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On Bilinear Forms in Gaussian Random Variables 
and Toeplitz Matrices* 
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Summary. We improve a result of Szeg6 on the asymptotic behaviour of 
the trace of products of Toeplitz matrices. 

As an application, we improve also his results on the limiting behaviour 
of the bilinear forms 

B.= ~ ai_  j X i Xj, 
i,j= 1 

where X~ is a stationary Gaussian sequence. 

1. Statement of Results 

A. We study below the asymptotic behaviour of bilinear forms 

B,= ~ ai_jXiX j (1.1) 
i , j=l  

where Xi is a zero mean stationary Gaussian sequence. 
This problem was first studied in the book of Grenander and Szeg6 [6], 

as an application of their theory of the asymptotic behaviour of the trace of 
products of Toeplitz matrices. 

Recently, there has been a renewed interest in this problem. See Fox and 
Taqqu [3, 43 and Taniguchi [11]. 

In Theorem 1 below we improve the results of Grenander and Szeg6 on 
the asymptotics of the trace of products of Toeplitz matrices. As explained 
in the appendix, this theorem can be viewed also as a generalization of Parseval's 
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relation. As a corollary of Theorem 1, we get a result which improves Theorem 
11.6 of Genander and Szeg6 on the bilinear forms B, (see Theorem 2). 

The proof of Theorem 1 is based on a norm inequality. Lemma 1, communi- 
cated to us by Larry Brown. The lemma is stated and proved in Sect. 2. 

B. Let: 
r. = E X  o X ,  (1.2) 

denote the covariance of the sequence X,.  The key fact about the bilinear form 
B, is that its cumulants are: 

cumk (Bn) = 2 k- 1 ( k -  1)! Tr (A~ R,)  k. (1.3) 

where A,, Rn are the n x n Toeplitz matrices: 

A, ( i , j )=a i_ j ,  R , ( i , j )=r i_ j ,  for i , j=  1 . . . .  , n 

(Formula 1.3 is an easy application of the "d iagram" formula; see Rosenblatt 
[9], Theorem 2.2). 

The first step in studying Bn should be thus the investigation of the asymptot- 
ic behaviour of the trace of products of Toeplitz matrices. 

C. Let fk ~ ,  V = 1 . . . .  , S be the sequences of the Fourier coefficients of the s com- 
plex valued functions f (~(x) ,  v = 1, . . . ,  s, i.e. : 

1 
fk(V) : S e2~ikxf(V)(X) dx, ( 1 . 4 )  

o 

T.(ft~)), v=  1 . . . . .  s denote the corresponding n x n Toeplitz matrices, and let 
i.e.: 

T, ( f t~ ) ) ( i , j )= f i~ ,  for i , j=  l, . . . ,  n. 

For convenience of notation, we denote by @ the closure of the trigonomet- 
ric polynomials in the space Lp [0, 1], for 1 = p _<_ oc. Thus, 

~ = [ L  v if l < p < c ~  
v /C if p = oo 

(see for example Katznelson [79], Theorem 2.11). 

Theorem 1. Suppose that ftV)(x)e~apv, with 1 <p~<= ~ ,  for  v=  I, ..., s, 

a) if  ~ (pv)- 1 <= 1, then 
V = I  

lim -1 Tr (v) = (')(x)) d x  (1.5) 
n ~ n  0 = 

b) if  ~ > 1, and ~ >= ~ (p~)- 1, then 
V : I  

J i m  n Tr (fc,,) = 0. (1.6) 

Note. Formula (1.5) was first obtained by Grenander and Szeg6 [6], 7.4, under 
the assumption that f(')(x) are bounded. 
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D. Definition. The singular values of a matrix A are the eigenvalues of the 
matrix (AA*) 1/2, where A* denotes the adjoint of A. 

As an application of Theorem 1 a, consider the case when f(2~-1)=f,  and 
f(zv)=y (the complex conjugate), for v = 1, ..., s. We get then an improvement 
of Theorem II of Parter [-8] on the distribution of the singular values of T,(f) :  

Corollary. Let f~L~(O, 1), let M = s u p  If(x)[ and let F be a continuous function, 
F: [0, M] ~ R. Then x 

1 
lira _1 ~ F(sj,,)= ~ F(lf(x)[) dx, 
n - - * n n j = l  0 

where s j,, are the singular values of T, (f). 

Proof. Since F can be uniformly approximated on [-0, M-I by even polynomials, 
it is enough to establish the case F(x) = x 2s, for s = 1, 2 . . . . .  But this case follows 
from Theorem 1 a (by letting f(2 ~- 1) =f ,  f(2 v) =f). 

E. As another  corollary of Theorem 1 we get: 

Theorem 2. Let ak and rk in (1.1) and (1.2) be the Fourier coefficients of the 
real, even functions a(x) and r(x), and suppose a(x)e@l, r(x)e~v2, l<p l ,  
P2 ~ oo and 

(/91)- 1 + ( P 2 ) -  1 ~ 2-1 (1.7) 

Then, 

where 

B . - E ( B . )  a 
, N(0, a2), (1.8) 

1 
o -2 = 2  ~ aZ(x) rZ(x) dx. 

0 

Proof. Use the method of cumulants: 

cumk(B.--EBn'~_[O2Tr(A.R.)2/n 

i; for =l 

n-~ ' a2(x)rZ(x)dx 
0 

for k = l  

for k = 2  

for k > 3  

for k = 2, by Theorem I a 

for k >__ 3, by Theorem lb .  

Notes. 1) (1.8) was first established by Grenader and Szego [-6] Theorem 11.6, 
under the assumption that a(x) and r(x) are bounded. 
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2) Fox and Taqqu [-43 extended the result of Grenander and Szeg6 under 
a set of assumption different from ours. They show that if a(x) and r(x) are 
continuous, except maybe at 0, and are regularly varying at 0, then a(x) r (x)sL 2 
(which is a weaker assumption than (1.7)) is sufficient for (1.8) to hold. 

3) When a(x), r(x) are continuous, the Legendre transform of the large devia- 
tions rate of B,/n can also be obtained explicitly. Indeed, by a standard large 
deviations result (see for example Lemma 1 of Cox and Griffeath [2], it equals 
the limit 

lim log E eSBn (1.9) 
n --4oo n 

But this cumulant generating function of B, can be computed explicitly: 

log E eSBn= --(1/2) ~ log (1--2s2i,.), 
i = 1  

where 2i,. are the eigenvalues of A. R., and s < [max 22i , . ] -  1; then, the classical 
result of Szeg6 [6], 5.2 yields the limit in (1.9) explicitly. 

2. Proof of Theorem 1 

Definition. Let sj denote the singular values of a matrix A. For 1 < p  < 0% the 
p-Schatten norm of A is: 

[[~. (sj)P] lip for l=<p<co 

" A I [ , = / 2  a x sj for p = oo. 
k J 

This definition yields indeed norms (see Simon [10], Theorem 2.7a). We collect 
now several properties of the Schatten norms needed below: 

1 1 
IIABIII<=AIIp IIBILq, where - + - = 1  (2.1) 

p q 

(see Simon [-10], Theorem 2.8) 

ITrAI < [IAII1 (2.2) 
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(see Simon [10], Theorem 3.1) 

il A k[ 2 = [Tr (AN*)] = ~,lAi,jl 2 (2.3) 
i , j  

[]Al[o~= max [[Avll2, (2.4) 
[Ivl[2=l 

where Ilvll2 is the 12 n o r m  of v (see Simon 1-10], Theorem 1.5). Thus, if we 
denote by II II A II II the norm of A as an operator  of 12, we have II II A II IL = II A II ~ .  

The proof  of Theorem 1 is based on the following inequality for the Schatten 
norms of Toeplitz matrices: 

Lemma 1. For 1 < p <= oe. 

II r ,  (f)It p < nl/P II f II p. (2.5) 

Pro@ One can easily check that the Riesz-Thorin interpolation (see Bergh [-1], 
p. 3) usually used in Lv spaces works just as well over the spaces of matrices 
endowed with the If'lip Schatten norms. Thus, it is enough to establish (2.5) 
for p = 1 and p = ~ .  

Let T ( f )  denote the double infinite Toeplitz matrix with elements T(f ) ( i , j )  
=f~_j, and let P, denote the operator of projection of doubly infinite sequences 
on the subspace of sequences which may have non zero elements only on the 
components 1, ..., n. We will use the fact that T,(f)  is the restriction of P, T ( f )  P, 
to (E'. 

Case p = oe. We note that" 

II T.(f) l ]  ~o = II IIP~ T(f) P. 1[ II (by 2.4)) 

IJ II T(f)II II = IIf IIo~. (2.6) 

To see that the last equality holds, view T ( f )  as an operator o v e r  L 2 [0,  1], 
via the Fourier isometry, that is consider the operator T ( f ) :  L 2 --* L 2 defined 
by" 

"F(f)(g):=[T(f)(~,)] v, where [Ck]V.'= ~ C r e -2'~ikx 
r = o o  

It is easy to check that T ( f )  is just multiplication by f ,  i.e.: 

T ( f ) ( g ) = f g ,  andthus  I[ ILr(f)l[ [I = l[ I l r ( f ) ] l  I1 = Ikfll~, 

yielding (2.6). 



42 F. Avram 

Case p = l .  Here, we decompose f~L  1 as f=gh, in such a way that [If[]1 
= Ilgll2 Ilhll2. Note that T ( f ) =  T(g). T(h). We get thus 

II T~(f)[I 1 = II P~ T ( f )  P~ I] 1 = II P~ T(g) T(h)P~II ~ ~ IIP~ T(g)li2 II T(h) P~ 112 

= I~_ j l  ~ Ih~_jl = (by (2.3)) 
i = j = - - ~  i = - - o o j =  

=nl/2llgl[2.nl/2l[hll2=nlifl[1. [] 

(by (2.1)) 

Proof of Theorem 1. a) Let m be the number of f~v) in (1.5) which are non- 
polynomials (have infinitely many non zero Fourier coefficients). We will use 
induction on m. For  m = 0  (i.e. all f(~)(x) are polynomials), it is easy to check 
that (1.5) holds (by multilinearity, it is enough to check the case f(~)=e2=ikvx). 
Suppose now (1.5) holds whenever we have at most m non-polynomials. 

Consider then any set of f(")(x) which has at most m +  1 non-polynomials, 
and suppose w.l.o.g, that f(1)(x) is a non-polynomial. Let then fk(a)(x) denote 
the k'th Fejer sum of f(x)(x) and f(1)'k ( X ) = f ( 1 ) ( x ) _ f ~ l ) ( x )  be the k'th remainder. 
Then 

lira _1 Tr T,(f~ 1)) T~(f (~) = ~f~l)(x) l-[f(V)(x)dx (2.7) 
n~oo n I_ v = 2  0 v = 2  

by the induction hypothesis, and the r.h.s, of (2.7) converges as k ~  oo to 

f f i  (f(')(x)dx, since f (1 ) e@ ,  implies that I]f~l)-f(1)]Ipl k~o ,0, for any 
--~ V = I  S 

l < p l < o o  (see Katzelnelson [7], Theorem2.11) and l-[f~)(x)eLql, where 
v = 2  

(P0-1 +(q0-1_< 1. To show then that (1.5) holds with up to m + 1 nonpolyno- 
mials it remains only to note that: 

k ~ n  o o / ' l  [_ v = 2  

_-< lira lim -1 T~(ftl),k) f i  T~(f(1)) 
k - + o o  n - ~  /'/ v = 2  1 

< lim lim i II T.(f(x)'k)llm f i  IIT.(f (")) ]lw 
k ~ c o  n ~ c o  r /  v =  2 

< lira lira - - I I f ( 1 ) ' k l l , ~  Ilf(v)llpv 
k ~ o o  n --* oo ~ v =  2 

(by (2.2)) 

(by (2.1)) 

(by Lemma 1) 

=0.  

b) Assume first wJ.o.g, i (P.)- 1 > 1. (Otherwise the result follows from a).) 
v = t  
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The proof  is now similar with that of part a). If all f(~)(x) are polynomials, 
the limit is 0 since e > 1. Otherwise an induction on the number of non polyno- 
mials works: assume w.l.o.g, that f(1)(x) is a nonpolynomial, replace f(~) by 
f~l),k +fk(~), and split (1.6) in two parts. 

The double limit in k and n of the second part is 0 by the induction hypothe- 

sis; for the first part, let 0 =  ~ (pv)- ~, and note that 
V = I  

n ~ v =  2 

s 

~ 1  IIr~(f")'k)[10p, I~ IIr~(f<~>)ll0~ (by(2.1)) 
- -  n ~ 

v = 2  

1 ~ II T~(f(1)'k)l[m ~ 1[ T~(f(v))[lp~ (since 0 >  1) 
V = 2  

(Z(pv)- i) s 
< n v  
= n ~ Ilf<a)'klIpl Ilf(~)llp~ (byLemma 1) ri 

v = 2  

<lFf(a)'kllp~ ( I  II/(~)llpv ,0. []  
v = 2  k - ~ c ~  

Appendix 

A. The relationship with Convolution Sums and Parseval's Relation 

It is interesting to compare Theorem 1 a with the 

Convolution Theorem. Suppose that f(~)~Lpv, with 1 < p~ < o% for v = 1, ..., s, 

and that ~ (p~)- 1 < 1. Then 
V = I  

lim ~ fj(11) ... f/s)=j~ l-[f(~)(x)dx. (A.1) 
n ~ o t )  j e ( -n  . . . . .  n p  0 v = l  

J l  + .--  + J s  = 0 

This theorem holds since if we let S, ( f )  denote the n'th Fourier sum of 
1 s 

f,  then the 1.h.s. of (A.1) is precisely S l-[ S,(f(v)) dx. Since for 1 < p <  0% IIS,(f) 
0 v = l  

- f l J p ~ O  (see Katznelson [7], II.1.5), and since the condition i (Pv) -1--<1 
v = l  

implies the continuity of the integral as a functional on Lp, x ... x Lps, the result 
follows. 
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The sums appearing in the 1.h.s. of (1.5) in our Theorem 1 are also related 
to some convolution sums. One can obtain, after some algebra, the following 
identity" 

1 T, T,( f  (~)) - -  ~  " ' "  -'kAn-1, (1.2) 
n g/ 

where A, are the "skew" convolution sums: 

A , =  
J l  + . . .  + J s  = 0  
v v 

m a x  ~ j ~ - -  m i n  ~ j i < = n  
1 _<v_<s - -- i=1  1NvNsi=l 

fj~l).., f)2). (A. 3) 

Thus, Theorem 1 is a result about the Cesaro convergence of "skew" convo- 
lution sums. We have been however unable to use in the proof of Theorem 
1 its simpler counterpart, the Convolution theorem, except when s = 2  or 3; 
in these cases, the sums in (A.1) and (A.3) coincide in fact, and Theorem 1 
reduces to the classical Parseval relation (see Katznelson [7], p. 35). 

B. Proof of Formula (A.2) 

Let E(jl  . . . . .  j~) denote the range of the sums ~ j~, v= 1 . . . . .  s, i.e. 
i = 1  

and let 

v 

E(j l ,  . . . , j~)= Max ~ J i -  Min j~, 
1 - < v - < s i = l  1 - - < v - < s .  - -  - ~ = 1  

On~{(J l  . . . . .  is)" ~ j v zO,  E( j l ,  ...,Js)~-_n} �9 
v = l  

Thus, the "skew" convolution sums A, are given by 

A , =  ~ f3(i t) ...f)]). 
j~On 

Then, 

1 Tr T,(/(~) = a-)J2 ... J,~-il~'(s) =-1 ~ ~j~l) ... JJs~'(s) ~ 1 
/ ' /  \ v = l  n _ / e{1  . . . . .  n}S njeDn_a il-i2=jl .... 

is- il = j~ 

1 
= -  ~ f), t) . . ,  fj(s)j~ (n-- E(jl  , .... j~)). (A.4) 

njeO. 1 

The last equality holds since the set of all _/'s with given j' differences can 
be obtained from any of its elements _/(o), by adding or subtracting (1 . . . . .  1) 
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as  l o n g  as  a l l  c o m p o n e n t s  a re  in  t h e  r a n g e  { 1, . . . ,  n};  as  such ,  i t  h a s  ( n -  m a x  i~ ~ 
V 

+ m i n  i~ ~ e l e m e n t s .  F u r t h e r m o r e ,  
V 

m a x  i(~ ~ --  m i n  i (~ = m a x  ( --  i (~ - -  m i n  ( --  i(~ ~ = m a x  (i(i ~ --  ,vi(~ - -  .u..,rnin k ~{I(0)1 - -  ~vi(O)]] 
V v V V V V 

) - - m a x  Jk = n = i . . . .  , J s -  
1 k 1 

F i n a l l y ,  n o t e  t h a t  

l n - 1  l n - 1  

nk~=l  A k = n  2 2 L(i 1) ""J~J(;) 
= k=OjEDk 

~- - -  JJs "'" Js ~ J ~  n- L(ll)  " " L l s ) ( n - - E ( J ) ) *  
l'l j~Dn-  1 E(J) <-k<-n - i s 

a n d  t h u s  (A.4)  y i e lds  (A.2).  
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