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Abstract. Based on the analogy between mathematical 
optimization and molecular evolution and on Eigen's 
quasi-species model of molecular evolution, an evo- 
lutionary algorithm for combinatorial optimization 
has been developed. This algorithm consists of a 
versatile variation scheme and an innovative decision 
rule, the essence of which lies in a radical revision of the 
conventional philosophy of optimization: A number of 
configurations of variables with better values, instead 
of only a single best configuration, are selected as 
starting points for the next iteration. As a result the 
search proceeds in parallel along a number of routes 
and is untikely to get trapped in local optima. An 
important innovation of the algorithm is introduction 
of a constraint to let the starting points always keep a 
certain distance from each other so that the search is 
able to cover a larger region of space effectively. The 
main advantage of the algorithm is that it has more 
chances to find the global optimum and as many local 
optima as possible in a single run. This has been 
demonstrated in preliminary computational ex- 
periments. 

1 Introduction 

Molecular evolution is in some respects an automatic 
optimum-searching process. It has been shown experi- 
mentally that a biomacromolecular system capable of 
self-replication, such as the single-stranded RNA of the 
bacteriophage Qp, will, through mutation and selec- 
tion, eventually acquire better properties (Spiegelman 
1970; Mills et al. 1967). Under special conditions (e.g. 
de novo synthesis), this kind of evolutionary process 
can be much more efficient, and the molecular pro- 
perties can be optimized at a much higher level 
(Sumper and Luce 1975; Biebricher et al. 1981). One of 
the explanations for this efficiency is based on Eigen's 
quasi-species model: During evolution, in addition to 

the fittest species, the unfavourable species also survive 
and play an important role - to make escape from 
"evolutionary traps" possible (Eigen 1971, 1985, 1986; 
Eigen and Schuster 1977, 1978a, b). Inspired by these 
experimental and theoretical studies in molecular 
biology and on the basis of the analogy between 
molecular evolution and mathematical optimization, 
we have developed an evolutionary algorithm for 
combinatorial optimization. This algorithm consists of 
a versatile variation scheme and an innovative decision 
rule. The variation scheme combines advantages of 
both random rearrangement and exhaustive enumer- 
ation, and thus is able to cope with a variety of 
objective functions. In the decision rule, the philosophy 
of optimization is radically revised: The less advan- 
tageous configurations are favoured and used as start- 
ing points for each iteration. Accordingly the search 
proceeds in parallel along a number of routes and is 
unlikely to get trapped in local optima. Furthermore, 
we introduce a constraint to let the starting points of 
iteration always keep a certain distance from each 
other so that a much larger region of space can be 
effectively searched. This provides more opportunities 
to find the global optimum and as many local optima 
as possible in a single run. 

We have tested the performance of this evolution- 
ary algorithm with five examples. These included a 
well-known difficult problem in communication en- 
gineering, namely to find binary sequences with mini- 
mal autocorrelations (Golay 1982). The preliminary 
results of computational experiments have convinc- 
ingly demonstrated the power and efficiency of the 
algorithm. It compares favourably with other optimi- 
zation methods, including the simulated annealing 
method (Kirkpatrick et al. 1983). 

2 Combinatorial Optimization 

The study of optimization is concerned with develop- 
ing efficient methods to find the maximal or minimal 
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values of a function with N independent variables. In 
combinatorial optimization these variables can only 
take finite, say k discrete values. At first sight there 
would seem to be no difficulty in finding the exact 
solution for problems of combinatorial optimization. 
Because both the number of variables (N) and the 
number of values (k) are finite, the total number T of all 
possible combinations of variable values is also finite. 
For the Selecting Type problem (e.g. the Knapsack 
Problem) T = k N and for the Sequencing Type problem 
(e.g. the Assignment Problem) T = N ! .  One can in 
principle obtain the exact solution by exhaustive 
enumeration, but in practice enumeration is really 
impossible for the problems with a large N, since T 
increases explosively with N. For example, for a 
moderate N=100  and k=2,  21~176176 and 
100! ,-~ 10157. Such a huge amount of enumeration can 
not be performed in reasonable time even on 
supercomputers. 

Consequently, for large scale problems one has to 
resort to approximate methods. Many conventional 
approximate methods of optimization suffer a com- 
mon drawback - getting trapped in local optima and 
failing to find the global one. For many so-called " N P -  

hard Problems" it is sometimes still difficult to obtain a 
good approximate solution. Because many com- 
binatorial optimization problems are of great practical 
interest, many efforts have been devoted to the study of 
heuristic methods that aim at finding good approxi- 
mate solutions, not necessarily the optimal ones, 
within reasonable computational times. One of effi- 
cient heuristic methods is the simulated annealing 
method (Kirkpatrick et al. 1983). It makes use of the 
analogy between finding the optimal values of a 
multivariate function and searching for ground states 
of a many-body system, taking advantage of the 
characteristics of an annealing procedure, i.e., by 
lowering the temperature slowly to bring the system to 
its true ground state (the global minimum) rather than 
freezing it into a metastable state (a local minimum). 

This problem, avoiding getting stuck in a local 
optimum and leading towards the global optimum, 
however, exists not only in physical processes such as 
annealing. It can also be found in biological processes, 
including molecular evolution (Eigen 1985, 1986; 
Schuster and Sigmund 1985; Schuster 1986). 

3 Molecular Evolution 

Molecular evolution is concerned with exploring evo- 
lutionary laws at the molecular level, investigating 
the causal connection between molecular self- 
reproduction, selection and evolution. It is an impor- 
tant aspect of modern molecular biology. Experimental 
studies of the single-stranded RNA of bacteriophage 

Table 1. Similarities between biological evolution and math- 
ematical optimization 

Mathematical optimization Molecular evolution 

Objective function Selective function 
F(sl, s2 . . . . .  sN) V(q ,  t z . . . . .  tN) 

Variables Sk Nucleotides t k 
O, 1; __1 A, C, G, U 

Configuration Sequence 
(sl, s2 ..... sN) (tl, t~ ..... tN) 
Iterative improvement Evolution 
Variation scheme Mutation mechanism 
Decision rule Selection principle 

Q~ showed that this macromolecule can reproduce in 
vitro (Spiegelman 1970; Mills et al. 1967; Sumper and 
Luce 1975; Biebricher et al. 1981). With the aid of a 
replication enzyme, Q~ replicase, a viral plus strand as 
template can reproduce a complementary sequence, 
the minus strand, which then acts as a template itself, 
again with the aid of replicase, to reproduce a plus 
strand. The replication is not 100% exact; mutations 
may occur. The process was found to obey the 
Darwinian principle of natural selection. After many 
generations some mutants eventually possessed better 
properties (e.g. resistance against inhibitors) than the 
wildtype (Kramer et al. 1974). The improvement, how- 
ever, was quite limited, since the process became 
trapped in local optima. Much higher degrees of 
optimization of molecular properties (in particular, 
replication rate) was achieved by a de novo synthesis 
strategy (Sumper and Luce 1975), where the evolution- 
ary process started from a large number of random 
sequences (Biebricher et al. 1981). 

Eigen analyzed these experiments and formulated a 
mathematical theory of molecular evolution based on 
the "quasi-species" model (Eigen 1971; Eigen and 
Schuster 1977, 1978a, b). In his theory emphasis is 
shifted from a single surviving wildtype to a distri- 
bution of mutants that coexist and constitute so-called 
quasi-species. Selection and evolution can be derived 
from an extremum principle as inevitable conse- 
quences of self-replication. 

If we compare this biological optimization process 
with a mathematical optimization process, we indeed 
find many similarities (Table 1). If we examine the 
strategies which both processes employ, we see that 
they have still more in common. The conventional 
strategy of mathematical optimization, Iterative Im- 
provement, is just like evolution; its two elements, a 
variation scheme and a decision rule, are equivalent to 
a mutation mechanism and a selection principle. All of 
these suggested pursuing the analogy between mole- 
cular evolution and mathematical optimization, ta- 



king full advantage of the characteristics of molecular 
evolution, and simulating its mutation mechanism and 
selection principle. We expect that this will enable us to 
obtain a better algorithm to do mathematical 
optimization. 

4 Evolutionary Algorithm 

A simulated evolutionary algorithm for optimization 
may be summarized as follows (Fig. 1): 

I. Starting from an initial configuration of vari- 
ables (template), and according to a specific variation 
scheme (mutation mechanism), generate a predeter- 
mined number (N,,) of configurations (mutants). 

2. Evaluate the objective function for each con- 
figuration and sort the values in order. 

3. Select a specified number (N~) of configurations 
with the best values to form a "Survivor Set" according 
to the decision rule (natural selection). 

4. Check the Survivor Set. IF it does not change 
after a specified number (No) of consecutive iterations 
THEN stop the process; ELSE use the Survivor Set 
as templates GOTO 1. 

These main steps of the present algorithm are 
about the same as the other evolutionary algorithms 

Template I----1 Mutant 
Fig. 1. Schematic illustration of the evolutionary algorithm of 
optimization 
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(Rechenberg 1973; Schwefel 1977), but its variation 
scheme and decision rule have some important 
differences. 

4.1 Variation Scheme  

In the case of binary variables, there are four different 
methods to make a rearrangement of a given 
configuration: 

i. By simulating point mutation. Given a template 
(xl, x2,..., xN) and a replication fidelity Q (the proba- 
bility of correct replication), a copy (x'l, x2,..,, x~v) of 
the template is randomly produced as follows: For 
each variable x~, generate a random number R which is 
uniformly distributed in the interval (0, 1) and compare 
it with Q. If R < Q, x k' -- x k," otherwise Xk' = Xk,- 2 k is the 
complement of Xk. 

In this method, the critical point is choosing Q 
appropriately. Too large or too small values of Q 
would be no good. A large (2 is favourable for 
maintaining a correct digit, but unfavourable for 
changing a wrong digit; a small Q is just on the 
contrary. Furthermore, at different stages of evolution 
one needs different values of Q. At the early stage, 
where the sequences in the Survivor Set are far from 
optimal, one should have a smaller Q to make larger 
mutations, while at the late stage, when sequences are 
close to optimal, one should have a larger Q to 
maintain the most correct digits. Thus one has to make 
some compromise. It is in fact impossible for a fixed Q 
to cope with both cases properly. A better way is to 
vary Q. Starting from a~ initial Qo, after each gener- 
ation let (2 increase a small amount A Q, and after a 
specified number (Ko) of generations Q takes a max- 
imal value Q,, and does not change any more. This 
method to produce new configurations of variables 
(new "moves") is more efficient than conventional 
variation schemes, such as that used in the Monte 
Carlo method, where only one variable changes at one 
time. The drawback of this option is that at the late 
stage, where only a few digits are wrong, it sometimes 
takes several generations to get them in order, especi- 
ally in the case of long sequences, because of the 
random nature of the method. This can be overcome 
by using the next method. 

2. By producing a complete mutant spectrum 
within a given mutation distance d. That means to 
produce in an exhaustive way all possible sequences 
which have a Hamming distance d to the template. 
This will ensure that all possible mutations within 
mutation distance d will be taken into account. Since 
the total number C of mutants with Hamming distance 
d to the template is 
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which increases exponentially with d, this option can 
be used only in the case of small d, say I or 2. In order to 
produce larger distance mutations, one can use the 
option 3. 

3. By producing a sample of mutant spectra within 
a larger mutation distance randomly. For instance, to 
produce a mutant with Hamming distance 10 to the 
template, select 10 variables of the template at random 
and flip their digits. 

4. By simulating gene recombination. Select two 
corresponding segments at random out of two given 
sequences, and exchange them to form two new 
sequences. 

The four options could be used separately or in 
different combinations to make efficient "moves" in a 
variety of value landscapes of the objective function. 

4.2 Decision Rule 

In the decision rule part of the algorithm, the Survivor 
Set is set up to keep not only the fittest sequence, but 
also some unfavourable sequences. In each generation, 
a number of sequences with better values, instead of 
only one best sequence, are selected as the starting 
points for the next iteration. 

This is an essential revision of the philosophy of 
optimization. The conventional philosophy of op- 
timization could be characterized as "Improvement 
Only". In each step a new variation of the configu- 
ration of variables would not be accepted unless it 
improved upon the preceding one. This proves to be a 
short-sighted strategy, corresponding to the Darwin's 
statement "Survival of the fittest". If only the fittest 
could survive, however, the development process will 
sooner or later get trapped in a local optimum, be it in 
biological evolution or mathematical optimization. 

Consider the escape from a local trap (Fig. 2). It is 
clear that if one wants to move from the local 
maximum $1 to the global maximum $2 step by step, 
one has to go first downhill, through the valley S* and 
then uphill again. Yet in the value landscape, to go 
downhill means to accept unfavourable sequences as 
starting points of the next iteration, i.e. to let them 
survive and act as templates. Consequently, in each 
generation one has to allow a number of survivors 
rather than only a single best one. 

The Survivor Set must be large enough to keep 
unfavourable sequences, especially those sequences 
which may be the precursors of more optimal ones 
(Fig. 2a). On the other hand, a large Survivor Set 
results in an excessive amount of calculations. A 
remedy is to set a lower bound K d of Hamming 
distance between sequences and let the sequences in 
the Survivor Set keep a certain distance (> K~) from 
each other so that the size of Survivor Set may be 

Value 

~Survivor Set 

S1 S ~ S 

Q 

SequenCe 

Vatue 

$I S ~ 92 Sequence 

Fig. 2a and b. Schematic illustration of moving from the local 
maximum St to the global maximum S 2. Before going uphill 
(improvement) to $2 one has to first go downhill from $1 
(accepting unfavourable species) to the transition point S*. a 
Without constraint on distance between sequences. The Survivor 
Set must consist of a large number of species, b With constraint 
(Ka) on distance between sequences. The Survivor Set can consist 
of a small number of species 

reduced while relevant unfavourable sequences are not 
excluded from it (Fig. 2b). 

This constraint on Survivor Set is the main inno- 
vation of this evolutionary algorithm which is intended 
to resolve the contradiction between thoroughness of 
search and reasonable amount of calculation. It en- 
ables one to reduce the amount of calculation greatly, 
sometimes by one order of magnitude, and thereby 
increase the efficiency of searching for the global 
optimum, as shown in the computational experiments 
on a number of examples. 

5 Examples 

To test the ability of the evolutionary algorithm to 
find the global maximum and as many local maxima as 
possible, four examples have been chosen, each has 
multiple local maxima that are known in advance or 
can be obtained by exhaustive enumeration. In order 
to compare the overall performance of the present 
algorithm with others, a hard optimization problem in 
communication engineering was used as the fifth 
example. Although the computations have not been 
performed by using the best combination of the 
relevant parameters, yet the results demonstrated the 
advantage and usefulness of the algorithm. 



Example 1 

The function to be maximized is 

F(s , ...,S2o) 

: 10000--[i~l  (si--ai)2] [ j ~  (sj-- bj) 2] 

kk---1 km=l 

Each variable can have values of 1 or 0. {ai}, {bi}, {Ck}, 
and {din} are four given binary sequences: 

{ai}=10011 00101 11001 01000 

{bj}=11101 101O0 O0011 10110 

{ck}=00010 11010 01101 01111 

{dm}=01000 01011 10110 11010. 

The function clearly has four equal global maxima 
I0000 at these four points. Starting from a random 
sequence, and after 7 iterations and 3400 function 
evaluations, the four maxima can be found in a single 
run. 

Example 2 

F(sl, ---,S2o) 

~106-- Ii~=~(Si--1)21 [j~=I(Sj--2)21 

x Z (Sk-- 3) 2 (Sm-- 4) 2 �9 
k = l  L m = l  

This function is like example 1, but a little more 
complicated. Each variable can take four values: 1, 2, 3, 
and 4. There are four equal global maxima at points 
{1,1,...,1}, {2,2,...,2}, {3,3,...,3}, and {4,4 ..... 4}. 
Starting from a random sequence, after 7 iterations and 
11080 function evaluations one maximum was found; 
after 9 iterations and 13960 evaluations another max- 
imum was also found; after 16 iterations and 24040 
evaluations the third maximum was located; and after 
17 iterations and 25480 evaluations the last maximum 
was obtained. 

Example 3 

The function to be maximized is the Hopfield Hamil- 
tonian (Hopfield 1982): 

20 
F(si, . . . ,  S2o) = Z TiiSfli, Sk = +_ 1, i<j 
where 

3 
Tij = Z tkitkj, tkm = -I- 1. 

k = l  
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It has the form of a spin Hamiltonian. The coefficients 
T~i are constructed by following 3 randomly selected 
pattern sequences: 

{tim}=01000 01011 10110 11011 

{t2m}=00010 11011 10111 00011 

{t3m }=10101 10100 01001 10101. 

The function has a number of maxima and minima. 
Starting from a random sequence, and after 4 iterations 
and 10980 function evaluations, the algorithm was able 
to find the best 20 sequences with the highest values 
(the best 10 sequences and their complementary se- 
quences, which have the same values as the original 
ones), as compared with the exact solutions which are 
found by a separate exhaustive enumeration. 

Example 4 

The function to be maximized is the Spin Glass 
Hamiltonian (Sherrington and Kirkpatrick 1975) 

20 

F(sI,'", S2o) = E TuSiSj, Sk = -'[- 1 ,  i<j 
where the T~j are selected randomly according to a 
Gaussian distribution 

P(T~j) = exp(-- Ti~/2 ) . 

The function has many nearly degenerate random 
ground states. Starting from a random sequence, after 
6 iterations and 22200 function evaluations the best 20 
sequences were reproduced as compared with exhaus- 
tive enumeration. 

Example 5 

The function to be maximized is the so-called "merit 
factor", which is a measure of off-peak autocorre- 
lations of a binary sequence and defined as 

5 / - 1  
F(sl, s2, . . . ,sN)=N2/2 • R 2, 

k = l  

where 

N - k  
Rk = F, SiSi+k, S i = -I- 1. 

i=1  

This is a hard optimization problem and has a long 
history (Golay 1982). Because the binary sequences 
with minimal autocorrelations are of importance in 
problems of communication engineering, much effort 
has been devoted to searching for such sequences. By 
exhaustive search, the maximal merit factors have been 
found for general sequences up to N = 32, and for skew- 
symmetric sequences up to N = 59. In the case of larger 
N, only restricted searches have been made. The best 
approximate solutions for skew-symmetric sequences 
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Table 2. Comparison of approximate max- 
imal merit factors given by (1) Beenker et al. 
(1985), (2) this paper 

N F (1) F (2) 

101 6.058 6.911, 6.624, 6.556 
103 5.900 7.766, 6.062, 6.007 
105 6.071 7.614, 6.180 

up to N =  199 were obtained by means of five search 
methods, including a statistical cooling method, name- 
ly the simulated annealing method (Beenker et al. 
1985). As no merit factors substantially larger than 6 
have been found for long sequences (N>100) and 
hence the question of whether such sequences really 
exist has been left open, it is of interest to try to search 
for them by means of the evolutionary algorithm. 

Our first trials were restricted to the skew- 
symmetric sequences of N = 101,103, and 105. In each 
case, after 9 to 10 iterations and 120000 to 150000 
function evaluations we were able to obtain approxi- 
mate optimal solutions better than the results given by 
Beenker et al. (1985) (Table 2). Our results show that 
long sequences with merit factors much larger than 6 
do exist. 

6 Concluding Remarks 

Because of the rich similarities between biological 
evolution and mathematical optimization, it is very 
natural to simulate mutation mechanism and selection 
principle to do optimization. This idea has been put 
forward by a number of authors (Bremermann 1962; 
Rechenberg 1973; Holland 1975; Schwefel 1977). The 
work described here is in the same direction, but more 
concerned with exploiting the unique potential of an 
evolutionary algorithm in searching for the global 
optimum as well as local optima by simulating mole- 
cular evolution. The overall framework of our al- 
gorithm is about the same as the previous work, yet the 
way of implementing it has some important differences. 

In the variation scheme of our evolutionary al- 
gorithm, random rearrangement of configurations is 
supplemented with limited enumeration. Large muta- 
tions are produced by random sampling while small 
mutations are produced by enumeration, so that the 
creation of "moves" is more efficient. In another option 
(simulating point mutation), the replication fidelity Q is 
made variable to adapt to different requirements of 
different stages of evolution. Accordingly, it is able to 
lead to improvement quickly. 

In the decision rule of the algorithm, the target of 
selection is a number of sequences with better values 

rather than a single best sequence. Indeed, this is the 
common feature of all evolutionary algorithms, but 
seems not yet to have been fully utilized in practice for 
finding global optima. In designing our algorithm, 
however, we take this point seriously and make full use 
of it to search for global optima. Since Eigen's quasi- 
species model emphasized the importance of unfavour- 
able sequences in leading the search process to escape 
from local optima, and on the other hand, the analysis 
of sequence space indicated that the characteristic 
structure of sequence space allows a large number of 
alternative routes to a target sequence and thus 
provides a suitable stage upon which unfavourable 
sequences can play their roles (Eigen 1985, 1986; 
Schuster and Sigmund 1985; Schuster 1986; Hamming 
1980), we pay special attention to these unfavourable 
sequences. We introduce a lower bound of Hamming 
distance to let sequences in the Survivor Set maintain a 
certain distance from each other. It is analogous to 
imposing a selection pressure to limit similar, favour- 
able species and leave more living space to unfavour- 
able ones (Fig. 2b). As a result, a certain diversity of 
species, which would facilitate the evolution process, 
can be still maintained in a limited space. This 
constraint on the Survivor Set is the key feature of our 
evolutionary algorithm that ensures a higher proba- 
bility of finding a global optimum quickly. 

In so far as can be determined from the examples 
tested; our evolutionary algorithm is superior to the 
simulated annealing algorithm in that more and better 
approximate optimal solutions could be found in a 
single run. This is not surprising, because in the 
annealing algorithm the search is proceeding along a 
single route, and owing to the random nature of the 
process some parts of variable space may be searched 
repeatedly while some parts may never be reached at 
all. In our evolutionary algorithm, however, the search 
proceeds in parallel along many routes simultaneous- 
ly; at each iteration the starting points always keep a 
certain distance from each other so that the search 
thoroughly and effectively covers a much larger region. 
Even if one route gets stuck the search along the other 
routes can still proceed. 

This evolutionary algorithm is independent of the 
concrete form of the objective function and thus 
especially suitable for dealing with problems of non- 
linear optimization, which usually can not be solved 
efficiently by conventional methods. The main advan- 
tage of the algorithm, with greater probability to find 
the global optimum and as many local optima as 
possible in a given domain and in a single run, is of 
great value to practical applications: more suboptimal 
solutions are available for choice, and a globally 
optimal scheme can be carried out through intermedi- 
ate, locally optimal stages. 
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While the evolutionary algorithm is designed for 
combinatorial  optimization, the extension to the case 
of continuous variables is straightforward. Moreover,  
owing to the inherent parallelism of search, the evo- 
lutionary algorithm is ideally suited for parallel pro- 
cessing computer  systems, which will speed up the 
calculation enormously. The efficiency of the algo- 
r i thm depends on a number  of parameters:  N,,, Ns, N o, 
Qo, Q,~, Ko, Kd and so on. Of  course, different objective 
functions need different parameter  combinations. To 
choose a best combination of these parameters  for a 
given objective function is in itself an optimization 
problem that can only be solved by computer  experi- 
ments. This would require a suitable method of 
experimental design, and experiences and tricks on the 
part  of users. This kind of "intelligence" could eventu- 
ally be p rogrammed  and combined with the program 
coded for the evolutionary algorithm itself to make a 
software package, which would provide a powerful 
tool to solve complicated and hard problems of 
optimization2 

Full implementat ion of the evolutionary algorithm 
of optimization would open up new possibilities to 
biomolecular engineering and might find applications 
in biotechnology. In fact, an experimental realization 
of the algorithm, the construction of a so-called 
evolution machine is under way (Eigen 1985, 1986). 
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