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Abstract 

Rate-coded interaction between neurons is governed by a non- 
linear equation, of which the McCulloch-Pitts model for a neural 
network and the Hartline-Ratliff model of lateral inhibition are 
special limiting cases. Feature detection is treated as a variational 
problem and conditions are derived on the connections between 
neurons at a trigger feature. Perturbations from continual back- 
ground activity are examined as a possible means for coding and 
processing information. 

Introduction 

A single neuron in the first stages of sensory 
processing responds optimally to a particular pattern 
of sensory stimulation; each neuron apparently detects 
a different characteristic feature of the sensory environ- 
ment. Quite apart  from what implications feature 
detection may have for the problem of pattern re- 
cognition, the experimental data contain valuable in- 
formation about the architecture of the nervous 
system. One aim of this article is to examine how 
feature detection arises from neuronal interaction. 

There is substantial spontaneous activity in neurons 
throughout  the nervous system. Information pro- 
cessing appears to proceed in the form of variation 
from a continual background. This suggests that two 
types of input to a field of neurons may be distinguished, 
one which provides a background and another which 
acts as a perturbation. 

The second half of this article is concerned with 
information processing by the perturbation of mem- 
brane potentials. The average membrane potentials of 
neurons, which can be defined over a much shorter 
time than average rates, are taken as the background. 

The analysis of perturbations from a background 
requires that the response of not one but many neurons 
be examined. There are circumstances when neurons 
act collectively, through long-range interaction, to 
special patterns of input perturbation. These special 
patterns can be selectively modified for each back- 
ground. 

* Present Address: Joseph Henry Laboratories, Princeton 
University, Princeton, N.J. 08540, USA. 

I. Neuronal Interaction 

A nonlinear equation for stationary interaction 
between neurons is derived and compared with other 
models for neural networks. 

J. 

Neurons process information by the spatial sum- 
mation and temporal  integration of electrical activity 
from afferents. Some neurons have a threshold mem- 
brane potential beyond which an action potential is 
released; others are only capable of passive electrotonic 
conduction. The influence of one neuron on another 
takes place at synaptic junctions, which can be either 
excitatory or inhibitory, and either electrically or 
chemically mediated (Bennett, 1974). 

For a neuron capable of producing an action 
potential, information about its internal state is con- 
tained in the spike train it produces. Although the 
stochastic nature of neuronal spike trains has been 
extensively studied (Moore, Perkel and Segundo, 1966), 
there is as yet remarkably little known about what 
types of information are encoded in the nervous 
system (Perkel and Bullock, 1968). In many experi- 
ments the average rate of firing is of primary concern. 
Although rate coding is likely to be widely exploited 
throughout the nervous system, other more sophisti- 
cated forms of coding are no doubt used as well. 

Inasmuch as many neurons do not produce an 
action potential, a measure of average activity more 
general than rate of firing is required. One possibility 
which reflects the integration of excitatory and in- 
hibitory synaptic events is the average membrane 
potential. In neurons which produce an action po- 
tential, however, the membrane potential above the 
threshold for spike generation may depart from 
passive integration. Therefore, let q5 represent the 
average membrane potential induced in a neuron, not 
including the action potential. 

A field of interacting neurons is in equilibrium if the 
average potential of each neuron is constant. Neurons 
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which produce an action potential fire at a constant 
average rate, but not necessarily at a constant rate. 
Assume that a neuron's average potential depends only 
on the average potential of all other neurons, as 
expressed by 

4a=(~)a(41, 42,  43 "'" 4N)" (1) 

An equilibrium is a fixed point of this general trans- 
formation, a particular example of which is given in the 
following section. 

. 

Assume that the average rate of firing of a neuron 
r b affects the average potential 4a linearly through a 
connection matrix C,b so that 

40 = fla -~- ~ C abr b , 
b 

where r/, is the average external input, including the 
resting potential. Recurrent collaterals are taken into 
account through the diagonal terms of the connection 
matrix. 

Since the average rate of firing of a neuron depends 
on its average potential, let 

r. = r* P( (4 . -  O.)/a.) , 

where r* is the maximum rate of firing, 0, is the 
threshold for firing and a, is a normalization. The 
function P(x) can be interpreted as the probability that 
a neuron with average normalized potential x will fire 
during a time interval l/r*, which is approximately the 
refractory period. There is a low probability of firing 
when the average potential is low and a high probability 
when the average potential is high. The firing proba- 
bility distribution should therefore satisfy 

1) lirno~ P(x)= O. 

2) l im P(x)= 1. 

3) P(x) increases smoothly and monotonically near 
x = 0 such that P'(x)< 1. 

A typical firing probability distribution is shown in 
Fig. 1. The distribution is normalized so that or. is ap- 
proximately the width of the transition region between 
a low and high rate of firing. Although a. may be 
different for each neuron, it is convenient to set them 
all equal to 2. All results in this article can be generalized 
to arbitrary widths, as demonstrated in Appendix 1. 

The transition width 2 is not an intrinsic property 
of a neuron, but rather depends on the statistical nature 
of the membrane potential. The firing probability 
distribution is a function of the average potential and 
should not be confused with the threshold function of a 

neuron, which is much narrower and depends on the 
membrane potential. 

The equilibrium equation for interaction between 
pairs of neurons 

4. = ~. + ~ K.bP((4b-- Ob)/),) (2) 
b 

with an effective connection matrix 

K,b = C J *  

has the form of the general equilibrium Eq. (1). Al- 
though the equilibrium equation was motivated by 
rate-coded interaction, only the average potential of 
each neuron enters explicitly. As shown in Appendix 1, 
the equilibrium equation and all results based on it can 
be generalized to neurons which do not produce an 
action potential. 

Approximate equations for the average rate of 
firing of a neuron have been proposed which are based 
on diffusion models for stochastic activity (Stein, 1967; 
Cowan, 1971). They are formally equivalent to the 
equilibrium equation. A more realistic time-dependent 
model (Stein et al., 1974) has a steady state solution 
which is equivalent to an equilibrium solution. 

Although the average potential and average rate of 
firing are formally equivalent variables, they are not 
physically equivalent. The rate of firing of a single 
neuron is a coarse measure, averaged over a time long 
compared to the interspike intervals. The membrane 
potential of a neuron, on the other hand, is the result 
of a far greater number of synaptic events, and can be 
averaged over a much shorter time. Moreover, many 
neurons do not produce an action potential. The 
membrane potential is therefore considered a more 
fundamental variable. 

. 

Limiting cases of the equilibrium equation are 
familiar models of neural networks. The probability 
for a neuron to fire is given by 

P. = P((4. - 0.)/)~). 

Upon eliminating 4. this becomes 

p. = P ((t/. + ~Kabpb--O.)/)~), 

which is formally equivalent to the equilibrium 
equation. 

As the width of the probability distribution is de- 
creased, it approaches a step function 

x~olimP(x/2)=H(x)={; x<0.:c>0 
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In this limit 

Pa=H(tla+~b Kabpb--Oa ) , 

which may not have any solution since I-I(x) is dis- 
continuous. This is the McCulloch-Pitts model (1943) 
for neural networks, with the following interpretation: 
Introduce a discrete time variable. The right hand side 
evaluated at some moment determines whether or not 
an idealized neuron fires at the next time step. 

Another important limiting case of the equilibrium 
equation arises when the firing probability distribution 
is approximately linear over a range of average po- 
tential near threshold. Equivalently, this approxi- 
mation can be thought of as the limit 2 4  oo. Expand 
P(x) near x = 0 and retain terms only up to first order. 
Since 

r a - -  1 a P a  

the linearized equation can be rewritten in the form 
given by Hartline and Ratliff (1957) for lateral in- 
hibition in the Limulus eye 

G = G - ~ ,  KIb(rb - r ~  

b 

where, according to their terminology, ea is the external 
stimulus, K~b are the inhibitory coefficients, and 1 "0 is 
the threshold rate for inhibition. These are linearly 
related to the variables G, Kab, and 0 b of the equilibrium 
equation. 

II. Expansion Around Equilibrium 

The expansion of the equilibrium equation given 
here is used in Part III to find variational conditions, 
in Part IV to examine the stability of an equilibrium 
solution, and in Part V to study background per- 
turbations. 

4. 

Let us prove that for sufficiently large 2 there is a 
unique solution to the equilibrium equation. Consider 
the map 

FO = I I  + KP((O - 0)/2) , 

for which a fixed point 

O = F O  

is an equilibrium solution. 
Take any two vectors 01, ~b2~ IRN and consider 

I I F 0 ,  - FO2 II =< IlK I[ l I P ( ( 0 ,  - o ) / 2 . ) -  P ( ( 0 2  - o)/2)11 

1 
< 2. IIK[I II01-0211, 

where the last step follows from the normalization 
condition on P(x). If IIKl[ <2  then the map contracts, 
and by the contraction mapping theorem there is a 
unique solution to the equilibrium equation. In fact, as 
shown in Appendix 2, the equilibrium equation always 
has at least one solution. 

Since 2. is the transition width between a low and 
high rate of firing, the condition IrKII <2  means that 
no single connection can dominate the rate of firing of 
any neuron. This case will be called weak coupling. 

0 0.5 1.0 x 

0 0.5 1.0 x 
p"  (x) 1 

, 

Fig. 1. Typical probability distribution for neuron firing and its 
derivatives as a function of normalized average potential 

. 

Consider the equilibrium equation as a map of r/a 
into 0a. For weak coupling between neurons, which is 
assumed throughout this part, and for a sufficiently 
smooth P(x), the equilibrium equation is a diffeo- 
morphism. Let the average external input r/a(u) vary 
along a smooth curve in 1R N parameterized by u. 
Expand the image of the input curve 0a(u) around an 
equilibrium solution 0,(0) so that 

//2 
G(u) = G(o) + uG(O) + ~- 0"(o) + . . . .  

The first order variation 0'~ satisfies 

1 
0'o = ~'o + ;~ ~ K'obO;, (3) 

where 

K'~b = KabP'( ( Ob(O)-- Oh)~2.). 
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As shown in Fig. l, the derivative of the firing 
probability distribution is only significant when the 
average potential of a neuron is near threshold. 
Neurons in this critical region are the ones most 
sensitive to input perturbations; the interactions be- 
tween such critical neurons dominate the equation of 
first variation, or perturbation equation. The number of 
critical neurons for most backgrounds is likely to be 
small in comparison with all the neurons in the field, 
at least for those areas in which there is a low spontane- 
ous activity. Consequently, the interaction matrix K'ab 
may be only a small subset of all connections between 
neurons. 

Some synapses are known to habituate upon 
repeated stimulation. When habituation moves the 
average potential of a neuron closer to threshold (for 
example, by decreasing the strength of excitatory af- 
ferents when the neuron is firing at maximum rate), 
the neuron's sensitivity to changes of the average po- 
tential is enhanced, and the neuron makes a larger 
contribution to the interaction matrix. 

Let the solution of the interaction equation be 
given by 

b 

where Rab is called the interaction resolvent. The 
Neumann series 

1 )@~ 
eab=~ab + ~ Kab-- K'acK;b + ... (4) 

converges when 

I[1'11 <;~. 

This expansion is a sum over interaction paths between 
critical neurons. 

The second order variation of the equilibrium 
equation is 

where 

K~,b = KabP"((4'b(O)-- Ok)/Z). 

The solution of the second order equation is given by 

1~ t' ,4V2~ 

which depends on the solution of the first order 
equation. 

As shown in Fig. 1, those neurons for which P'(x) 
is appreciable are either just above or just below 
threshold. They will be called border neurons and K2b 

will be called the border matrix. The critical and border 
neurons are nearly disjoint subsets of all neurons. 

The n-th order variation equation has the same 
form as that of the first and second order. The solution 
is given by 

a Z . u  " ' '  

b 

where L~ ) is a function of the previous n -  1 variations. 
The nonlinear equilibrium equation can therefore be 
replaced by an infinite series of linear equations, the 
n-th order depending only on the solution of the 
preceding n - 1  orders. The first few terms of the ex- 
pansion suffice to explore local properties and small 
perturbations. 

IlL Feature Detection 

The concept of a feature detector has proven helpful 
in understanding the response of single neurons to 
sensory stimuli. An analytic description of feature 
detection is developed in this part. Only the static case 
is considered, for which neither the connection matrix 
nor the external stimulus varies with time. 

. 

The receptive field of a neuron is the set of sensory 
receptors which significantly affects its rate of firing. 
The stimulus pattern within the receptive field which is 
most effective at eliciting a response from a neuron is 
called its trigger feature. There is a collection of inter- 
connected maps of a sensory field within the brain; the 
neurons in each representation possess different 
characteristic trigger features. In the visual system, for 
example, trigger features progress from spots of light to 
edges and slits as the sensory field ascends from the 
retina to visual cortex. Parameters of a feature to 
which neurons in striate cortex are known to be 
sensitive include position, size, orientation, direction 
of movement, occularity, disparity and color contrast. 

The response of a feature detector is sensitive to 
some stimulus parameters, which produce a significant 
decrement when varied around the trigger feature, 
while other parameters leave the response invariant. 
For example, complex cells in striate cortex are tuned 
to an optimal slit width and orientation, but give a 
constant response as the slit moves across the receptive 
field in a particular direction. 

. 

Let s~ be the set of all neurons in a field and N the 
subset which receive external input. As in the previous 
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part, ~b~(u) is the average potential of the a-th neuron 
along a curve in IR N parameterized by u. 

The receptive field of a neuron is the subset of 
sensory input ~ C N  which affects its response. The 
trigger feature of a neuron is experimentally determined 
by varying stimulus parameters to optimize the rate of 
firing. Define a local trigger feature as a sensory 
stimulus t/b(0 ) such that 

4~(o) > qL(u) 

for all nearby qb(u) in the receptive field which pass 
through the trigger feature. Feature detection has the 
form of a variational problem. 

The results of the preceding part on expansion of 
the equilibrium equation provide necessary and suf- 
ficient conditions for a stimulus to be a trigger feature. 
The average potential qSa(0), and hence the response of 
a neuron, is an extremum if and only if ~b',(0) = 0 for all 
variations around t/b(0 ). Since 

(O'a = E Rab tfb 
b 

and t/; is arbitrary in the receptive field N~, the ex- 
tremum condition implies that 

Rab=0, b ~ a .  

The eigenvectors {b of the symmetric matrix F~l 
satisfy 

E a b b Fkl~l = Vb~k 
l 

and form a basis in which the matrix is diagonal. The 
second variation condition in this basis is 

Y~ vb(~', ~)2 < 0,  
b 

from which it follows that a necessary and sufficient 
condition for a maximum is 

Vb <--O 

for 
(~,, ~b) 4= 0. 

That is, the spectrum of F~,~ in the receptive field 
must be non-positive. (For an inhibitory feature the 
spectrum in the receptive field must be non-negative.) 

The eigenvectors of the most negative eigenvalues 
in the spectrum are those directions along which the 
response of a neuron is most sensitive to variations 
from a trigger feature. For example, the orientation of 
an edge parameterizes such a direction for complex 
cells in striate cortex. Similarly, eigenvectors with 
eigenvalues near zero give the directions which leave 
the response of a neuron invariant. 

An extremum may be a maximum, minimum, or 
saddle point depending on the sign of the second 
order variation around the trigger feature. There is a 
maximum if 

0~= ~ R~b tl'~ + ~ K~cO'~ 2 GO. 
beta 

The first term on the right vanishes by virtue of the 
condition on the first order variation. Also, since 
0 '= R~', the second order condition becomes 

Y~ F~,~i~'l <-_ O, 
kl 

where 

F'~, = ~ R~bK'b'cR, kR,~ . 
bc 

. 

Variations from a trigger feature decrease a 
neuron's rate of firing, more so in some directions than 
others. The directions of maximum and minimum 
decrement lie in the tangent space of variations t/'a, and 
can be determined from the quadratic form in the 
second variation condition. 

IV. Strong Coupling and Stability 

The equilibrium equation has a unique solution 
for weak coupling between neurons, a result which 
may not hold when the coupling is strong. The 
characteristics of strong coupling are examined in this 
part. 

9. 

A topological fixed point theorem is used in 
Appendix 2 to prove that the equilibrium equation 
always has at least one solution for arbitrary r/, 0, K, 
and 2 4= 0. Although the result is remarkably general, 
there is no suggestion, as in the case of the contraction 
mapping theorem, of how to construct a solution. 

More than one solution of the equilibrium equation 
may exist for a given t /when the weak coupling con- 
dition is not satisfied. There is, however, always a 
unique t/ for every ~b. The example in Appendix 3 
demonstrates how multiple solutions arise as the 
coupling is increased, or alternatively, the transition 
width 2 is decreased. 

Ambiguous figures, such as the Necker cube, can 
be perceived in more than one way. The striking shift 
of perception may be due to a stage of visual processing 
with more than one stable equilibrium (Wilson and 
Cowan, 1972). 
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The strength of coupling separates solutions of the 
equilibrium equation into two qualitatively different 
classes. Local interactions dominate when coupling is 
weak, whereas long-range interactions become signi- 
ficant for strong coupling. The difference is reflected in 
the interaction path expansion (4): As the transition 
width is decreased, longer chains of neurons become 
increasingly more important. Long-range is not used 
here is the sense of physical distance, but rather in the 
sense of distance through synapses. 

Feature detection was based on the existence of a 
unique solution for every input, which may not be the 
case when coupling is strong. Long-range interaction 
requires that neurons be examined not individually, 
but as a coordinated ensemble. 

The example in Appendix 3 demonstrates that as 
external inputs are varied, new families of solutions 
may appear and others disappear. Bifurcation theory 
is concerned with the conditions under which non- 
linear equations exhibit such behavior. 

The spectrum of the first order equation of variation 
contains information on the location of bifurcation 
points�9 The perturbation Eq. (3) can be written 

A4~'=~', 

where 

1 
K' A = I - ~  . 

The solutions of the characteristic equation detA = 0 
are the eigenvalues of K', to which there correspond 
eigenvectors that satisfy 

K'~; ~ = 2,~". 

The interaction resolvent R = A-  1 exists if and only if 
2 is not one of the eigenvalues. Consequently, if 2 + 2, 
then there is a unique solution to the perturbation 
equation. 

If there is a bifurcation point of the equilibrium 
equation at (2, qS) then 2 is an eigenvalue of the inter- 
action matrix. If 2 is an eigenvalue with odd multiplic- 
ity, then it must be a bifurcation point (Nirenberg, 
1974). There may or may not be a bifurcation point 
when the multiplicity is even. 

lO. 

An equilibrium solution is stable if small displace- 
ments from equilibrium are restored. A time-dependent 
equation for the average potential, which will be 
examined in more detail in a forthcoming article, is 

given by 

r d ~ + dp = t l + KP((~b - 0)/2), 

where r is the membrane time constant. An equilibrium 
solution satisfies 

_d  0=0. 
dt 

If a perturbation qb' is added so that 

then 

d ' + A ~ ) ' = q ' + O ( l l r  2) r II �9 

The solution of the linearized equation is asympto- 
tically stable if and only if 

Re 2 , < 2 .  

That is, the spectrum of the interaction matrix must lie 
to the left of the transition width for an asymptotically 
stable equilibrium. 

11. 

The interaction resolvent has poles on the spectrum 
of the interaction matrix (Dunford and Schwartz, 
1958). An explicit spectral resolution of the resolvent is 
given here and interpreted in the next part. 

It is always possible to find a similarity transform 
which reduces an arbitrary matrix to Jordan form 

J ' = S - 1 J S ,  

where J'  has entries on the diagonal or just above it. 
Furthermore, the diagonal entries are the eigenvalues 
of the matrix while above the diagonal only 0 or 1 
appears. For the purpose of dimensional scaling, it is 
convenient to have 2 rather than 1 above the diagonal. 
Thus, J' is a direct sum of blocks in the form 

01 2, 2 

' .  ) 

Several blocks may have the same eigenvalue. Let 
the l-th block of)~,, have dimension mn~. The multiplicity 
of 2, is 

~Tln z E ~Tlnl " 
l 
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Define Wd as the m-th column in the (n, /)-block of 
a matrix S which transforms the interaction matrix to 
Jordan form. Similarly, let ~p, nz be the m-th row of S-  1 
These vectors satisfy the following equations for 
generalized eigenvectors: 

' m n l  ( 2 d - K )  ~Pm-O 

gcnlzo r TTr~ m n l - - m +  l 
lDm tan  1 -  lk ) : O . 

The eigenvectors of K' are the ~p2 with m= 1 and the 
eigenvectors of the adjoint K'* are the W*"~ with 
m = Fflnl. 

By virtue of their definition the two sets of gener- 
alized eigenvectors are dimensionless and biortho- 
normal 

7' >r 

~(o) 

Fig. 2. The nonlinear equilibrium equation determines the back- 
ground activity of neurons according to the background input 7(0). 
Input perturbations ~?' are transformed by the interaction resolvent 

R(0) into output perturbations ~b' relative to the background 

~Bl 11'I' (~m, ~m' ) = ~,,,'@6m,,' 

but are not themselves necessarily orthonormal. 
A spectral resolution of the interaction resolvent is 

obtained by inverting each block of the interaction 
equation in a biorthonormal system. The result is 

m,a l~nm / @ lp~mnl 

R= Z Z (5) ( nl rtGm ~ 1 - -  
m ' > m  

The interaction path expansion of the interaction 
resolvent 

R = ~ (K'/,~)" 
t1=0 

converges if 2 is greater than the spectral radius of the 
interaction matrix 

r(K')= maxls 

V. Information Processing 

The nervous system most likely processes and 
stores information through some form of collective 
activity. The global properties of neuronal interaction 
which were analyzed in the previous part are here given 
an interpretation. 

12. 

The considerable level of spontaneous activity in 
neurons throughout the nervous system has often been 
noted. The continual background may provide a 
context against which variations in activity are 
analyzed. 

Distinguish two sources of input to a field of 
neurons, one which produces a background, and an- 
other which acts as a perturbation. The two may arise 
from different classes of input afferents or from the 
modulation of only one set. The perturbation input 
must be modulated in any case to separate it from the 
more slowly varying background. For example, bursts 
of firing or firing in a correlated pattern may serve as 
forms of perturbation. The modulation of background 
activity may be related to the prominent rhythms on a 
gross scale in EEG recording and to the observed 
regularity of evoked potentials. 

The interaction resolvent maps input perturbations 
into output perturbations, as illustrated in Fig. 2. The 
dominant poles in the spectral resolution of the inter- 
action resolvent (5) are from those eigenvalues of the 
interaction matrix nearest to the transition width. A 
background near a bifurcation is particularly sensitive 
to perturbations, but is also nearly unstable. 

The high order poles at an eigenvalue dominate 
when 

1 - -  /~n 
2 < 1 ,  

which is the interior of a circle of radius 2 centered at 2 
on the real axis. The low order poles are more im- 
portant outside the circle. The eigenvectors of the 
interaction matrix are attached to the highest order 
pole in each block. 

The output perturbation is a particular combi- 
nation of generalized eigenvectors p~. If one of these 
special patterns or features is present in the input, only 
features with the same eigenvalue are produced in the 
output. To be more precise, define the supspace 

~ n  [ nl~l = 1 ,2 . . .  
= ~I~raJm= 1,2 .mnl 
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Then ~ "  is an invariant subspace of the resolvent 

R : ~  " " 

The map of input features into associated output 
features, which will be called feature association, in- 
volves many neurons acting collectively through 
long-range interaction. 

The output perturbation qY of one field of neurons 
is reflected as an input perturbation t/' to another field 
according to 

t/'=K'~b', 

where K' is the interaction matrix linking the two 
fields. Not all the information in ~b' is transmitted since 
only efferents from critical neurons contribute to I/'. 

13. 

Several components from several modalities may 
participate in the background. Combinations of input 
produce a complex variety of solutions to the non- 
linear equilibrium equation. The general solution of 
the perturbation equation with input perturbations 
from several sources is a linear superposition of 
solutions. 

The mode of information processing is different for 
background and perturbation inputs. Sensory input 
when applied as a background effectively picks out a 
subset of connections for the interaction matrix. The 
resulting features reflect the symmetries of the sensory 
pattern. If, on the other hand, sensory input is applied 
as a perturbation, output associations are produced 
relative to the context determined by the background. 
A sensory pattern can be analyzed for different 
features, in a manner not unlike that of attention, by 
changing the background. 

The symmetries of the interaction matrix are 
reflected in the structure of the interaction resolvent. 
Assume that the interaction matrix is invariant under 
a group G of transformations 

K'  = D(g)K 'D(g) -  1, g ~ G.  

The transformation D(g) mixes only generalized 
eigenvectors {~v "} corresponding to the same eigenvalue 
2,. Hence 

m n  

D(g)tf ,  = ~ D~b~(g)~p~ , 
b 

and the matricies D"(g) form a representation of the 
group with basis vectors {zf} for each n. 

Features contain information about the symmetry 
of the connection matrix and background input. 
Analysis of background perturbations rather than the 
background itself could lead to a classification of 
patterns on the basis of their symmetry. 

The interaction matrix determines the features of a 
background. If the critical neurons are only a small 
subset of all the neurons, then the features for that 
background may be altered without significantly af- 
fecting the features of other backgrounds. Of course, 
interference between backgrounds becomes more 
serious as more are developed, thereby limiting the 
number which are effectively independent. 

It is well-known that human memory is associative 
and that context is an important variable. Moreover, 
new information can be selectively stored without 
destroying information already in memory. These 
characteristics of long-term memory are shared by 
feature association. 

Models for memory have been proposed (Stein- 
buch, 1961; Anderson, 1972; Kohonen, 1972) which 
are similar to feature association. These models are 
based on linear maps of the form 

T = ~ f |  
n 

The spectral resolution of the interaction resolvent (5), 
which has a physiological basis, is a special class of such 
linear maps. Nonlinear interaction permits many dif- 
ferent backgrounds to be embedded in the same field 
of neurons, thereby giving feature association a 
contextual structure. 

VI. Information Storage 

This part examines how plastic change to the con- 
nection matrix affects feature association. The strength 
of a connection may depend on many physiological 
variables, such as the characteristics of synapses, 
dendritic spines, and dendritic processes. 

I4. 

The interaction matrix depends on both the strength 
of connection between critical neurons and on the 
background 

K'ab = KabP'((Ob(O)-- Ob)/2 ) . 

When the strength of a connection is changed, both 
factors contribute to the first order perturbation 

8K,  b = t~KabP,b + l K2bg)~)b ' 

where 

P'b = P'((~)b(O) -- Ob)/2)" 

The first contribution is due to change in the con- 
nections from critical neurons. The second term, owing 
to the slight shift in the background caused by ~K~b, 
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Kbc 
Fig. 3. Neuron b makes efferent connections K~b and has afferent 
connections Kb~. Modifications of the interaction matrix K'~b depend 
mainly on efferent connections if b is a critical neuron, and afferent 

connections if b is a border neuron 

Decompose K'(e) into an unperturbed part and a 
perturbation 

K'(O = Ko + ~c(e) 

with 

~(o)  = o .  

Rewrite 

1 K , A = I -  2 

gives the migration between critical neurons and border 
neurons. The shift can be found from the equilibrium 
equation 

a ) ' b  

the solution of which is 

5~b = ~ Rbd~K~aPa . 
cd 

The term arising from border neurons therefore 
becomes 

1 
K~'b ~ Rbc6KcePa. 

cd 

If the interaction path expansion (4) is used for Rbc , 

then the leading term to the border contribution is 

Kab ~ (~KbaP d + 0 
A d 

As shown in Fig. 3, the first term of 6K'ab represents 
plastic change of the efferent connections from a 
critical neuron, whereas the dominant part of the 
second term is given by plastic change of afferent con- 
nections to a border neuron. Different mechanisms for 
the alteration of connections may exist to exploit the 
two possibilities. 

15. 

The interaction resolvent depends on the inter- 
action matrix 

R ( ) o , K ' ) = ( I - ~ K ' )  -1 

and is meromorphic on the k-plane. Furthermore, if 
the interaction matrix depends analytically on a 
parameter, K'(O, then the resolvent is analytic for suf- 
ficiently small e, except for 2 on the spectrum of K'(O) 
(Kato, 1966). 

in the form 

1 RoK(e) ) A = A o ( I -  ~ 

Take the inverse of both sides to obtain 

RoK(e)) Ro R(e)= ( I -  1 1 . 

If e is chosen sufficiently small so that 

Ir ~c(O II < 2/llRo II 

then the interaction resolvent has the expansion 

1 1 
R(O = Ro + ~ Ro~cRo + ~ Ro~cRo~cRo + ... 

which makes explicit the analyticity of the resolvent. 
The eigenvalues and eigenfunctions of K'(e)are not, 

in general, analytic functions. There is, however, a 
perturbation expansion when K 0 is semisimple 

a 

and there are no degenerate eigenvalues. Then to first 
order: 

(~*, ~a) 

(~*, ~ )  
b*~ 2~--2b 

The spectrum is shifted according to the diagonal 
components of ~c in an eigenvector basis. The off- 
diagonal elements give the mixing of features between 
eigenvalues, the closest eigenvalues making the largest 
contribution. Feature association can be selectively 
modified for each background by discreetly altering 
the interaction matrix. 
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D i s c u s s i o n  

How might the preceding treatment of neuronal 
interaction be applied to practical problems in neuro- 
biology? Not without considerable difficulty, for the 
present idealization falls far short of the extraordinary 
richness of the nervous system. Realistic detail was 
sacrificed in order to study neuronal interconnections; 
the main contribution of this article is at the global 
level of organization. 

All information about the external world available 
to an organism is derived, at one time or another, from 
patterns of activity on sensory receptors; all actions in 
the world are effected by patterns of motor activity. A 
sensory pattern may have special significance for some 
animals and trigger a stereotyped motor response. 
Internal variables, which may depend on experience, 
serve to coordinate and temper behavior. In man, the 
perception of special patterns is augmented by a highly 
developed long-term memory. 

The diversity of behavior among living creatures is 
most likely due to an equal diversity of design 
principles. Feature association, one such possible de- 
sign principle, has two basic parts: first, a background 
which determines the features and serves as a context, 
and second, the map of input features into associated 
output features. Feature association is embedded in 
the nonlinear interaction between neurons and can be 
selectively modified for each background. 

Memory, from a global point of view, is a collective 
response of many neurons. However suggestive, 
feature association cannot be taken as a serious model 
of memory until there is evidence for the modulation 
and detection of perturbations from the average back- 
ground activity. One class of afferents to an area may 
contribute only to the background while another may 
act only as a perturbation. Alternatively, a single input 
may be modulated, forming both background and 
perturbation. 

Although feature detection and feature association 
merit study in their own right as techniques for in- 
formation processing, there remains the question of 
how far the results of this article can be extended. 
Time-dependent neuronal interaction will be treated 
elsewhere. Despite the formidable complexity of the 
brain, there is no compelling reason why its design 
principles must be as complicated. 
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A p p e n d i x  

1. Generalizations 

The equilibrium equation can be generalized for neurons with 
different transition widths, for neurons which do not produce an 
action potential, and for arbitrary branching of input afferents. 

The equilibrium equation for neurons with unequal transition 
widths is 

&. = ~I~ + ~ K.bP(((~ - Oh)l%). 
b 

It is convenient to scale all widths 

ab = 2Fb 

by the common  factor 2. The variation equations in Part II remain 
valid if the variation matricies are redefined as 

K(.) _ r~ n(,,)/r,~ 
a b  - -  " X a b ~ b  / ~ b  " 

The expansion of the equilibrium equation and the structure of 
feature detection and feature association are the same as before. 

Further generalization of the equilibrium equation can be made 
for an arbitrary distribution Pb(x), different for each neuron, which 
need no longer be interpreted as the firing probability. The equation 
is then sufficiently general to include any interaction between a pair 
of neurons depending only on average potential. Neurons which do 
not produce an action potential are included. 

The afferents to an area may branch, thereby innervating more 
than one neuron in the field. Let M afferent fibers branch and 
connect with N neurons according to an N•  M branching matrix B. 
All results follow as before with ~ everywhere replaced by Bt/. 

2. Existence of a Solution 

A fixed point theorem is used to prove the existence of a solution 
to the equilibrium equation (Smart, 1974). 

Theorem (Brouwer). Every continuous mapping of a closed n-ball 
into itself has a f ixed point. 

Define 

~*=~-~.  

The equilibrium equation can be written as the fixed point 

cp*=FO*=KP((O* +rl 0)/2) 

of a bounded operator 

IIFll < IIK[I . 

Choose 0* in the ball 

~ =  {~b* h IlO*ll < Ilgll} �9 

Then 

and the map is continuous for 24-0. By the above theorem, F has a 
fixed point and the equilibrium equation always has at least one 
solution. 

3. The Two Neuron Model 

The graphical method used by Wilson and Cowan (1972) can 
be applied to the two neuron mode l  The firing probability of a 
neuron is given by 

p~ = p ( ( ~ o -  e~ 



/ 

I p~ 

Fig. 4. Solutions for the two neuron model are given by the inter- 
sections of Pl(P2) (broken line) and P2(Pl) (solid lines), shown here 
for the case of reciprocal excitation without recurrent collaterals. A 
variety of equilibrium solutions is exhibited by the four different 

values of 771 chosen 

which, when inverted, becomes 

tla + ~ KabPb -- 0 a = )~p l(pa). 
b 

For N = 2 the pair of equations is 

K12p2 = 01 - t l l  + 2P -  ~(Pl)-  Ks lPl 

K2 lpl = 02 - ~/2 + 2P -  1(p2) - K22P2 

which gives P2(P~) and Pl(P:). The intersection of these two equations 
is a graphical solution, as illustrated in Fig. 4. 

For large 2 there is clearly one and only one solution. As 2 
decreases, there is a point at which two solutions are possible and 
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beyond which there may be more, depending on qa- The new solution 
which appears on curve B of Fig. 4 is a bifurcation point. Of the three 
solutions shown on Curve C, the outer two are stable equilibria 
while the inner solution is unstable. 
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