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Abstract. The stationary state of the self-organizing 
sensory mapping of Kohonen is investigated. For this 
purpose the equation for the stationary state is derived 
for the case of one-dimensional and two-dimensional 
mappings. The equation can be solved for special cases, 
including the general one-dimensional case, to yield an 
explicit expression for the local magnification factor of 
the map. 

1 Introduction 

Self-organizing sensory mappings play a crucial role in 
the development and maintenance of many functions 
of the nervous system and especially the brain. Differ- 
ent sensory inputs, such as tactile (Kaas 1983; Merzen- 
ich 1983), visual (Whitteridge 1973) and acoustic (Suga 
1979; Pickles 1982) inputs, are known to be mapped 
onto different areas of the cerebral cortex in an orderly, 
topology-preserving fashion, i.e., similar inputs are 
mapped onto neighbouring places in the cortex. These 
mappings are not genetically prespecified in a detailed 
manner but instead self-organize during the early 
stages of the formation of the nervous system. To some 
extent the mappings can remain plastic even later and 
adapt to subsequent changes in the environment or the 
sensors themselves. The degree of plasticity varies for 
different cortical mappings. For instance, the mapping 
from retina to cortex after its formation remains plastic 
only for a relatively short period of time, whereas for 
the somatosensory map considerable plasticity has 
been found even in adult animals (Kaas 1983; Merzen- 
ich 1983). In addition, different types of reorganisation 
after partial damage to afferent inputs have been 
observed (Kaas 1983). 

Several algorithms for the formation of such mapp- 
ings have been suggested (Edelman 1985; Takeuchi 
1979; Willshaw 1976, 1979). In the following we will 

consider a proposal due to Kohonen (Kohonen 1982a, 
b). This proposal is not meant to model biological 
details but rather tries to capture the most essential 
features of such mappings for the benefit of remaining 
computationally tractable. The formation of the map is 
driven by a random sequence of sensory input signals 
whose probability distribution imprints on the final 
map in such a way that regions of the input signal space 
corresponding to frequent signal occurrences are 
mapped onto larger areas than regions corresponding 
to rarer input signals. Therefore the map magnifies 
more important sensory regions at the expense of less 
important sensory regions. 

Below we shall illustrate the algorithm, obtain an 
equation for the final (stationary) map in terms of the 
signal probability distribution and derive the local 
magnification factor for special cases, including the 
general one-dimensionai case. 

2 The Model 

As in (Kohonen 1982a, b) we consider a map ~b:A~B 
where B represents a lattice of neuronal units labelled 
by r and A a spatially continuous sensory source with 
elements v. A may represent, for example, the coordi- 
nate set of somatosensory receptors distributed 
densely over the body surface and B the set of those 
neuronal units of a layer in the cerebral cortex to which 
the somatosensory receptors are linked. The lattice B 
receives a sequence of input signals drawn randomly 
from A, the t-th signal It = 1, 2, 3...] being represented 
by v(t) [v(t)eA]. Each v(t) is received by all elements r 
of B simultaneously. To each unit belongs a vector 
w(r, t)eA, which determines the response of unit r upon 
arrival of a signal v(0. The response shall be given by 
f( l lv(t)-w(r,  t)]l), where f(x) is a smooth real func- 
tion peaked at x = 0 and of Gaussian type. Calling the 
union of all those points of A, which are closer to w(r, t) 
than to any other w(s, t), s 4: r, the "receptive field" Ar 
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Fig. 1. Units and their receptive fields for the case of A =  [0, 1] 
and a linear array of 5 units (full circles, bottom). Above each unit 
r a copy of A is shown with the hollow circle denoting the value of 
w(r). The subset of A consisting of all those points, which are 
closer to w(r) than to any w(s), s =~ r, is shown bold and constitutes 
the receptive field of unit r 

S 

Fig.2. Input space A: the hand surface is represented by the 
subset H consisting of the union of the areas D, L, M, R and T 
corresponding to thumb (D), left, middle, right finger (L, M, R) 
and palm (17). The remaining area S surrounding H does not yield 
inputs to B, i.e. v(t) never ties in this area 

of unit r (Fig. 1), we always have the maximal response 
at that unit r, for which v(t)eA,. The mapping ~b:A-+B 
we are seeking is then specified as follows: the image of 
a vector yea is the particular unit ueB, which maxi- 
mally responds to the signal v. 

Initially the vectors w(r, 0) and therefore the recep- 
tive fields of the individual units reB are distributed 
arbitrarily (e. g. randomly) in the input space A. Each 
incoming signal v(t)eA, t = 1, 2, 3 .... causes the follow- 
ing adaptation step to take place: 

1) Selection of the unit r with maximal response 
upon v(t) 

2) Modification of the receptive fields of unit r and 
all neighbouring units s according to 

w(s, t+  1)=w(s, t ) + h ( r - s ,  t) .  (v(t)-w(s,  t)). 

For each t, h(x, 0 is peaked at x = 0  and again of 
Gaussian type (either in each component if B is a high 
dimensional lattice or in the modulus of x), whose 
width d(t) is a slowly decreasing function of t. All units 
s at a distance to unit r exceeding d(t) receive only very 
little modification through 1), whereas all closer units 
are modified notably so as to improve their response to 
signal v(t). In the spirit of Edelman's group selection 
theory (Edelman 1985) a unit might be interpreted as a 
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Fig. 3. a Initial configuration of the w(r, 0) in input space: each w(r, 0) takes on a value corresponding to a point in the x -  y-plane and 
belongs to a unit at the mesh-point r of a 30 x 30 square mesh. Each mesh-point r is drawn at the location w(r, 0). b Initial "cortical" 
configuration of the w(r,0): shown is a top view of the array of the 30 x 30 units. Each character position stands for one unit and 
characters D, L, M, R, T denote the region containing the receptive field center w(r, 0) of the respective unit. Dots mark units which have 
not yet a receptive field within the hand surface H 
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Fig. 4. a As Fig. 3a, but after 500 iterations�9 Superimposed is the 
hand area H, from which input signals v are originating�9 b As 
Fig. 3b, but after 500 iterations 

group of neurons. At each input the most responsive 
group is selected and competes with neighbouring 
groups for a yet better response. 

As an illustration of this algorithm we show the 
process of formation of the somatosensory mapping 
from the surface of a hand to the somatosensory region 
of the cortex�9 The map is chosen initially random and is 
shown to develop to a final ordered map. In this 
example the target area B on the cortex has been 
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Fig. 5. a As Fig. 4a, but after 3000 iterations, b As 
after 3000 iterations 
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chosen to be a square array of 30 x 30 units and the 
input space A is the two-dimensional square depicted 
in Fig. 2. However, inputs v are only offered from the 
union H of the areas D, L, M, R and T in Fig. 2, which 
together represent the hand surface in our model. The 
initial points w(r, 0) were cquiprobably distributed 
over the whole input space A, i.e., the square enclosing 
H. This is represented in Fig. 3 which shows the initial 
positions w(r, 0) together with straight line connections 
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Fig. 6. a As 
after 20000 

Fig. 4a, but after 20000 iterations, b As Fig. 4b, but 
iterations 

between those pairs w(r 1, t) and w(r2, t) for which rl 
and r 2 are neighbours in the lattice B. Obviously 
neighbourhood relationships are not conserved by the 
initial map w(r, 0). When we carried out the algorithm 
described above, the input signals v(t) were selected 
randomly from H, and their probability density was 
chosen to increase towards the regions corresponding 
to the fingertips of the hand region in order to account 
for the higher density of tactile sensors there. 
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Fig. 7. a The same as the preceeding figure, but now with region 
M excluded from contributing input signals v; this situation 
corresponds to the removal of a finger, b Receptive field centers 
after removal of region M: units ~ e r l y  responsive to finger M 
are now deprived of their inputs 

The function h(x, t) chosen in our simulation was a 
slowly decaying amplitude a(t) times a Gaussian with 
initial width d(t) of 5 lattice spacings, slowly decreasing 
to a final value of 2 lattice spacings after 5000 iterations 
and then remaining there for the rest of the simulation. 
The initial value of a(t) was 0.5, exponentially decaying 
to 0.1 during the first 5000 iterations and constant 



103 

a 

D D D T T T T T T T T T T T T T T T T T  

D D D D T T T T T T T T T T T T T T T T  

D D D D D T T T T T T T T T T T T T T T  

D D D D D D D D T T T T T T T T T T T T  

D D D D D D D D , L L T T T T T T T T T  

D D D D D D D . . L L L L T T T T T T T  

D D D D D , � 9  

D D D D . . , L L L L L L L L L T T T T  

D D D . , � 9  

D . . . .  L L L L L L L L L L L L T T T T  

. . . .  L L L L L L L L L L L L L T T T T  
, , L L L L L L L L L L L L L L L T T T T  

L L L L L L L L L L L L L L L L L T T T T  
L L L L L L L L L L L L L L L L L , T T T  

L L L L L L L L L L L L L L L L , , T T T  

L L L L L L L L ' L L L L L L L L . � 9  

L L L L L L L L L L L L L L L , , , T T T  

L L L L L L L L L L L L  . . . . . . .  T T  

L L L L L L L L L L L  . . . . . . . . .  T 

L L L L L L L L L  . . . . . .  R R R R R R  

L L L L L L L L  . . . . .  R R R R R R R  

L L L L L L  . . . . .  R R R R R R R R R  

L L L L L  . . . . .  R R R R R R R R R R  

L L L  . . . . .  R R R R R R R R R R R R  

L L  . . . . .  R R R R R R R R R R R R R  

. . . . .  R R R R R R R R R R R R R R R  

. . . .  R R R R R R R R R R R R ~ R R R  

� 9 1 4 9  

R R R R R R R R R R R R R R R R R R R R  

R R R R R R R R R R R R R R R R R R R R  

b 

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

T T T T T T T T T  

R T T T T T T T T T  

R R T T T T T T T T  

R R R T T T T T T T  

R R R T T T T T T T  

R R R R T T T T T T  

R R R R T T T T ' r T  

R R R R T T T T T T  

R R R R R ' r T T T T  

R R R R R T T T T T  

R R R R R T T T T T  

Fig. 8. a Readapted map after 50000 iterations subsequent to 
dissection of M. Formerly deprived units are re-employed by 
adjacent regions L, R, T thus allowing a finer representation 
there, b The same in "cortical view" as in Fig. 3b: formerly 
deprived units have developed receptive field centers located in 
neighbouring regions L, R, T 

thereafter. Figures 4-6 show different stages in the 
formation of the map. After 20000 iterations the map 
has reached a rather orderly state. Following an 
experiment of Merzenich and Jenkins (Merzenich 
1983) we "remove" at this stage the middle finger by 
envoking in the continuation of the algorithm no 
further inputs from the region M of this finger (see 
Fig. 7). The algorithm with a d(t) value of 2 lattice 
spacings still exhibited enough plasticity to slowly 

adapt in the course of 50000 further iterations to this 
removal. Figure 8a shows the final distribution of the 
values w(r, t) over the input space and Fig. 8b depicts 
the array B with its units marked by the location of 
their center of maximal sensitivity. The "cortical 
region" which in Fig. 7b immediately after the "ampu- 
tation" is seen to be deprived of inputs has now been 
"invaded" by sensory input mainly from the adjacent 
regions L, R and T respectively, whereas more distant 
parts have changed only slightly. This plasticity is very 
similiar to that found for the somatosensory map in the 
experiment referred to above. The rearrangement of 
the map is accompanied by an increase of the map's 
local magnification factor for the adjacent parts of 
regions L, R and T, which results in a higher spatial 
sensory resolution there. This is also discernible from 
Fig. 8a, where an increase in the local density of the 
mesh-points w(r, t) in the surround of the "ampu- 
tation" can be seen. This latter effect is also in good 
qualitative agreement with experimental observations 
(Merzenich 1983). 

3 Equation for the Final (Stationary) Mapping 

As is shown in Kohonen (1982a, c), repeating the 
above steps 1) and 2) and decreasing d(t) sufficiently 
slowly yields an ordered mapping from A onto the 
array of units such that neighbouring units are sensi- 
tive to neighbouring regions of A, irrespective of the 
initial values w(r, 0). The important dependence of the 
final mapping upon the probability distribution of the 
input signal v(t) was discussed only qualitatively in 
(Kohonen/982a) and shall be supplemented here by a 
more quantitative treatment�9 

As long as d(t) is nonzero, w(r, t) undergoes a 
usually nonzero change at each time step. Given a 
configuration w(s, t) at time t, the expectation value of 
its change up to time t + 1 is 

(w(s, t+  1)-w(s, t))=<h(s-r, d(t)) 
�9 ( v ( O - w ( s ,  t))> (1) 

where <...5 denotes the average over all possible 
values ofv(t) and h(r, d(t)) stands for the former h(r, t) 
to make the d-dependence explicit. 

Keeping d(t) = d fixed for the moment, we shall call 
a configuration wa(s) an equilibrium configuration, if 
w(s, t)=wa(s) yields a vanishing expectation value in 
(1). We want to consider the equilibrium configuration 
in the limit of vanishing fluctuations, i.e. 

Wo(S): = wd(s). 

The following analysis will be restricted to the case 
of A and B being of the same dimension n (although the 
algorithm is capable of establishing a map between 
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different dimensional A and B either, see (Kohonen 
1984) and the validity of two main assumptions: 

i) We assume that for sufficiently many units and 
all sufficiently small d the equilibrium configurations 
we(r) are sufficiently slowly varying with r to allow 
replacing t h e m  by corresponding smooth functions 
over a continuum of r-values and consequently setting 
~b-1 = Wo. This basically assumes that the topological 
ordering of the final state has already occurred�9 

ii) We will assume bijective equilibrium configur- 
ations we. This is a reasonable assumption, since the 
discrete algorithm has the tendency to avoid mapping 
the same subregion of the signal space A to different 
parts of B. 

In additional we require h(x, d) to be of Gaussian 
type with width of order d and with vanishing first and 
isotropic second moments for all, d, i.e. 

h(x, d)x ix jdnx  = (~ijMd. (2) 

We are now going to derive a necessary and 
sufficient differential equation for w0 to be stationary�9 
We start with the equilibrium condition for Wd 

( h ( r - s ,  d) �9 (v(t)--wa(s)) > = 0 (3) 

for all s. The location r of the maximally responding 
unit in B is in our continuum approximation deter- 
mined through the implicit equation 

we(r) = v ( t ) .  (4) 

As we now proceed to average over v(t), we will 
drop all references to t as P(v) is independent of t, so 
that the only remaining time dependence is via d = d(t). 
We then obtain 

0 = (h (r (v )  - s, d ) .  (v - wa( s ) ) )  

= (h ( r (v ) -  s, d) .  (wa(r(v)) - we(s))) 

=~ h(r (v) -s ,  d)�9 (wd(r(v))--wa(s)) 

�9 P(v)d"v. 

We introduce q = r - s  instead of v as the integration 
variable, write Q(r) instead of P(v(r)) and denote by 
D(r) the absolute value of the determinant of the 
Jacobian J(r): = Ov/~r i.e. 

D(r) = I det(Ozwa,~) ] (5) 

where we have made use of (4) to replace v(0 by 
we: = (we, 1---wa,,)r. These steps yield 

0 = ~ h(q, d) .  (wa(s + q) - We(S))) 

�9 Q(s  + q ) D ( s  + q)d"q. (6) 

For small values of d h(q, d) is sharply peaked at 
q=0 ,  so that we may expand in q and retain only the 

contribution due to the lowest nonvanishing moments 
of h (double indices are to be summed over) 

0 = ~ h(q, d) (q~we + �89 +...) 
�9 (Q+qkOkQ+. . . )"  (D+qlOtD+ ...)d"q 

= ~h(q, d)qiqfl"q 

�9 ((~,we)0~(QD) + � 89  �9 ~,0jwe) (s) + 0(d ~) 

= M e "  [(g~wa)Oi(QD) 

+ �89 �9 0i2Wd] (s)+0(d4). 

A necessary and sufficient condition for this equation 
to hold in the limit d ~ 0  is 

~ w 0 ( ~ + ~ D )  =-0~0~w0/2 (7) 

or, introducing the Jacobian J~j= 0jwo,~: 

J .  V ln(Q.  D ) = - � 8 9  (8) 

As we are only interested in the limit d = 0, we shall 
henceforth denote Wo by w solely�9 An alternative form 
of (8) is obtained via 

Vln(Q �9 D3/2)= - 1 j - l A w +  �89 

1 
- 2. D (D �9 J - a A w - V D ) ,  

o r  

1 
Vln(Q �9 D 3/2) = - 2 ~ "  u �9 sgn(det J) ,  (9) 

where u is given by 

u = det(J) �9 J -  1 A w -  Vdet(J) .  

In two dimensions with w(r)=(a(r),  b(r)) r this can 
be written more symmetrically as 

( (  Vb)T02( Va) - ( Va)W~2( Vb)~ 
u = \ (  Va)T01 (Vb) - (Vb)TOI( Va)J" (10) 

Equations (8) or (9), together with suitable boundary 
conditions, determine the equilibrium configuration 
w(r), which in turn represents the inverse of the original 
map A ~ B ,  since w(r) is the center in A of maximal 
sensitivity of unit feB. 

4 D i s c u s s i o n  

Although the nonlinearity of (8) and (9) makes a 
general discussion unfeasible, in one and two dimen- 
sions some consequences concerning the relationship 
between the local magnification factor and the driving 
probability distribution P may be drawn immediately. 

As w(r) represents the inverse of the map A--->B, the 
local lrmgnification factor M of the latter is given by 



M = 1/D (cf. (4)). It has a simple dependence on the 
density P(v(t)) of inputs in at least two cases. 

The first case arises for w such that u vanishes. Then 
Q. D 3/2 -= const, and, therefore, (employing the identity 
P(w(r)) = Q (r)) 

M(w) = D - '  oc e (w)  2/3 . (11) 

u vanishes whenever A, B are either (i) both one- 
dimensional or (ii) of rectangular shape and P is a 
product P(w)=PA(a ) �9 PB(b) with w=(a ,b )  r. In the 
latter case the choice a=a(x), b=b(y) splits (9) into 
two first order equations with x and y decoupled, 
yielding 

x = q .  i Pa(a) z/3d~ (12) 
(t o 

b 

y=c2..f P.(/~)~/~d/~. (13) 
bo 

The four integration constants ca, c2, ao, bo are fixed 
by a particular choice for the (arbitrary) starting point 
and the (arbitrary) scale for the labelling of the units in 
the x- and y-directions, respectively. 

The second case in which a relationship between 
P(v) and w(r) can be established is when w can be 
represented by a complex function 

w=(Re co, Im co)r (14) 

with co analytic in z = x + iy. This yields QD = const. 
and therefore 

M(w) ocP(w). (15) 

An example is given by P(w) = const./II w tl z and the 
spaces 

A = { w l e - = <  [[wll<l & W 2 > 0  } , 

B = [0, N]  x [0, U ] .  

For this choice follows for co(z) defined through (14) 

~ . i . z  
co(z) =exp - -  (16) 

N 

This yields a map r from the semi-annulus A onto the 
square B. Such a kind of map connects, for example, 
the retina with the visual cortex. 

In general, in the case of a two-dimensional 
mapping the magnification factor M(w) of the station- 
ary map is not expressible as a simple function of the 
local probability density P(w) of the driving input as is 
implied in (Kohonen 1982c, 1984). Only in the one- 
dimensional case such relationship can be derived. The 
derivation yields M(w)ocP(w) 2/3, a result which may 
be in contrast to the intuitive, but incorrect expectation 
M(w)ocP(w) suggested in (Kohonen 1984). 

To test our findings we simulated Kohonen's map 
for the case of a one-dimensional lattice B of 1000 units 
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Fig.9. Linear map after 100000 Iterations. Shown is ln(w(r)) 
versus lnr for a probability density P(v)=2v, w[0,1]. 
Superimposed are the starting configuration w(r, t = 0 ) = ~  
(upper line segment) and the theoretical steady state map 
w(r) = r 3/5 (lower line segment). The apparent leftward increase of 
remnant fluctuations is due to the logarithmic axes 

and an interval A =  [0, 1]. The probability density of 
inputs from A was chosen linearly, i.e. P(w)=2w. 
Figure 9 represents the result of this simulation. Initi- 

ally we chose the map w(r) = i f  r-, whose magnification 
factor is proportional to P. After 100000 iterations the 
map has developed away from its initial configuration 
and reached the equilibrium curve w(r)= r 3/5, corre- 
sponding to a magnification factor M(w)ocw 2/3 as 
predicted by (11). 

5 Conclusion 

We have derived an equation for the equilibrium state 
of a self-organizing topographic mapping due to 
Kohonen and for some special cases derived analytical 
expressions of the local magnification factor in terms of 
the probability density of the driving input. It is shown, 
that the local magnification factor in the one- 
dimensional case is proportional to  p2/3 ,  whereas in 
two dimensions no general local expression in terms of 
the probability density can be given. 
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