14%) of the total variance in the database may be 
viewed on this single bivariate plot. Individually the original 7, 
9 variables contain about 11% of the total variance. Using 
the multivariate approach, we have significantly reduced the 
dimensionality of the database and compressed the variance 
into a smaller number of axes for graphical examination. > 
Disregarding, for the moment, the differences between the 
foods and the RM's, one can see that the scatterplot is 
not homogeneous. There are regions of densely clustered "ff 
points suggesting that certain foods are characterized by N 
similar chemical compositions and other points appear to be 
isolated, indicating unique chemical compositions. A dense 
cluster in the lower left indicates that these points correspond 
to lower concentrations of magnesium, potassium, calcium, 
iron and phosphorus. This cluster is also seen to be slightly 
below average along the vertical axis (principal component 
two). Along the vertical axis we see that these points are 
characterized by lower concentrations of molybdenum, zinc, 
and copper. (The variables in parentheses indicate variables 
with only minor contributions). Note how the 24 food 
groups ( open circles) dominate this region of the plot, while 
the reference materials appear to "avoid" this region. This 
indicates that in principal component one variables the RM's 
appear to substantially exceed the concentrations of the 
foods categories, while the RM's are similar in the principal 
component two variables. Only bovine liver is substantially 
different in principal component two variables (Mo, Cu, and 
Zn). Thus, from this plot, we may conclude that while the 
matrices represented by these reference materials may 
adequately approximate the foods, the concentration ranges 
for some analytes are not equally well representing the foods. 

Figure 2 shows the first and third principal component 
scores plotted. This plot is the second most information-rich 
plot. It depicts 69% (58% + 11%) of the variance in the 
database• In this plot the vertical axis represents mainly the 
elemental sodium composition. Viewing the data in these 
dimensions suggest no substantial dissimilarities between the 
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Fig. 2. Principal component plot showing relative locations of 
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foods and reference materials is found in the sodium domain. 
The preponderance of RM's  located to the right along the 
horizontal axis (as seen already in Fig. 1) again illustrates 
the dissimilarity between the foods and reference materials 
in major inorganic compositions. Figure 3 shows the same 
data plotted in all three principal component dimensions. 
(The size of the circles indicates in pseudo-perspective the 
distance to the observer. Only the RM's are labeled for 
clarity). Note that in this three dimensional perspective, the 
RM's and foods are seen to be very dissimilar. 

This example illustrates how this mathematical trans- 
formation has permitted us to exploit the interpretive power 
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Fig. 3. Plot showing three principal components characterizing 
foods and reference materials, (only reference materials are labelled) 

,T, 

a 

Major Elements Major E l e m e n t s  

1 
Major Elements Major E l e m e n t s  

Fig.  4 a - d. Example plots showing the use of principal components 
for examining quality control data 

inherent in graphical display. It has enabled us to objectively 
select the most information-rich plots from the multitude of 
possibilities. It has shown how we may examine the structure 
of the data (to see the relationships among the observations/ 
samples) in the most parsimonious fashion. The approach 
has permitted us to graphically depict the relationships be- 
tween the foods and candidate reference materials. The 
utility of these plots can be extended to representations in 
the time domain for use in quality control. In many labora- 
tories it is common to monitor analytical performance by 
repeatedly analyzing a reference material. Figure 4 illustrates 
how principal component plotting could be used for continu- 
ous performance surveillance. Figure 4a shows a hypotheti- 
cal case in which two groups of foods (schematically shown 

as shaded regions) have been analyzed over a period of time. 
The repeated multi-species analysis of a RM is schematically 
shown as line segments connecting points in time-ordered 
sequence. In this case the envelope of variability for the 
RM is located at some distance from the actual samples, 
indicating a poor match between RM and sample composi- 
tions. The larger variability along the trace element axis 
relative to the major element axis indicates a difference in 
analytical precision. Figure 4b illustrates how a repeated 
analysis of a sample composite may be used to track analyti- 
cal performance in the multi-species region occupied by the 
real samples. Note that while the RM and sample composite 
occupy different concentration regions, the variabilities in 
trace element and major element space are similar. Figure 4 c 
illustrates a case in which the sample composite's variability 
differs from the RM. This variability pattern suggests a poor 
matrix match between sample and RM. Similarly, Figure 4 d 
illustrates another example of how the pattern of variability 
may suggest a poor match between RM and sample matrix. 
Whenever a RM differs from the samples in concentration 
and matrix it is advisable to use two quality control re- 
ferences. This method of plotting shows how multi-species 
data may be used to detect and quantify the similarity of 
RMs and samples in quality control procedures. 

A more general application of principal components 
analysis to multivariate quality control procedures is 
currently under investigation in our laboratory. In these 
studies we are examining the automated acquisition of 
quality control information from gas-chromatography/mass 
spectrometry, atomic absorption and inductively coupled 
plasma emission spectrometry. An automated procedure 
based on principal component analysis of samples and re- 
quiring no quality control samples is currently under in- 
vestigation. The objective of this research is to develop an 
instrument recalibration strategy that minimizes instrument 
time devoted to quality control samples and can be utilized 
with automated computer controlled instrumentation. 

C o n c l u s i o n s  

The exploratory data analysis procedure described here is 
designed to uncover three main aspects of data; anomalous 
samples or measurements, significant relationships among 
the measured variables, significant relationships or 
groupings among the samples. Exploratory data analysis is 
an iterative process in which a wide variety of tools are 
employed [14]. The three primary tools used in this approach 
are factor analysis, principal component analysis, and cluster 
analysis. We have limited our discussion to principal com- 
ponent analysis, the most powerful technique. Additional 
information on ancillary techniques may be found in re- 
ferences [7, 8, 11, 13]. Other examples [21, 22] are available 
in the literature cited. Other equally powerful data analysis 
tools are available to examine large complex databases [2, 
3, 7, 8, 13]. We have attempted to show that multi-species 
instrumentation generates large databases that require new 
approaches for data interpretation. The database is a domain 
that requires probes and tools to extract relevant informa- 
tion. Like the measurement process itself, appropriate in- 
struments of reasoning must be assembled if data are to be 
fully exploited. As the scientific investigations become more 
complex, it becomes increasingly important to apply tech- 
niques that are as interpretationally sophisticated as the 



367 

measurement instruments.  The techniques described here 
provide one means by which scientists may keep pace with 
the growing analysis task. 
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