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Abstract. A mathematical model of the primary visual 
cortex is presented. Basically, the model comprises two 
features. Firstly, in analogy with the principle of the 
computerized tomography (CT), it assumes that simple 
cells in each hypercolumn are not merely detecting line 
segments in images as features, but rather that they are 
as a whole representing the local image with a certain 
representation. Secondly, it assumes that each hyper- 
column is performing spatial frequency analyses of 
local images using that representation, and that the 
resultant spectra are represented by complex cells. The 
model is analyzed using numerical simulations and its 
advantages are discussed from the viewpoint of visual 
information processing. It is shown that 1) the pro- 
posed processing is tolerant to shifts in position of 
input images, and that 2) spatial frequency filtering 
operations can be easily performed in the model. 

1 Introduction 

Owing to the work of Hubel and Wiesel (1962, 1977), 
and many other studies which followed it, today much 
is known about the primary visual cortex (area 17). The 
main points can be summarized: 

1) Most cells in area 17 respond specifically to a 
line segment of certain orientation in the visual field. 

2) Among them, simple cells respond to a line 
segment having a definite position, whereas complex 
cells (and hypereomplex cells) respond to a line 
segment, regardless of its precise position within their 
receptive fields, if it has the proper orientation (and 
usually if it moves in a proper direction). 

3) These neurons are organized into a hyper- 
column, the basic module of the cortical machinery. A 
hypercolumn, which is i-2 mm 2 in size, contains a 
complete set of neurons which covers all orientations 
and both the ocular dominances. 

4) Although the position of the receptive field 
slightly fluctuates from neuron to neuron in a hyper- 

column, they all fall in a definite region in the visual 
field (aggregate field). 

5) The primary visual cortex is constructed from a 
repeated structure of the basic modules (hyper- 
columns), and the whole visual field is fully covered by 
all the hypercolumns, each processing the local image 
fallen in its own aggregate field. 

Now the problem is to elucidate whatever task this 
primary visual cortex is performing in the visual 
information processing pathway. 

Some suppose that each cell in it acts as a feature 
(line segments of various orientations) detector. How- 
ever this seems unlikely, since it is obvious that line 
segments alone are not sufficient as features to describe 
an image, though certainly they are very important 
ones. If cells in the primary visual cortex were merely 
detecting line segments, they would fail to deal with 
images having other features (e.g., blobs etc.). 

Meanwhile, another important contribution to the 
understanding of the visual system is due to Campbell 
and Robson (1968). Mainly based on psycho-physical 
evidence, they proposed that there exists a certain 
neural mechanism which performs the spatial fre- 
quency analysis of images (see also Blakemore et al. 
1969). If their proposition is correct, the problems to 
be elucidated are: 

1) What neural mechanism could perform the 
spatial frequency analysis? 

2) What role could such a neural mechanism play 
in the brain's image analysis function? 

In this paper, I try to pose possible answers to 
these problems by proposing a model concerning the 
function of the primary visual cortex. 

Basically, the model comprises two features. First- 
ly, it assumes that simple cells in a hypercolumn are not 
merely detecting line segments, but rather representing 
images by some kind of representation which I call 
"tomographic representation" in this paper. The de- 
tails will be explained in Sect. 2. 
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Secondly, the model assumes that each hyper- 
column is performing a Fourier analysis of its local 
image. Thus as a whole the primary visual cortex is 
performing local spatial Fourier analyses of the retinal 
images. It turns out that in the tomographic represen- 
tation, two dimensional Fourier transforms of images 
can be obtained by performing only one dimensional 
Fourier transforms. It is assumed that complex cells 
are engaged in performing the Fourier transform, in 
accord with the electrophysiological work by Glezer et 
al. (1973). 

The model will be described in Sect. 2. In Sect. 3 the 
function of the model will be analyzed and its advan- 
tages will be discussed from the viewpoint of visual 
information processing. In Sect. 4 a possible extension 
of the model to the binocular case will be proposed. 
Some experimental findings which can be explained by 
the model will be discussed in Sect. 5. Finally, in Sect. 6 
the results will be summarized. 

2 The Model 

In this model, it is assumed that 
1) Each local image is represented by the tomo- 

graphic representation using all the simple cells in each 
hypercolumn. 

2) Each hypercolumn performs a Fourier analysis 
of the local image using this representation. 

In this section these two features will be described. 

2.1 Tomographic Representation 
Figure 1 shows a typical setup for computerized 
tomography (CT). For instance, in X-ray CT, one 
measures the attenuation of the beam across an object 
(see for instance Hounsfield 1976)�9 The attenuation, 
d(t, O) is proportional to the integral of density along 
the beam line, l(l: rcos(~b - 0) = t). 

d(t, O)oc~fa(r, ~)6(t-rcos(O-O)) Irl drdO , (1) 

y .Beam Source 

/ 

~ e t e c 1 " o r  

Fig. 1. A typical setup for computerized tomography 

where a(r, O) is the density distribution of the object 
and 6(x) is the 6-function. 

If one measures the attenuation, d(t, 0) while 
scanning the beam to cover the whole object and 
rotating the beam axis within 0<0<re,  one can 
calculate the original density distribution, a(r, O) from 
these data, d(t, O) (Randon 1917; Hounsfield 1976). 

a(r, ~b) = ~ g(rcos(~b - O),O)dO ; 
0 

g(t, O)= ~ d(z, O)h(t-  z)dv , 
Kc 

h(t)= ~lklexp(ikt)dk,  (2) 
- - K  e 

where K c is a cutoff frequency determined by the 
resolution. 

By analogy with this, we define the tomographic 
representation (d(t, 0)) of an image as 

d(t, O)= ~a(r, r drdO, (3) 

where a(r, ~b) now denotes the light intensity of the 
image. 

This representation is complete in the sense that 
one can reconstruct the original image, a(r, O) using (2) 
if we know all the values of d(t, 0). 

Now, if one assumes that each simple cell in a 
hypercolumn is representing this d(t, 0), then one can 
reconstruct the local image projected on the aggregate 
field of the hypercolumn from the activity pattern of all 
the simple cells. 

Certainly, this representation is especially suited 
for dealing with line segments, since the bases are lines 
of various orientations. However it should be em- 
phasized here that since it is complete, one can also 
deal with other features (such as blobs etc.) in this 
representation. 

Figure 2 shows some examples of the tomographic 
representation�9 

2.2 Local Spatial Fourier Analysis 

One advantage with representing images using the 
tomographic representation is that their two dimen- 
sional Fourier transforms or autocorrelation functions 
etc. can be obtained by performing the operation only 
on the argument t. 

Suppose d(t, O) is the tomographic representation 
of a local image, a(r, ~b). Then its Fourier transform 
with respect to t is calculated as 

D(k, O) = ~ d(t, 0)exp(-  ikt)dt 
= ~ t  a(r, ~b)6(t- rcos(0-  ~b))IrL 

�9 drd~bexp(- ikt) dt 
= I~ a(r, ~b)exp(- ikrcos(O- ~b)) Irl drdO 
= I~ a(r)exp(- ik �9 r)dr = A(k), 

k = (kcos0, ksin0). (4) 
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Fig. 2A and B. Examples of the 
tomographic representation. 
Original (local) images (A a point 
(i), a line (ii) and a line with a 
termination (iii)) and their 
tomographic representations (B). 
In A, the outer circles represent 
the local, aggregate fields�9 The 
parameters, t and 0 are defined as 
indicated in A (i) 

Thus, D(k,O), the Fourier transform of the tomo- 
graphic representation (d(t, 0)) with respect to t, is 
equal to A(k), the Fourier transform of the original 
image a(r) with respect to r, expressed in polar 
coordinates (k, 0). In other words, one can obtain the 
two dimensional Fourier transform of the original 
image by performing merely a one dimensional 
Fourier transform on its tomographic representation. 

In order to perform the Fourier transform, it is 
necessary to gather all the activities of simple cells 
having the same orientation selectivity (i.e., d(t, 0), 
0 = const) to one cell. It is assumed in the model that 
some complex cells are playing this role. 

Since activities of neurons are expressed in terms of 
pulse frequencies, basically they can not deal with 
negative quantities. Consequently, when one intends 
to realize the model with some neural network, one 

should assign certain neurons for dealing with negative 
quantities (e.g., on-center cells and off-center cells) in 
every processing stage of the model. 

The features of the model are summarized in Fig. 3. 
In a hypercolumn, the local image fallen in its aggre- 
gate receptive field is 

1) represented by all the simple cells with the 
tomographic representation, and 

2) Fourier analyzed using that representation, the 
resultant spatial frequency spectra being represented 
by complex cells using the polar coordinate 
representation. 

Thus, the whole input image is analyzed by all the 
hypercolumns with a local spatial Fourier analysis. 

Figure 4 shows an example of the processed pattern 
produced by the model. The pattern consists of 13 x 10 
local spatial Fourier transforms, each calculated using 
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Fig. 3. Basic features of the model 
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Fig. 4. An example of an output pattern of the model�9 The 
original image is the same as in Fig. 8B. The original image 
(256x200 pixels) is divided into overlapping 13 x 10 local 
images, and their Fourier transforms are calculated using the 
tomographic representation�9 To eliminate the discontinuity at 
boundaries, a Gaussian window (a = 10) was employed in the 
Fourier transform calculation. In this figure, dots represent the 
spatial frequency components whose magnitudes are larger than 
a certain threshold 

the tomographic representation of the corresponding 
local images (in Fig. 4, only the amplitudes squared of 
the Fourier transforms are shown). 

3 The Function of the Model 

3.1 Stability to Shifts in Position 

The spatial frequency power spectrum of an image is 
invariant under a shift in its position. Accordingly, by 
local spatial Fourier analysis, one can extract sepa- 

rately a position-insensitive component (amplitudes of 
local Fourier transforms) and a position-sensitive 
component (their phases) from an input image. The 
former is stable with regard to displacements of the 
input image within the range of each aggregate field 
size. 

An analogous stability would result if one took a 
moving average of images using some proper weight- 
ing function (e.g., Gaussian) by performing a convo- 
lution of the images with it. In this case, images become 
stable with respect to displacement as they are 
smoothed by the weighting function in the range of its 
width. However a decrease in resolution occurs, since 
in the averaging process the high spatial frequency 
components of the images are lost. 

Meanwhile, with a local spatial Fourier analysis, 
one can obtain patterns, stable with regard to displace- 
ments in the original images, without any loss in 
resolution, since their high frequency components are 
als 0 preserved throughout the process. 

Figure 5a shows the overlap between an original 
image I and its displaced image I' [displaced by 
(dx, dy)] as a function of the displacement (dx, dy). The 
overlap I .  l'/lII" II'l steeply decreases when one dis- 
places the image over a few digits. 

On the other hand, the overlap between the output 
patterns (their amplitude components squared), O and 
0% which are obtained by processing the images, I and 
I' with the model, maintains a rather high value when 
the displacement is within the range of the aggregate 
field size (see Fig. 5b)? 

The same order of stability with respect to displace- 
ment can be achieved if one smoothes the image with a 
weighting function such as a Gaussian whose width 
(variance) is about  15 digits. However, in this case the 
resolution is restricted by the width of the weighting 
function. 

Figure 6 shows an image of one line (2 digits width, 
Fig. 6a) and that of two lines (1 digit width and 1 digit 
spacing, Fig. 6b). These two images could not be 
distinguished if one smoothed the images by taking a 
moving average with a weighting function whose width 
is larger than about  1 digit. Meanwhile, one can 
distinguish these two from the high frequency compo- 
nents of the output patterns of the model (Fig. 7). 

1 As in Fig.4, O and O' consist of 13x 10 local spatial 
frequency spectra. If we write O and O' as P(k, 0; X, Y) and 
P'(k, 0; X, Y), X and Y denoting the location of the local image, 
then the overlap, O. O'/IOI. ]O'1 is calculated as 

P(k, O;X, Y) P'(k, O; X, Y)/]S Z P(k, O; X, y)2 
k,0 I / L ~  
X,Y 

p, �9 I / E  (k,O;X, y)2 
72, 
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Fig. 5. A Overlap between an original image (shown in Fig. 8b) and the displaced image as a function of the displacement. B Overlap 
between output patterns (their amplitude components), each obtained by processing the original image and the displaced one with the 
model 
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1, B) 

3.2 Spatial Frequency Filtering 

With the model described in 2, one can easily perform a 
spatial frequency filtering operation by, for instance, 
inhibiting cells subserving certain frequency 
components. 

Figure 8a shows the quantitized image (quantitiz- 
ation unit is 4 x 4 pixels) of an image shown in Fig. 8b. 

The quantitized image and the original image are 
processed by the model, and the overlap between the 
two output patterns (their amplitude components 
squared) are calculated with proper weighting func- 
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Fig. 7A and B. Output patterns of 
a hypercolumn which are, 
obtained by processing the images 
in Fig. 6. Here, only their 
amplitudes squared are shown 
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Fig. 8A and B. An image (B) and its quantitized image (A). 
Quantitization unit is 4 x 4 pixels 

Table 1. Overlaps between output patterns obtained by 
processing the two images in Fig. 8. These are calculated using 
different weighting functions in spatial frequency space a 

Weighting function Case 1 Case 2 

Overlap O - O'/IOI " IO'1 0.523 0.987 

" In the model, spatial frequency spectra of local images are 
calculated and represented in polar coordinates (P(k,O)). 
Therefore, if one calculates the inner products (in spatial 
frequency space) by 

~fPP'dkdO 
one underestimates the high frequency components (note that in 
polar coordinates, the surface element dS is given as dS = kdkdO). 
This occurs with Case 2. 

In Casel, in order to enhance the high frequency 
components, the inner products are calculated by 

~IPp'M2dkdO 
where M=kexp(-0.125 k 2) is a weighting function in spatial 
frequency space. In real space, this corresponds to some proper 
lateral inhibition among simple cells, d(t, O) 

tions in spatial frequency space. The results are shown 
in Table 1. One can see that the model can either treat 
the two images in Fig. 8 as the same (case 2) or as 
different (case 1) by varying the weighting function in 
spatial frequency space. 

4 A Possible Extension of  the Model  to the Binocular 
Case 

In reality, hypercolumns get afferents from both eyes 
(Hubel and Wiese11962, 1977). If one intends to extend 
the model to the binocular case, it is desirable that it 
satisfies two points: 

1) Stimulus equivalence between both eyes: a 
mechanism to evoke the same neuronal activities for 
the same stimulus, regardless of whether it is from the 
right or left eye (note that the model described so far 
satisfies quasi stimulus equivalence across the aggre- 
gate field). 

2) A mechanism to detect the disparity between the 
right eye (local) image and the left eye one (as it is an 
important parameter for stereo vision) (Barlow et al. 
1967; Marr et al. 1976). 

In this section, I will suggest a possible extension of 
the model to the binocular case, which satisfies the 
above two points by introducing an additional Fourier 
transform with respect to the coordinate which spec- 
ifies right eye (R) and left eye (L). 

Here, we concentrate on a particular hypercolumn. 
Suppose the right eye image and the left eye image to 
that hypercolumn are aR(X, y) and aL(X, y) respec- 
tively. We denote their tomographic representations as 
dR(t, O) and dL(t, 0). [Hereafter we abbreviate them as 
dR(t) and dL(t) since each 0 component can be treated 
independently.] 

First, we perform the Fourier transform with 
regard to coordinate t (we denote the Fourier trans- 
form of d(t) as D(k)). 

DR(k ) = ~dR(t ) exp(-- ikt)dt 

D L(k) = ~dr(t) e x p ( -  ikt) dt. (5) 

Second, we perform the Fourier transform with 
regard to the coordinates R and L. 

Do(t) = DR(t) + DL(t) 

D l(t) = DR(t)-- DE(t). (6) 

Then their amplitudes squared (P = ID[ 2) are given as 

Po(k) = PR(k) + PL(k) + (D'DE + DRD*) 

nl  (k) = nR(k) + PL(k) - (D*D L + DRD~). (7) 

In (7), the first and second terms are the power 
spectra of the right eye image and the left eye image 
respectively, and the third term is their interference 
term. Therefore if one expresses (7) as 

Po(k) = Po(k) + P I (k) 

ff~ (k) = P0 (k) - P1 (k) (8) 

then Po(k) satisfies the stimulus equivalence of right 
and left eyes, whereas Pl(k) bears the information on 
the disparity between the two images. 

For  example, if dR(t) and dL(t) are 

dR(t)= f( t )  

dE(t) = f ( t - -  A) (9) 

then Po(k) and P~(k) are calculated as 

Po(k)=4lF(k)l: 
Pt (k)=4lF(k)[Zcos(A . k) , (10) 

where F(k) is the Fourier transform of f(t). 
Thus Po(k) is proportional to the power spectrum 

of the input image (f(t) or f ( t - A ) ) ,  whereas Pt(k) 
bears the information on the disparity, A. 



Of course, it is also possible to detect disparities 
directly in real space by, for instance, calculating the 
mutual correlation function, c(r) between both eyes 
local images, aR(r) and aL(r). 

c(r) = Y~ aR(r ) aL(r + r') (11) 
r '  

One can detect the disparity from the maximal point in 
c(r). 

In the tomographic representation, (11) becomes 2 

c(t, 0)= Ed (t, O) (12) 
t '  

where c(t, O) is the tomographic representation of c(r), 
and dR(t, O) and dE(t, 0) are those of aa(r) and aL(r ) 
respectively) 

Basically, the model suggested in this section 
calculates the Fourier transform of c(t, O) to extract the 
information on the disparity, i.e. 

C(k, O)=D~(k, O)DL(k, 0). (13) 

Note that by comparing this with the calculation of 
the mutual correlation functions in real space [cir. (12)], 
one can immediately obtain C(k, O) in spatial fre- 
quency space, if DR(k, O) and DL(k, 0) have been 
calculated beforehand, which is one of the model's 
assumption made in Sect. 2. 

Kaufman (1964) and Julez (1971) suggested that in 
the human visual system, some independent spatial 
frequency-tuned channels arc involved in detecting 
disparities. However, at present it is not certain 
whether the disparity is dealt with in real space or in 

2 (12) can be derived as follows 

2dR(t, O)dL(t +t', O) 
t '  

= Z aR(rl)aL(r2)6(t--[rl[ 
t ' , r l , r  2 

�9 c o s ( 0  - -  r  + t ' - - I r 2  Icos(0- r  

= Y~ aR(rOaL(r2)6(t+ [rl--r2]cos(0--r 
r l , t 2  

= 32 ag(r0aL(ri +A) 6(t-lAlcos(O-r 
r t , A  

= 2c(A)6(t-lAIcos(O-O~)) 
6 

where A=r I-r2, and r r r162 are defined as 

ri = Ir~l(cosr sinr 

and 

rl -r2 = Ir~- rzl(COSr 2, sinr 2) 
3 To detect the disparity, it is sufficient to calculate c(A) only in 
the region (d, 0); ]AI< Ama~ (i.e., along the horizontal direction), 
where Area ~ is the maximal disparity to be detected�9 This means, in 
the tomographic representation, one can determine the disparity 
mainly from the value of c(t, O) in the region t=<Ama~COS0. 
Therefore, for example, one need not calculate c(t, O) along the 
vertical direction (0 = ~/2) 
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spatial frequency space at the stage of the primary 
visual cortex. 

5 Discussion 

The proposed model is consistent with some physi- 
ological or psychological findings. 

1) Simple cells show maximal responses to line 
segments of various orientations and various positions 
(within the aggregate field), and a hypercolumn con- 
tains a complete set of simple cells covering all the 
orientations. These facts support the assumption that 
the local image fallen in the aggregate field is repre- 
sented with the tomographic representation. 

2) A hypercolumn also contains complex cells 
which respond to line segments regardless of their 
position within the receptive fields. This suggests that 
complex cells are performing some operation only on 
the argument t (with 0 =const)  in the tomographic 
representation, such as the Fourier analysis on t 
assumed in the model. This assumption is consistent 
with the findings of Glezer et al. (1973). 

3) Thus, in the model, the spatial frequency chan- 
nels suggested by Campbell and Robson (1968) are 
assigned to some complex cells. However, in the model 
the channels are for local spatial frequencies. 

In reality, simple cells have inhibitory regions 
(Hubel and Wiesel 1962) surrounding the excitatory 
region (or vice versa in case of off-center cells). 
Generally, such a lateral inhibition is known to 
enhance contrasts of an image. As a first approxi- 
mation, one can treat this effect by replacing d(t, O) 
in Sect. 2 by 

d'(t, 0)= ~d(r, O)w(z -Odz ,  (14) 

where w(z) is an adequate weighting function to 
represent the lateral inhibition. Then (4) becomes 

D %  0)=D(k,  0)W*(k) ,  (15) 

where W(k) is the Fourier transform ofw(z). Since w(z) 
has surrounding antagonistic regions, W(k) has small 
value around k = 0. This means, according to (15), that 
the high frequency components are relatively en- 
hanced under the lateral inhibition (see also the 
footnote of Table 1). 4 

4 Even from d'(t, 0), one can reconstruct the original image a(r, r 
as follows. 

n 

a(r, r = ~ g'(rcos(r 0), O)dO; 
0 

g'(t, 0)= ~d'(~, 0)h'(t-~)d~, 
Kc 

h'(t)= ~ ]klexp(ikt)/W(k)dk 
-- K c  
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To achieve global visual information processing, 
one need to integrate the locally processed outputs. 
This integration process is left for the following stages. 
For  example, in the proposed model, each hyper- 
column can not deal with spatial changes whose 
periods are larger than their aggregate field sizes. In 
order to detect these frequencies, one needs to gather 
the outputs of hypercolumns with different locations. 

6 Summary 

To summarize the results, 
1) A possible model was proposed concerning the 

function of the primary visual cortex and its basic 
module, the hypercolumn. The basic features of the 
model are: 

a) First, hypercolumns transform local images 
which fall in their aggregate receptive fields into their 
tomographic representations. 

b) Second, each hypercolumn performs Fourier 
analyses using that representation. Thus the whole 
input image is analyzed by local spatial Fourier 
analysis. 

2) F rom the information processing viewpoint, the 
early stage visual information processing described 
above has the following advantages: 

a) It is tolerant to shifts in position of the input 
images, preserving resolution. 

b) One can easily perform filtering operations in 
spatial frequency space if necessary. 

3) The model can be extended to the binocular case 
in a reasonable way. 
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