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Abstract. This investigation aims at exploring some of 
the functional consequences of single neurons contain- 
ing active, voltage dependent channels for information 
processing. Assuming that the voltage change in the 
dendritic tree of these neurons does not exceed a few 
millivolts, it is possible to linearize the non-linear 
channel conductance. The membrane can then be 
described in terms of resistances, capacitances and 
inductances, as for instance in the small-signal analysis 
of the squid giant axon. Depending on the channel 
kinetics and the associated ionic battery the lineariza- 
tion yields two basic types of membrane: a membrane 
modeled by a collection of resistances and capaci- 
tances and membranes containing in addition to these 
components inductances. Under certain specified con- 
ditions the latter type of membrane gives rise to a 
membrane impedance that displays a prominent maxi- 
mum at some nonzero resonant frequency fm,~" We call 
this type of membrane quasi-active, setting it apart 
from the usual passive membrane. We study the 
linearized behaviour of active channels giving rise to 
quasi-active membranes in extended neuronal struc- 
tures and consider several instances where such mem- 
branes may subserve neuronal function: 1. The re- 
sonant frequency of a quasi-active membrane increases 
with increasing density of active channels. This might 
be one of the biophysical mechanisms generating the 
large range over which hair ceils in the vertebrate 
cochlea display frequency tuning. 2. The voltage re- 
corded from a cable with a quasi-active membrane can 
be proportional to the temporal derivative of the 
injected current. 3. We modeled a highly branched 
dendritic tree (&-ganglion cell of the cat retina) using a 
quasi-active membrane. The voltage attenuation from 
a given synaptic site to the soma decreases with 
increasing frequency up to the resonant frequency, in 
sharp contrast to the behaviour of passive membranes. 
This might be the underlying biophysical mechanism 
of receptive fields whose dimensions are large for rapid 

signals but contract to a smaller area for slow signals 
as suggested by Detwiler et al. (1978). 

1 Introduction 

When studying the electrical function of the dendritic 
tree of nerve cells, it is usually assumed that the 
membrane impedance can be modeled by a passive 
membrane, i.e. a resistance in parallel with a capacity. 
Using such a membrane one can derive, via classical 
one-dimensional cable theory, the potential within the 
dendritic tree for various synaptic inputs (for instance 
Rall, 1977). However, several lines of evidence throw 
doubt on the generality of the underlying assumption. 
Recent advances in in-vitro culture techniques and the 
application of voltage clamp have made it possible to 
identify a wide variety of voltage-dependent currents 
distributed throughout the nerve cell. Llinas and 
Sugimori (1980) found in mammalian Purkinje cells 
high-threshold Ca 2§ spikes, believed to originate in 
the dendritic tree, with different kinetics than the 
sodium carried somatic spikes. In inferior olivary 
neurons Llinas and Yarom (1981) likewise recorded 
high-threshold spikes, mediated by a non-inactivating 
calcium current distributed in the dendrites (see also 
Connors et al., 1982; Schwartzkroin and Slawsky, 
1977). Wong et al. (1979) observed fast, low-threshold 
Na + and slow, high-threshold Ca 2 § dendritic spikes in 
hippocampal neurons. Apart from these all-or-none 
events several smaller currents in the subthreshold 
range have been discovered, for instance the rapidly 
inactivating, K § based /A-current in hippocampal 
neurons (Gustafsson et al., 1982) and the/u-current in 
various vertebrate neurons (Brown and Adams, 1980; 
Halliwell and Adams, 1982). The /M-current, a per- 
sistent potassium conductance possibly distributed 
throughout the dendritic tree (Halliwell and Adams, 
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1982), has been shown to depend not only on voltage, 
but also on a muscarinic agonist. Thus, the channel 
responsible for this current depends not only on 
potential but also on a neurotransmitter (for an excel- 
lent review of this new development see Crill and 
Schwindt, 1983). A large class of potassium channels is 
activated by an increased level of intracellular Ca 2 +, 
thereby possibly linking the cell's metabolism with its 
membrane conductance (see for instance Adams et al., 
1982 in bullfrog sympathetic neurons; Lewis and 
Hudspeth, 1983 in bullfrog hair cells). In some in- 
stances non-spiking neurones, thought unable to ge- 
nerate impulses under normal, physiological con- 
ditions, have been shown to possess regenerative prop- 
erties (see Hengstenberg, 1977 in interneurones of the 
visual system of the fly; Mirolli, 1981 in motor in- 
terneurones of the crab; Johnston and Lam, 1981 in 
horizontal cells of the teleost retina). 

Even if neurons behave linearly within a given 
voltage range, they need not necessarily be passive. It is 
known that the membrane of some specialised neu- 
rons, like hair cells in the vertebrate cochlea (Crawford 
and Fettiplace, 1980, 1981), fish electroreceptors 
(Hopkins, 1976; Meyer and Zakon, 1982) or the rod 
network in the retina of lower vertebrates (Detwiler et 
al., 1978, 1980; Torre and Owen, 1983) can best be 
described by a membrane containing an inductance, in 
addition to the usual resistance and capacity. Due to 
this inductance the neuron behaves like a bandpass 
filter, i.e. its membrane impedance increases with in- 
creasing temporal frequency, thereby subserving speci- 
fic neuronal functions: hair cells show their maximal 
sensitivity at some frequency value different from zero 
(Crawford and Fettiplace, 1981; Lewis and Hudspeth, 
1983) and rod photoreceptors have a receptive field 
which increases in size for increased temporal fre- 
quency of the stimulus (Detwiler et al., 1978). Even 
cells which are not nerve cells, like Purkinje fibers of 
the heart muscle (DeHaan and DeFelice, 1978; 
Clapham and DeFelice, 1982) or single skeletal muscle 
fibers (Moore and Tsai, 1983), behave electrically as if 
their membrane contained inductances. These obser- 
vations invalidate the concept of a passive dendritic 
tree whose only function is to integrate the synaptic 
input and propagate the resulting potential towards 
the spike-initiation zone near the soma and warrant a 
new look at the behavioural and functional con- 
sequences of active membranes. 

In this study, we explore the properties of active, 
but linearized membranes. Assuming that the voltage 
change in the dendritic tree does not exceed a few 
millivolts in magnitude, the non-linear channel con- 
ductance can be linearized and described by an electric 
circuit consisting of several resistances, inductances 
and capacitances. The full, analytic solution for the 

spread of excitation in extended neuronal structures 
with such membranes is only known in two cases: for 
the infinite squid axon (Sabah and Leibovic, 1969; 
Mauro et al., 1970; Sirovich and Knight, 1977) and for 
a one- or two-dimensional network of discrete rodes, 
each one modeled by a RLC circuit (Torre and Owen, 
1983; Torre et al., 1983). Using a recently developed 
algorithm (Koch and Poggio, 1983b) we study proper- 
ties of cables and branched trees endowed with a 
linearized membrane, placing special emphasis on their 
role in information processing. 

2 The General Solution of the Cable Equation 

The main topic of the present analysis is the electric 
behaviour of membranes containing active, voltage- 
and time-dependent channels for voltage values not 
too far away from the resting potential of the cell. 
Within this voltage range, which depends strongly on 
the density of the channels, the conductance of the 
channel can be linearized to yield phenomenological 
inductances, capacitances and resistances. To be able 
to study the propagation of voltage in extended neu- 
ronal structures with an arbitrary linear membrane we 
have proposed a representation of such structures in 
frequency space together with a simple algorithm to 
generate the solution of the corresponding cable equa- 
tion (Koch and Poggio, 1983b). 

2.1 Linear Cable Theory  

Denoting the linearized, frequency-dependent mem- 
brane impedance by zm(co ) and the serial impedance by 
za(co) we represent a linear, one-dimensional cable as 
an infinite ladder network illustrated in Fig. 1 ~. Since 
we can safely model the serial impedance as a purely 
ohmic resistance r, (for a discussion of this, see Scott, 
1972), we will henceforth always assume that Za(~O ) = r~. 
For a passive membrane Zm(CO ) is given by 

r 

zm(co) = 1 + icon' (1) 

where z is the membrane time-constant ~ =rc,  and c 
the membrane capacity. Under the basic assumptions 
of one-dimensional cable theory (for a review see Rail, 
1977) we write the cable equation directly in the 
Fourier domain as 

~2 P(x, co) _ ~(co)2 ~(x, co), (2) 
~x 2 

where V(x, co) is the Fourier transform (with respect to 
time) of the membrane potential V(x, t) at x and y(co) is 

1 co is related to the frequency f by co = 2~f 
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Fig. 1. The general representation of a one-dimensional cable with 
an arbitrary frequency-dependent membrane impedance z .=z.(o))  
and serial impedance z. = z.(o)) 

the propagation constant defined by 

~(09)2_ zo(09) (3) 
zm(co) 

(for a derivation see Koch and Poggio, 1983b). 
Equation (3).shows the advantage of using the Fourier 
transform V(x,09) instead of the original function 
V(x, t). For the latter case, finding the voltage in a cable 
with a membrane containing a capacity, a resistance 
and an inductance in parallel entails solving a partial 
differential equation of order two in space and three in 
time, while the corresponding Eq. (2) is a simple second 
order differential equation. The nature of the neuronal 
membrane is fully contained in 7(09) and does not affect 
the form of Eq. (2). Solving Eq. (2) for an infinite cable 
if a 6-current impulse is injected at the origin and the 
voltage is recorded at a distance x farther away 2, 
subject to the boundary condition that P'(x, 09) tends to 
zero as x tends to infinity, leads to the solution 

f'(x, 09) = 0.St~ e- ~(~) (4) 

(see Koch, 1982). Because a cable with a linear mem- 
brane is a linear system (if currents are used as inputs), 
we introduce the Green function K(x, t), i.e. the re- 
sponse of the system to a 6-input impulse. Considering 
the Fourier transform of the Green function, that is the 
transfer function/((x, co), we identify the transfer func- 
tion (or transfer impedance) with the voltage from (4): 

~ 0"5ra :,~(,o) 
K(x, co) = ~ e-  . (5) 

If the voltage is recorded at the site where the current is 
injected, we obtain the familiar input impedance 

/~(0, 09) = 0.5raT(co ) - 1 .  (6) 

The voltage response at x for arbitrary current inputs 
[(09) can now be determined via the convolution 
theorem: 

V(x, co) =/((x,  09). [(co). (7) 

In a few cases it is possible to derive directly the 
time course of the impulse response [i.e. K(x, t)]. The 

2 Note that x, defined as a distance, is always positive 
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temporal behaviour of the light response in the discrete 
two-dimensional network of rod photoreceptors can 
for instance be obtained explicitely if the poles and 
zeros of z,,(co) are known (Torre and Owen, 1983; 
Torre et al., 1983). 

2.2 The Frequency-Dependent Space Constant 

Another variable of interest is the generalized, 
frequency-dependent space or length constant 2(09), 
defined as the distance over which a sinusoidal voltage 
of frequency co decays to 1/e of its original value 
(Eisenberg and Johnson, 1970). 

1 
- R e  {~(09)},  (8) 

x(09) 

where Re{z} indicates the real part of the complex 
number z. In a cable with a passive membrane 2(09) is, 
just as /((x,09), a monotonic decreasing function of 
frequency, since at higher frequencies more and more 
charge leaks through the membrane capacity. Under 
certain conditions, however, 2(0) shows a pronounced 
maximum at some non-zero frequency value, leading 
to an increased spread of voltage at this frequency in 
comparison with lower or higher frequency com- 
ponents (see also Clapham and DeFelice, 1982; Torre 
and Owen, 1983). 

Since we are only concerned with the modulus (or 
amplitude) and not the phase of the transfer function, 
we combine Eqs. (5), (6), and (8) into 

II~(x, o9)1 = lff2(O, 09)le- "/a('~ . (9) 

2.3 Classification of Membranes Types 

To analyse the different electrical properties of linear 
membranes we find it helpful to distinguish between 
different types of membranes. A purely passive mem- 
brane can be modeled by a leakage resistance in 
parallel with a membrane capacity, the usual assumed 
RC configuration. A 9eneralized passive membrane 
consists of a RC circuit in addition to other electrical 
elements like resistances, capacitances and even in- 
ductances as long as the associated membrane imped- 
ance zm(co ) decreases with increasing frequency. 
Therefore, the generalized passive membrane will al- 
ways behave as a lowpass filter. In a specific instance it 
might be very difficult to distinguish experimentally 
between a purely passive RC circuit and a generalized 
lowpass membrane. The quasi-active membrane shows 
bandpass-like behaviour with a prominent maximum 
in its membrane impedance. Such a membrane must 
contain a large phenomenological inductance. By ex- 
clusion we define as active membranes all membranes 
which behave non-linearly with respect to membrane 
voltage, whether spiking or non-spiking. 
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3 The Existence and Properties of Phenomenological 
Inductances 

3.1 When Does an Inductance-like Element Arise ? 

To study the behaviour of the transfer function 
/~(x, co), relating it to the underlying membrane imped- 
ance z,,(co), we consider first under what conditions a 
phenomenological inductance arises. As Detwiler et al." 
(1980) have pointed out, an inductance can be realized 
by a time- and voltage-dependent K § conductance 
activated by depolarization and inactivated by hyper- 
polarization. Examples are the currents mediated by 
potassium channels in the squid giant axon (Hodgkin 
and Huxley, 1952) or in the cat motoneuron (Barrett et 
al., 1980) or by the Ca 2§ triggered K § current in 
sympathetic neurons and hair cells of the bullfrog 
(Adams et al., 1982; Lewis and Hudspeth, 1983). 
Alternatively, an inductance can mimic the small- 
signal behaviour of the time- and voltage-dependent 
Na y (or Ca 2§ conductance activated by hyperpolari- 
zation and deactivated by depolarization as for in- 
stance the low-threshold calcium mediated ionic cur- 
rent in mammalian CNS neurons (Llinas and Yarom, 
1981 ; Llinas and Jahnsen, 1982). Note that the thresh- 
old at which a given current generates spike-like 
components is proportional to the range of validity of 
the linear description. 

3.2 Ban@ass Behaviour of Quasi-active Membranes 

It is well known from electric circuit theory that the 
presence of an inductance can lead to resonant be- 
haviour, i.e. the voltage leads the current (positive 
phase) for a certain range of frequency values while the 
impedance shows a maximum. In trying to answer the 
question when resonant behaviour in linearized mem- 
branes occurs, we introduce the two following de- 
finitions: The complex function ~(co) is said to be a 
bandpass if the amplitude of K(co) increases con- 
tinuously from its minimum at co-=0 until it peaks at 
some positive frequency. The value of co at which this 
maximum is attained is known as the resonant fre- 
quency comax = 2gfmax" Because we always assume the 
presence of the membrane capacity c, which acts as a 
shunt at high frequencies, K(co) tends to zero as 
co~ oo 3. To characterize the quality of a bandpass, we 
define q as the ratio of the amplitude of/~(co) at its 
resonant frequency to the steady-state value (which is 
always real) 

I/~(comax)l (10) 
q -  s 

3 During all our simulations we have never seen a function with 
more than one extremum 

l 

Fig. 2. The electrical representation of a quasi-active membrane 
modeled by a passive component (leakage resistance r in parallel 
with a capacity c) in addition to an inductive branch. This branch, 
made up by an inductance 1 in series with a resistance r~, describes on 
a phenomenological level the electrical behaviour of a specific type of 
active channel for small variations of voltage around a fixed 
potential 1~ 

One requirement for a true bandpass-filter is q > 1, 
i.e. the impedance at the resonant frequency should be 
larger than the steady-state impedance. Using these 
definitions we can tackle the problem under what 
conditions the membrane impedance shows a resonant 
maximum. Consider the simplified membrane shown 
in Fig. 2, consisting of an RC-element in parallel with 
an inductive branch, arising from a small-signal ana- 
lysis of some active channel. For this system it can be 
proved rigorously (see Appendix I) that within a range 
of values for the inductive resistance r~ - extending 
from 0 to some finite positive value of r~ - the 
membrane impedance Zm(CO ) increases monotonically 
from co = 0 up to its resonant frequency. Subsequently 
the impedance drops to zero. Therefore, within this 
range of r z, q >  1. For the ideal resonant circuit, i.e. 
r~ =0, the system resonates at the characteristic fre- 
quency fmax=(lc) -1/2. Increasing r 1 leads first to an 
increase in COma x and then to a slow decrease until COma x 
merges with the extremum at co =0,  changing z,,(co) 
from a bandpass into a lowpass, com, x can be shifted 
towards greater frequency values by decreasing the 
leakage resistance r. Beyond the before mentioned 
range of rz-values, the resistance is too large to allow 
the circuit to resonate and zm(co) is always a lowpass. 
The same also applies to the leakage resistance r: if it 
is small enough z,,(co) will always be a bandpass. In the 
general situation of an arbitrary impedance z,,(co) in 
parallel with an inductive branch, the combined im- 
pedance always exhibits a maximum for small enough 
values of the inductive resistance r~ (Appendix I). 

Given that zm(co ) does indeed show bandpass- 
behaviour, we prove the following proposition (for a 
detailed proof see Appendix II): 

Theorem. Ban@ass behaviour of a linear, infinite cable. 
I f  the membrane impedance zm(co ) is a ban@ass in the 
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above sense, it follows that in an infinite cable of  
constant diameter 

the input impedance ~2(0, co) is a ban@ass with the 
same resonant frequency as the membrane impedance 
and vice versa, 

the transfer impedance K(x, co) for any x is a 
bandpass, 

the 9eneralized length constant 2((o) is a ban@ass 
(for the last two points the converse, unfortunately, 

does not hold). 

In other words, if a small patch of membrane 
behaves as a bandpass, so does the transfer function of 
the whole cable and the space constant. Accordingly, a 
sinusoidal voltage in such a cable will tend to propa- 
gate farthest if its frequency is in a neighbourhood of 

cornax" 

4 The Existence and Properties of Phenomenological 
Capacitances 

4.1 When Does a Capacity-like Element Arise? 

Up to now we have only been concerned with the 
existence and the consequences of an inductive branch 
arising out of the linearization of an active, voltage- 
dependent channel. But under what conditions does a 
capacitive branch (in addition to the passive RC- 
element) arise and what are its functional con- 
sequences? Basically, a voltage-dependent conduc- 
tance mimics a capacitive branch (consisting of a 
capacity cc in series with a resistance r~) if the current 

OV V 
behaves like I = c~ ~ -  + --. This is the case when the 

r e 
Na + (or Ca 2+) conductance is activated by depolari- 
zation as during the rising phase of the fast, Na + spike 
or for the high-threshold, non-inactivating Ca 2 + con- 
ductance (Llinas and Sugimori, 1980; Llinas and 
Yarom, 1981; Schwartzkroin and Slawsky, 1977; 
Lewis and Hudspeth, 1983) or when a voltage- 
dependent K + conductance decreases for depolari- 
zation and increases with hyperpolarization. 

4.2 Temporal Delays in a Lowpass Membrane 

In what way does the existence of such an extra 
capacitance influence the behavior of the membrane? 
Adding to a lowpass membrane an additional capa- 
citive branch does not change the fundamental nature 
of the membrane, i.e. its decreasing impedance for 
increasing frequency, even if such a circuit cannot be 
reduced to the usual RC configuration. What changes 
is the time-constant of the system, which increases by 
adding a capacitive branch. Such an increased re- 
sponse time might be useful for various types of 
neuronal signaling (for instance for movement de- 
tection ; Reichardt, 1961 ; Torre and Poggio, 1978). The 

notion of a delay incurred by a signal passing through 
a cable can be made more precise by introducing the 
phase-time-lag t0(co ) defined as the time it takes a 
sinusoidal input signal of frequency co to pass through 
the system. It can be shown that the phase-time-lag in 
an infinite cable with propagation constant 7(o) 
[Eq. (3)] is given by 

t,co, 1 ~ Im {y(co)} x 
0t )=  ~ a r c r g ~  +Im{7(co)}--co (11) 

(see Koch, 1982; Briihl et al., 1979) 4. Introducing a 
capacitive branch does indeed increase to(co ) but with 
the undesirable side effect of decreasing the space 
constant 2(co), since more charge leaks through the 
membrane than before. Another way to enhance de- 
lays is by increasing the leakage resistance r which 
concomitantly raises 2(co). 

To illustrate this we model a membrane consisting 
of a RC-element in parallel with a capacitive branch 
using the following parameters : r = 3333~ cm 2 ; 
c = l g F c m - 2 ;  rc=2300~cm2; cc=l~tFcm -2. The 
phase-delay in an infinite cable (of 1 gm diameter) 
when recording the voltage at the site of current 
injection decreases from its peak value t o = 3.3 ms for 
stationary inputs to 0.2 ms at 500 Hz. If the voltage is 
recorded one steady state space constant (345gm) 
farther away, t o decreases from 6.6ms to 0.7ms. Over 
the same temporal frequency range the space constant 
drops from its maximum 2 o =345 ~tm to 140gin. We 
compared these numbers with the phase-time in an 
infinite cable with a purely passive membrane with a 
three-fold increased leakage resistance; i.e. 
r = 10,000 f2 cm 2 ; c = 1 gF cm- 2 and no additional ca- 
pacitive branch. Now the phase-time associated with 
the input impedance measurement drops from 5.0 ms 
to 0.25ms while the corresponding values for the 
transfer function are 7.9 and 0.7ms. Simultaneously, 
the space constant is reduced from its maximal steady- 
state value 2o=598gm to 150gin at 500Hz. 

After considering the specific properties of the 
basic types of linear membranes, we will now focus on 
one particular instance of such a membrane: the 
membrane derived by linearizing the Hodgkin-Huxley 
equations for the unmyelinated squid axon. 

5 The Linearized Hodgkin-Huxley Equations 

5.1 General Properties of the Linearized, Hodgkin- 
Huxley Membrane 

The distribution of the membrane voltage in an axon 
(or dendrite) is described by the partial differential 

4 For more details on the time-lag and on a precise method of 
assessing the velocity of PSP's in cables with an arbitrary linear 
membrane  see Koch and Poggio (1984) 
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Fig. 3. The electrical circuit representing a small patch of membrane 
in the unmyelinated squid axon (Hodgkin and Huxley, 1952). Note 
that the usual passive membrane component (i.e. c and gl,~k = 1 / q , , k )  

are time- and voltage-invariant 
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Fig. 4. The equivalent RLC circuit of a small patch of membrane of 
the type shown in Fig. 3 for small variations of voltage. Linearizing 
the Hodgkin-Huxley equations around any value of the membrane 
potential P between V~ and VN, gives always a qualitative similar 
type of circuit. For the values of the electrical elements see 
Appendix III 
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Fig. 5. The membrane impedance z m for two types of membranes as a 
function of frequency. Calculating the amplitude of the impedance of 
the quasi-active membrane shown in Fig. 4 gives rise to the 
bandpass-like function which increases from its steady-state value 
857f~ cm 2 to its peak 2422f~ cm 2 at 67 Hz. This corresponds to a q of 
2.83. Reducing the density of active, voltage-dependent channels to 
zero leads to a purely passive membrane with a monotonically 
decreasing impedance z,.(o)). In both cases is rl~,k = 3333f~ cm 2 and 
c = 1 gF cm-  2. Note that beyond 200 Hz both curves coincide 

equation 

1 692V(x,t)  c~V(x,t)  
ra 8x  ~ - c & + Ii(t ) . (12) 

The current Ii(t  ) carried by the movements of ions 
through the membrane is the sum of the currents due 
to different ion-specific channels. Hodgkin and 
Huxley formulated (1952) a mathematical model of the 
squid axon using four independent variables V, m, n, 
and h : 

Ii(t  ) = ~Nam3h(V(t)  - VNa ) 

+ ~ r n 4 ( V ( t )  - V ~ ) + g l e , k ( V ( t ) -  Vleak), (13) 

where m, h, and n describe the sodium activation, the 
sodium inactivation and the potassium activation as a 
function of time and voltage (Fig. 3). The behaviour of 
these variables is regulated by three first-order differ- 
ential equations [Eq. (AIII.2)]. Linearizing these equa- 
tions for small variations of voltage 6V around the 
membrane potential V yields a total, phenomenologi- 
cal membrane impedance for subthreshold responses 
equivalent to three RL branches in parallel: two with 
positive and one with a negative resistance (for an 
exact description of the resulting membrane see 
Appendix III). The branch with the negative resistance 
mimics the m process of the sodium activation while 
the other two branches are equivalent to the in- 
activation process of the Na § current and to the 
activation of the K + current. However, the negative 
RL branch can be converted into a RC branch with a 
positive value of the resistance [Eq. (AIII.4)]. The true 
membrane capacity and leakage resistance act in par- 
allel with these phenomenological elements to give a 
total impedance Zm(e) ) which is, in effect, a parallel 
RLC configuration (Fig. 4): 

zm(co) = fl3(ic~ 3 + flz(ie)) 2 + i l l(ie)) + flo (14) 
~xr 4 + (Z3(iO)) 3 + 0~2(i09) 2 + ~X 1(i03 ) + O~ 0 

with the constants ~ and fl~ depending on the value of 
the electrical elements [see Mauro et al. (1970) or 
Sabah and Leibovic (1969) for an assessement of the 
quality of the linear approximation]. The existence of 
these inductances in the membrane of the squid axon 
were first reported by Cole and Baker (1941 ; see also 
Cole, 1941). The membrane impedance, plotted in 
Fig. 5, increases from the steady state value up to the 
resonant frequency at 67 Hz, tending subsequently to 
zero as the frequency increases. Also shown is zm(co ) for 
a passive membrane with the same leakage resistance 
as in the quasi-active case but in the absence of any 
active channels [i.e. r /~0;  Eq. (15)]. Beyond 200 Hz the 
two curves overlap substantially. Thus both types of 
membranes show similar electrical behavior if events 
changing on the time scale of one or 2 ms or faster are 
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considered. The distinct electrical properties of these 
linearized membranes are therefore due to the fact that 
zm(co ) increases from 0 to fm,x for the quasi-active 
membrane but decreases in the passive case. 

But when is linearization permittable and when 
does it lead to instabilities, i.e. a finite input resulting in 
a diverging output? The denominator  of Zm(co ) 
EEq. (14)], a fourth degree polynomial in co, is in fact 
the characteristic equation for the linearized system. 
The response of the linear system will always be of the 
form 

4 

V(t)= Z Ci ea'', 
i = 1  

where the C i are constant and the 2 i the roots of the 
characteristic equation. If  the real part  of each root 2i 
is less or equal to zero, all perturbations 5 V from the 
potential V tend to decrease with time and the point P 
is stable (Chandler et al., 1962). If at least one root has 
a positive real part, the system has run-away solutions 
and is therefore unstable. To investigate the stability of 
the system without solving explicitly for the roots we 
used the algebraic Routh-Hurwitz criterion (Korn and 
Korn, 1961), consisting of 6 inequalities in the ~[s. One 
of these requirements is that the total steady-state 
resistance (i.e. l / r +  1/r n + 1/rh) be positive. Varying P 
between V K and VN, and assuming standard Hodgkin- 
Huxley parameters (see Appendix III) we find, in excel- 
lent agreement with values reported in the literature 
(Sabah and Spangler, 1970) that the Routh-Hurwitz 
criterion fails to be satisfied at Vcrit = 5.35 mV. Around 
V= 3.18 mV the shunting resistance r diverges to + oo, 
subsequently changing sign and decreasing in ampli- 
tude, i.e. from - o o  to finite, negative values. If  a 
current t ha t  increases sufficiently slowly is applied to 
the nonlinear membrane,  the system displays sub- 
threshold oscillations at V=  Vomit (Cooley and Dodge, 
1966; Sabah and Leibovic, 1969; see also Rinzel, 
1978). Since the voltage threshold for eliciting a spike 
in the nonlinear system is above this value, we con- 
clude that the instability of the linear system does not 
necessarily imply spiking behaviour of the nonlinear 
system (see also Fig. 10). 

5.2 The Impulse Response in an Infinite Cable 

Figure 6 shows the amplitude of the input impedance 
K(0, co) and transfer impedance/~(x,  co) for x = 22 o, i.e. 
twice the steady state space constant, in an infinite 
axon of constant diameter and with the same mem- 
brane as in Fig.4. In Fig. 7 we have plotted the 
corresponding Green functions K(0, t) and K(x, t) ob- 
tained by applying the inverse Fourier transform. Due 
to the bandpass nature of the membrane,  both func- 
tions show an oscillatory component  in the computed 
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Fig. 6. The amplitude of the input-impedance /~(0, co) and the 
transfer impedance/~(x, co) in an infinite cable of constant diameter 
(d = 1 gin) endowed with the quasi-active membrane shown in Fig. 4. 
The distance between the site of the current injecting electrode and 
the voltage recording electrode is two steady state space constants 
(Fig. 9), i.e. x = 220 = 350 gin. The impedance for stationary inputs 
for /~(0,co) [-respectively /~(x, co)] is 72.98Mf~ (respectively 
10.55 M~) and increases until 67Hz (respectively 70 Hz) where it 
peakes at 131.09 Mf~ (respectively 40.67 M~). Thus q = 1.68 (re- 
spectively 3.85). While the shape of/~(0, co) is independent of the 
diameter [in fact/{(0, co) is proportional to d- 3/2],/~(x, co) is not. For 
the same cable with d=0.1 gm or 10gm, q is 23.35 or 2.18 while 
the resonant frequency decreases from 72 to 67 Hz 
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Fig. 7. The Green functions K(O,t) (top) and K(x,t) (bottom) 
obtained by inverting the corresponding transfer functions of Fig. 6 
using the fast Fourier transform. These functions can be thought of 
as the voltage response of the system to a &pulse of current injected 
at the site of voltage recording or 350 I~m farther away 
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Fig. 8. The resonant frequency fmax and q, the ratio of / ( (x ,  fmax) to 
K(x, 0), of the transfer function in an infinite cable (see Fig. 6) as a 
function of the distance x between the sites of current input and 
voltage output, f ~  and q were obtained by numerically evaluating 
expression (5). q can be approximated very closely by the function 
q=l.68e ~ (coefficient of determination r2=0.99998); 
20 = 175 p.m 
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Fig. 9. The frequency dependent space constant  2(~o) in an infinite 
cable of constant diameter (1 gin) for a passive and a quasi-active 
membrane (see Fig. 5). 2(co) increases in the quasi-active case from its 
steady-state value 20 = 175.0p.m to its peak value of 300.4gm at 
74Hz, while 2(co) for a passive membrane decreases monotonically 
from the stationary value 20 = 345.0 p.m. Note that beyond 200 Hz 
both curves overlap almost completely 

response to a impulse current, first de- and then 
hyperpolarizing. Increasing the distance between the 
locations of current injection and voltage recording 
does not have any profound influence on the resonant 
frequency as demonstrated in Fig. 8. It does, however, 
lead to an exponential increase in q, the ratio of 
/((x, corn,x) to K(x, 0). In fact, this curve can be fitted to 
a high degree of approximation by a single exponential 
function: q = ae bx. This increase in the "quality, of the 
bandpass is counterbalanced by the attenuation of the 

whole transfer function for increasing distances due to 
charge leaking through the membrane. 

Figure 9 shows the frequency dependent space 
constant 2(0)) for the passive and the quasi-active 
membrane. Note that 2(co) scales according to d 1/2, 
where d is the diameter of the cable. Due to the 
presence of channels that decrease the total ohmic 
membrane resistance, 2(co) is smaller in the quasi-active 
case than for the passive membrane and shows a 
pronounced maximum at 74 Hz. 

5.3 Variation of the Shape of the Bandpass with 
Changing Biophysical Parameters 

As we have seen above, the resonant frequency can be 
shifted (albeit, only slightly) by varying x. A different 
way to influence COma x is to change directly the electric 
elements of the circuit making up the membrane. We 
consider in particular a variable potassium and so- 
dium channel density. Assuming that the conductance 
of a single channel remains constant and only the 
density of both Na + and K + channels change, we 
replace the expression for the sodium and potassium 
conductance per unit area 9N, and ~]r by 

9N, =.qN~, (15a) 

9~ = 9Kq. (15b) 

Substituting gN, and OK into the expression for the 
circuit elements of the linearized membrane, it follows 
that r,, r,,, r h, and c m are inversely proportional to the 
channel density q while the specific inductances I, and 
I m are proportional to q [-the time constants of the two 
inductive branches z, and % are therefore insensitive 
to any changes in ~/; Eqs. (AIII.3)-(AIII.8)]. By 
lowering or enhancing q we mimic a decrease or an 
increase of membrane excitability (see Holden and 
Yoda, 1981; or Sabah and Leibovic, 1972; who stu- 
died the effect of changing ~/ upon the travelling 
solution of the Hodgkin-Huxley equations in an in- 
finite cable). 

Figure 10 shows the numerically determined value 
of the holding potential ~" at which the linearization 
procedure leads to an unstable system (Vcrlt) as a 
function of the channel density for the membrane 
patch situation. Note that a negative value of ~" always 
yields a stable system. If r/ drops below 18.5 % of the 
standard density the linear system is always stable for 
values of ~" between VN, and V~. Within the range of r/ 
shown in Fig. 10, we could never correlate the first 
appearance of instability with any obvious or drastic 
changes in the values of the circuit elements, such as 
the total steady state impedance of the membrane 
becoming negative. For  all values of q for which the 
distinction between a decremental response and a 
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Fig. 10. The numerically determined relationship between ~rit, the 
holding potential for which the linear system is unstable (relative to 
the resting potential of the neuron), and the channel density r/. 
Linearization of the channel conductance around ~ is possible if 
V (  Verit" Note that in some cases there exists a second region of 
stability beyond ~i t .  For t / = l  linearization is possible if 
~ <  5.345 mV or P > 21.942 rnV (Sabah and Spangler, 1970). Below a 
channel density of 18.5%, i.e. below a Na + channel density of 
0.0220 S cm-2  and a K § channel density of 0.0066 S cm-2,  the linear 
system is stable for values of P" between VK and VN~. Generating a 
spike in the nonlinear Hodgkin-Huxley system with a very short 
voltage pulse requires a voltage amplitude above ~'r 
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Fig. 11. The resonant frequency fmax and q for the input impedance 
/((0, o~) (dashed lines) and transfer impedance /((x, co) (continuous 
lines) from Fig. 6 as a function of the channel density. In both  cases 
the best fit to q is an exponential: q =  1.02e ~ for / ( (0 ,  co) and 
q = 1.08e I" 18 ~ 1, for K(x, co) 

E 

spike was not blurred, the voltage threshold for very 
fast voltage pulses was always above ~'crit" 

Figure 11 shows q and fmax for/((0, co) and/((x, co) 
as a function of the channel density. Notice that as the 
channel density goes to zero, K(x ,  co) always retains its 
bandpass properties, i.e. fma,~0 and q ~ l .  The de- 
pendance of q on t/can again be fitted accurately by a 

single exponential function: q = e  c" with a positive 
constant c. Combining this approximation with the 
earlier one yields q = const, e c" + b~. Increasing either the 
distance between input and output or the channel 
density increases therefore the "quality" of the 
bandpass. 

In summary, the behaviour of these bandpass like 
filters can be controlled in different ways: by varying- 
the diameter of the cable, the distance between the site 
of current injection and voltage recording or the 
density or the type of active channels. While fmax is, for 
a given type of channel, mainly susceptible to changes 
in channel density, q is an exponential function of both 
distance and density. Other parameters which we did 
not consider specifically but which will certainly in- 
fluence the resonant frequency are the holding poten- 
tial V,, the temperature and the intra- and extra-cellular 
concentration of such ions as Ca 2+ or K § In fact, 
Lewis and Hudspeth (1983) have observed that the 
frequency of voltage oscillations in isolated bullfrog 
hair cells, induced by injecting currents, increases with 
increasing levels of depolarization. 

At this point we have to emphasize again that the 
linearized description of the channel impedance is only 
valid for a range of voltage values around ~" anywhere 
between 1 and 10 or 15mV. Decreasing the channel 
density q or modeling a channel with a high threshold 
such as the non-inactivating calcium current (Llinas 
and Sugimori, 1980; Llinas and Yarom, 1981) leads to 
an increased range of validity for the linear model. 

We will now analyze two possible roles of quasi- 
active membranes in performing specific types of oper- 
ations in nerve cells. Both mechanisms might be used 
in the vertebrate retina. 

6 Temporal Differentiation 

The differentiation of a function in the time domain 
corresponds to the multiplication of the Fourier trans- 
formed function with the frequency variable, i.e. 

d f ( t) * ico f (co) . (16) 
dt 

If the frequency components above the resonant fre- 
quency are disregarded, the highpass component of the 
transfer function of Fig. 6 can be approximated by 

I/((x, o9)1 = a + bco (17) 

with a and b positive constants and b > a. Injecting a 
current I(t) containing no frequency components 
above fmax into the cable leads therefore to a change 
in potential 

V(t) = aI(t) + b dI! t ) .  (18) 
a t  
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Fig. 12. The current input function used : I(t) = const, t4e- 4,/tp.,k. The 
current reaches its peak at 5 ms and has decayed to i % of its peak 
value at about 16.9 ms. The scale of the ordinate is in arbitrary units. 
The Fourier transform I(o~) is proportional to (ico+4/tpe,k) -5 and 
has dropped to 52% of its steady-state value at 70Hz, the resonant 
frequency of/~(x, co) 
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Fig. 13. The temporal derivative of Fig. 13 

If b,>a (i.e. q--*oo) the term proportional to the 
input can be neglected and the voltage is proportional  
to the temporal derivative of the current. In a more 
realistic situation there will be two sources of error. 
First, since the input function usually does contain 
frequency components beyond fmax, the fast com- 
ponents in the input function distort the derivative. 
Second, due to the non-zero steady state impedance 
/((x, 0), stationary and slow inputs will not be filtered 
out completely as they should be. We demonstrated 
the feasibility of performing this operation using an 
infinite cable with a linearized Hodgkin-Huxley type 
membrane (such a system can be realized by small, 
subthreshold current stimuli in an axon). As current 
input we have used the generalized alpha function 

I( t ) = const �9 t4 e -  4mpo.k 

(see Fig. 12). Figure 13 shows the temporal  derivative 
of the current. Injecting such a current with tpe,k = 5 ms 

105.4 

0 

-164 

25.0 
t [msec] 

, I 
50.0 

25.1 ? 
> 

0 , f - " r ' ~  , I 
25.0 50.0 

t [msec] 

-11.4 

Fig. 14. The voltage in an infinite cable with a quasi-active mem- 
brane when an current of the form of Fig. 12 is injected and the 
voltage is recorded at the site of injection (top) or 350gm farther 
away (bottom). In the first (respectively, second) case the voltage 
hyperpolarizes at about 11.3 ms (respectively, 10.5 ms) after the onset 
of current. The ordinate is in arbitrary units. If the current (Fig. 12) is 
choosen to have a maximal value of 10- 7 A the voltage has a peak 
depolarization of 10.54mV for the top figure and 2.51mV for the 
bottom figure 

into the cable and recording the voltage at the site of 
current injection and 350 gm farther away leads to the 
voltage profiles shown in Fig. 14. Clearly the general 
shape and behaviour of the voltage is in good qualita- 
tive agreement with the derivative of the input. The 
maximal depolarization decreases with the rise-time 
(tpe,k) of the input while the time at which the potential 
first reverses increases with tpeak. Due to the bandpass 
nature of the membrane this reversal time decreases 
with increasing distance x (Detwiler et al., 1978). For  a 
true differentiation, however, reversal of the potential 
should occur a t  /:peak and there should be no third, 
overbounding phase (which becomes increasingly do- 
minant  at increasing distances). The degree to which 
the voltage can be approximated as the derivative of 
the injected current depends on the time-course of I(t). 
A faster rising input will have more high frequency 
components lying beyond fmax than a more slowly 
rising input. Lowering or increasing the leakage resis- 
tance r~eak of the membrane, will likewise lead to a 
better or worse approximation by varying the constant 
offset a in (18). 



7 Spatio-Temporal Filtering 

A rarely addressed issue is whether the receptive field 
of a retinal or cortical neuron changes its dimensions 
with changing temporal frequency of the visual sti- 
mulus. In particular, how does the shape of the spatial 
contrast sensitivity curve vary with the temporal fre- 
quency of the sinusoidal grating pattern drifting past 
the neuron's receptive field? For the simplest model of 
the receptive field the amount of attenuation the 
electric signal experiences between the site of synaptic 
input and the soma may be at least partially re- 
sponsible for the dimensions of the receptive field. 
Since the amount of this attenuation is crucially 
dependent on the type of membrane present, different 
types of membranes lead to differing receptive fields. 
Increasing the temporal frequency of the presynaptic 
signal in a neuron with a purely passive dendritic tree, 
results in a postsynaptic signal containing increasingly 
higher frequency components. Accordingly, more and 
more charge leaks through the membrane and the 
dimensions of the receptive field decrease. We have 
demonstrated the feasibility ef this mechanism in the 
case of cat retinal ganglion cells. On the basis of 
histological material provided by Boycott and Wgssle 
(1974), we modeled the electrical behaviour of ganglion 
cells by approximating the whole dendritic tree in 
terms of cylindrical segments as described in detail 
elsewhere (Koch et al., 1982). Using the transmission 
line formalism (see Sect. 2) we designed an algorithm 
which automatically generates the transfer function 
/~ij(co) for a current injection at site i and a voltage 
recording electrode at j in a structure of arbitrary 
geometry and linear membrane (Koch and Poggio, 
1983b). 

The voltage attenuation for an arbitrary input, 
current injection or conductance change, between the 
site of the synapse i and the soma s is the ratio of the 
voltage at the soma to the voltage at the synapse, i.e. 

Av(cO) = gis(~~ K,,(co~-)' (19) 

where ff2ii(oJ) is the amplitude of the synaptic input 
impedance at the site of the synapse and /(i~(co) the 
amplitude of the transfer impedance between the syn- 
apse and the soma (Koch etal., 1982, 1983). In order to 
visualize the receptive field dimensions of these gangli- 
on ceils for different frequencies, we determine that 
region of the dendritic tree within which the voltage 
attenuation to the soma is always below a given 
constant factor C. Outside this region, synaptic inputs 
are attenuated by at least a factor C. Figure 15 shows 
the resulting picture in the case of a passive membrane 
for stationary and transient ( f  = 100 Hz) inputs where 
we choose as limiting values C =  4; i.e. 25 % voltage 

25 

t t 1 O0 ~m 

Fig. 15. Voltage attenuation in a cat retinal ganglion cell of the ~5 
type (Boycott and W~issle, 1974). Such a cell was modeled using some 
120 cylinders of varying lengths, diameters and membrane character- 
istics (for the detailed procedure see Koch etal . ,  1982). The large 
heavily dotted area indicates the region within which the voltage 
attenuation for stationary inputs from the synapse to the soma is less 
than a factor 4; i.e, the somatic voltage will be at least 25 % of the 
voltage at the synaptic site. The smaller lightly dotted area illustrates 
the same concept for a sinusoidal input of 100Hz frequency. The 
membrane is a passive one with rj~ak = 3333 f~ cmz and c = 1 gF cm-  2 
(Adapted from Koch et al., 1983) 
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Fig. 16. The voltage attenuation for stationary (small heavily dotted 
area) and sinusoidal inputs (100 Hz; large lightly dotted area) in the 
cell of Fig. 15 with a quas~-active membrane. The membrane is of the 
linearized Hodgkin-Huxley type with the same leakage resistance 
and membrane capacity as in Fig, 15. Therefore Fig, 15 can be 
considered a special case of the quasi-active case with negligeable 
active channel density. For  a sinusoidal varying input of frequency 
above 200Hz, the region of small at tenuation will be less than the 
corresponding stationary region 

attenuation. Clearly, the degree to which a synapse 
influences the somatic potential (and therefore the 
firing frequency) decreases at increasing frequencies. 
The particular values of the membrane leakage resis- 
tance (rleak = 3333f~ cm 2) and capacity (c = 1 gF cm- 2) 
were chosen to illustrate this point and are not critical 
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for this mechanism. Increasing the resistance rl,ak to 
8000~ cm 2 decreases the attenuation for inputs at the 
pheriphery to a few percent. 

If the same operation is performed for the ganglion 
cell using a quasi-active membrane, the situation re- 
verses. For a sinusoidal varying input of 100 Hz the 
voltage attenuation is markedly less than the attenua- 
tion for stationary inputs (Fig. 16); under these con- 
ditions transient inputs influence the somatic potential 
more strongly than slowly changing inputs. As a 
consequence, such a cell responds in a given experi- 
mental situation preferentially to transient than to 
steady-state stimuli (Derrington and Lennie, 1982; 
Enroth-Cugell et al., 1983). 

8 Discussion 

The rationale behind our study is to begin to explore 
some of the theoretical possibilities for information 
processing in single neurons opened up by recent 
findings concerning the existence and distribution of 
voltage-, time-, and neurotransmitter-dependent chan- 
nels. In general the underlying mechanism, i.e. the 
dependence of the channel conductance on transmem- 
brane voltage and time, is complicated and nonlinear. 
Therefore we have restricted ourselves in this first 
analysis to a less ambitious goal: if the membrane 
voltage does not stray too far away from a given 
potential V (for example the resting potential of the 
cell) the voltage dependence of the channel conduc- 
tance can be neglected and we need only concern 
ourselves with the time dependence. This is achieved 
by linearizing the channel kinetics around V. Within 
the range of validity of the linear approximation the 
membrane can be described and analyzed in terms of a 
linear electric circuit containing resistances, induc- 
tances and capacitances. A dendrite or an extended 
dendritic structure endowed with a linearized mem- 
brane is amenable to an application of linear cable 
theory. Using an extension of classical cable theory to 
general linear membranes as our main tool, we inquire 
into the functional consequences of linearized mem- 
branes for the electric behaviour of neurons. 

8.1 The Neuronal Membrane as a RLC Circuit 

If the membrane channel conductance can be de- 
scribed by one or several auxiliary activation or in- 
activation variables, each governed by a first order 
differential equation, the linearized impedance for each 
variable can either be modeled as an inductive branch, 
i.e. an inductance in series with a resistance, or as 
capacitive branch, i.e. a capacity in series with a 
resistance. Both branches are shunted by an additional 
resistance which are combined with the leakage resis- 
tance and need not concern us further. It is only fair to 

add that these are not the only two possible circuits. 
The specific conditions under which an inductance or a 
capacity arise are given in Sects. 3.1 and 4.1. An 
example of a description using an inductive branch is 
the low threshold calcium mediated current in thala- 
mic and inferior olivary neurons (Llinas and Yarom, 
1981; Llinas and Jahnsen, 1982) or the calcium ini- 
tiated potassium current in sympathetic neurons 
(Adams et al., 1982). A capacitance arises when the 
high threshold, non-inactivating calcium current in the 
cerebellum and hippocampus (Llinas and Sugimori, 
1980; Schwartzkroin and Slawsky, 1977) is linearized. 

8.2 How Valid is the Linear Description ? 

In discussing the question of the validity of the linear 
approximation we have to distinguish carefully be- 
tween two different, but related concepts. On the one 
hand we can ask how valid the linear approximation of 
the channel conductance is: in comparing the response 
of the linear system to the response of the nonlinear 
membrane, one would like to know by how much they 
differ. On the other hand we can inquire for what 
values of P" a linear description is at all possible. 
Clearly there must be a range of voltages, for instance 
in the neighbourhood of the threshold for generating 
spikes, where linearization leads to an unstable system 
(Sect. 5.1). While it is possible to respond to the last 
question in a precise sense (see Fig. 10) the former lacks 
an equally precise answer. 

The linear description, assuming for the moment 
that it does exist, is only valid for "small" excursions of 
voltage 6 V away from V. If 6 V increases, the response 
of the linear system deviates more and more from the 
solution of the nonlinear system. The difficulty lies in 
trying to make the term "small" precise. We can 
regard, however, the threshold for eliciting strong 
nonlinear electric events, like spikes, as an upper 
bound for the range of validity of the linear approxi- 
mation. Therefore, for systems with a low threshold the 
linear description might only be valid for voltage dis= 
placements of 1 or 2 mV away from 17 while mem- 
branes with a higher threshold can be approximated 
within a larger voltage range by a linear membrane. 
Sabah and Leibovic (1969) and Mauro and collegues 
(1970) have studied this problem in the case of the 
linearized Hodgkin-Huxley equations. Comparing the 
small-signal analysis of the squid axon with the full 
system shows that the linear approximation repro- 
duces satisfactorily the nonlinear response for current 
steps in the range of 4-5 mV around the resting 
potential. Reducing the density of active channels 
does lead to an increased range of validity as witnessed 
by the reduced degree of regeneration and finally, 
below a critical density, by the absence of spikes 
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altogether (Cooley and Dodge, 1966; Sabah and 
Leibovic, 1972). 

For non-spiking neurons (see Roberts and Bush, 
1981 for a thorough coverage of this subject) a linear 
description is likely to be more appropriate than in 
other systems because these neurones use decrement- 
ing, graded potentials with amplitudes one or two 
order of magnitude smaller than the 100mV spike. 
Some of the cells are known, however, to possess fast 
Na +, TTX sensitive channels (Hengstenberg, 1977; 
Mirolli, 1981) or Ca 2+ dependent regenerative re- 
sponses (Johnston and Lain, 1981). In the rod network 
of the turtle (Detwiler et al., 1978, 1980) and of the toad 
(Torte and Owen, 1983) the theoretical response pre- 
dicted by the linear resonant model incorporating an 
inductive branch into the membrane of the rod is in 
good agreement with the hyperpolarizing voltage re- 
sponse to light below 5-6 inV. In turtle hair cells the 
change in membrane voltage caused by injections of 
rectangular current pulses is fitted by a linear (band- 
pass) model for depolarizations up to 20mV and 
hyperpolarizations up to 30 mV in amplitude 
(Crawford and Fettiplace, 1981). We conclude that in 
systems with spike-like electrical activity the quality of 
the linear approximation is constrained by the thresh- 
old for generating spikes to voltage excursions of the 
order of a few mV around the resting potential while 
for non-spiking neurons with graded, electrotonic po- 
tentials the voltage range might be considerable 
higher. 

Touching briefly the subject of the validity of the 
linear description, we consider the case of an imposed, 
long lasting current step. The membrane will depolar- 
ize to some new voltage value and reach its steady- 
state configuration. Will the corresponding linear 
model still be stable? As we have shown in Fig. 10 for 
the linearized Hodgkin-Huxley equations, it will be if 
the new imposed voltage is below Pcrit = 6.24mV. At 
this potential the axon will show oscillatory responses 
(Sabah and Spangler, 1970) while the linear system 
displays run-away solutions, i.e. the voltage increases 
indefinetely with time. For membranes with a reduced 
channel population, Vorit increases until for values of q 
below 0.185 a stable linear description is always possi- 
ble. We cannot generalize these results except in as far 
as the threshold for spikes will be proportional to ~',ir 
The higher the threshold the larger the voltage domain 
for which a stable, linear description is possible. 

8.3 Functional Consequences of a Capacitive Branch 

What are the implications of a phenomenological 
capacitance for information processing? Introducing 
an extra capacitance by linearizing an appropriate 
voltage-dependent channel does not change the funda- 

mental nature of the membrane but increases its time 
constant. This may be reflected in an increased delay 
for IPSP's and EPSP's propagating through the neu- 
ronal structure. In a dendritic tree with this type of 
membrane the rise time of an EPSP generated in the 
periphery and travelling towards the soma could be 
substantially enhanced in comparison with the situa- 
tion in a passive membrane. Increasing delays by 
increasing the total membrane capacity might be of 
particular interest in light of the very small variation of 
membrane capacity measured in nerve cells [-values of 
c are tightly clustered around 1 gF cm- 2 ; see Brown et 
al. (1981)]. Since the size of the extra capacity is 
inversely proportional to channel density, cells with a 
low density of channels are attractive as the locus of 
the delay operation. Direction selectivity in the retina 
depends, for instance, on the precise temporal con- 
junction at the level of ganglion cells of different 
signals having delays up to 30ms (Reichardt, 1961; 
Wyatt and Daw, 1975; Torte and Poggio, 1978; 
Marchiafava, 1979). These delays might possibly be 
obtained by the passage of the light-evoked signal 
through bipolar cells, believed to be non-spiking. 
Another example is the theoretically postulated 
(Richter and Ullman, 1982) and experimentally mea- 
sured differential delay (with a median value of 3.4 ms) 
between the centre and surround pathway in cat X 
ganglion cells (Derrington and Lennie, 1982; Enroth- 
Cugell et al., 1983). Introducing a capacitive branch 
does have, however, a serious drawback : because more 
charge leaks through the membrane than in the passive 
case the space constant 2(o)) decreases. A way to 
circumvent this problem is an increase in the leakage 
resistance rloak without any extra capacitive branch. 
This will actually enhance the space constant and there- 
fore strengthen the influence of a synapse on the soma 
(Sect. 4.2). Given the large uncertitude regarding possi- 
ble values for the leakage resistance (depending on the 
neuronal system anywhere between 500~cm 2 and 
1 M~ cm 2) it seems much more likely that an increase 
in r~oak, rather than an additional capacity, would be 
used to create neuronal delay lines. 

8.4 Functional Consequences of an Inductive Branch 

General Properties. As we have seen before, adding an 
inductive branch to a lowpass membrane can give rise 
to novel properties. But under what conditions is the 
membrane impedance z,,(~o) a bandpass ? We are able 
to prove that if the resistance r~ in series with the 
inductance (Fig. 2), or the leakage resistance r is 
sufficiently small, Zm(a~ ) behaves like a bandpass. The 
first condition can always be met if the time-constant 
of the channel (at a fixed potential) is very large, i.e. the 
conductance change occurs sufficiently slow (see end of 
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Appendix III). Apart from these two criteria for the 
occurance of a bandpass, relatively slow channel ki- 
netics and low membrane resistance, the question can 
only be answered in a specific instance by performing 
the necessary linearization procedure. 

The value of the resonant frequency depends on the 
linearized membrane, fmax may be as low as 1 Hz as in 
heart cell membrane (Clapham and DeFelice, 1982) or 
as high as several hundred Hz as in the frog node 
(Clapham and DeFelice, 1976). If z,,(co) is a bandpass, 
or in physiological terms, if a small patch of membrane 
shows a bandpass-like behaviour, it follows necessarily 
from are theorem (Sect. 3.2) that the input-impedance 
/((0, co), the transfer-impedance /((x, co) for any x 
and the space constant 2(co) in an infinite cable must 
also be bandpass functions. In other words, voltage 
recorded from such a cable will always show oscillatory 
components. 

To explore some specific properties of quasi-active 
membranes we analyse the linearized Hodgkin-Huxley 
equations. We have choosen these equations because 
they represent one of the very few instances where the 
channel kinetics and the resulting electrical activity are 
completely captured in terms of four phenomenologi- 
cal variables. Let us then first consider the question 
of how the shape of the transfer-function /((x, co), 
which determines the voltage response to a cur- 
rent input, is influenced by various biophysical 
parameters. As shown in Sects. 5.2 and 5.3 the res- 
onant frequency is to a large extent independent 
of the diameter of the cable and of the distance 
between the site of current injection and voltage 
recording. It does, however, vary with the channel 
density ~/, increasing for a membrane with a higher 
population of active channels, q, the ratio between the 
peak amplitude and the steady-state amplitude, is very 
susceptible to changes in diameter, distance between 
the sites of input and output and channel density. It 
seems therefore possibly, given a thin neuronal process 
or a fiber heavily populated with active channels 5 to 
construct a filter where only components within a 
frequency band centered around f~,x are passed while 
all other frequency components are filtered out. 

We consider three specific instances where nerve 
cells with a quasi-active membrane can perform novel 
information processing tasks. 
Electrical Tunin 9. Individual sensory neurons, convert- 
ing sound pressure or electrical fields into spikes, have 
an optimal operating range in terms of the frequency of 
the input wave to which they are most sensitive. Such 
differential frequency tuning has been observed in hair 

5 There is evidence for an inverse relationship between the density 
of voltage dependent channels and the diameter of nerve fibers 
(Holden and Yoda, 1981; Smith and Schauf, 1981) 

cells of the vertebrate cochlea (for instance in turtle: 
Crawford and Fettiplace, 1980 and 1981 or in bullfrog: 
Lewis and Hedspeth, 1983 ; seealso Ashmore, 1983) or 
in fish electroreceptors thought to derive from hair 
cells (Hopkins, 1976; Meyer and Zakon, 1982). 

Hair cells, tonotopically organized along the ba- 
silar membrane in the cochela according to their 
characteristic frequencies (the frequency of the sound 
stimuli the cell optimally responds to), reveal their 
electrical tuning by damped oscillations of the mem- 
brane potential induced by current injections. The 
frequency of the induced oscillation coincides with the 
characteristic frequency. The basis of the tuning effect 
is believed to be an electrical resonance mechanism 
located in every hair cell (Crawford and Fettiplace, 
1981). The question of the ionic nature of this mecha- 
nism has been addressed very recently by Lewis and 
Hudspeth (1983) using the Gigaseal whole-cell tech- 
nique. They report the presence of three different types 
of channels (Ca2+-, K +-, and Ca ~+ triggered K +- 
conductances), one or several of them being most likely 
responsible for the tuning effect. In order to explain 
a) the large range (70-700Hz) of the characteristic 
frequency shown by hair cells and b)the systematic 
variation of this frequency along the basilar membrane 
we propose that the nature of the individual channels 
remains invariant for all cells while the density of 
channels varies from cell to cell (see Crawford and 
Fettiplace, 1981 for a similar suggestion). Due to this 
varying channel density and the concomittant varying 
electrical excitability one would expect a correlation 
between the characteristic frequency of individual hair 
cells and their degree of nonlinearity. While this mecha- 
nism leads to a fixed, stable distribution of characteris- 
tic frequencies, short lasting effects might be achieved 
by a shift in the concentration of some ions like 
calcium (see Ashmore, 1983), neurotransmitters or 
even hormones such as experimentally induced in 
electric fish (Meyer and Zakon, 1982). 
Temporal Differentiation. It would seem an attractive 
possibility if the central nervous system could perform 
differentiation-like operations. Of course we cannot 
expect a biological system to perform a precise ma- 
thematical differentiation, but we would like an ap- 
proximation to this operation required for a variety of 
high-level tasks. Richter and Ullman (1982) have pos- 
tulated that such an operation takes place at the level 
of the inner plexiform layer in the vertebrate retina. 
They suggested that the dyad, where the bipolar cell 
contacts the amacrine and the ganglion cell, together 
with the recurrent synapse from the amacrine cell back 
onto the bipolar, is responsible for the temporal 
differentiation of the bipolar intracellular voltage. A 
different mechanism operating in dendrites or axons 
with decremental electrotonic potentials and a sparse 
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population of active channels, was suggested by Torre 
and Poggio (personal communication). Since the mem- 
brane impedance of such a structure has, to a first 
approximation, a constant positive slope from very 
low frequencies up to the resonant frequency, it can 
mimic a linear filter performing differentiation of its 
input. If current is injected into a cable with a quasi- 
active membrane, preferentially with a high q factor, 
the voltage recorded some distance away shows de- 
polarizing and hyperpolarizing phases according to 
the rising and falling flanks of the input. Especially the 
time at which the potential reverses is directly pro- 
portional to the rise-time of the current pulse. 
Assuming linear interaction between synaptic inputs 
one can envisage a neuron with long and unbranched 
dendrites, like the 7 ganglion cell of the cat retina 
(Boycott and W~issle, 1974) performing this differen- 
tiation on all its synaptic inputs, subsequently integrat- 
ing the resulting graded potentials at the soma. The 
two important conditions for this kind of mechanism 
are a quasi-active membrane' with a prominent maxi- 
mum and modest, sub-threshold current input am- 
plitudes. 
Spatio-Temporal Filtering. Enroth-Cugell and Robson 
(1966) first measured the sensitivity function of cat 
ganglion cells by employing sinusoidal grating pattern 
drifting past the ganglion cell's receptive field. During 
these experiments the temporal frequency of stimu- 
lation remained always constant. Since that time only 
very little consideration has been given to the effect of 
temporal frequency on receptive field dimensions. 
Physiologists have only recently returned to this issue 
(Derrington and Lennie, 1982; Enroth-Cugell et al., 
1983; for cat ganglion cells and Detwiler et al., 1978 
and 1980 for the receptive fields of rods in the turtle). 
How does the receptive field vary with changing 
temporal frequency? In the simplest model for the 
receptive field we equate the extent of the receptive 
field with those synapses within the dendritic tree able 
to influence the somatic potential to a substantial 
degree. This notion presupposes some kind of topo- 
graphical projection from the photoreceptors to the 
retinal neurons. If the influence of a synapse on the 
somatic potential is negligible, the corresponding pre- 
synaptic input will not contribute to the receptive field 
of the neuron. To give an exact and precise meaning to 
the notion of synaptic "influence" we introduce the 
voltage attenuation at a g!ven frequency co between the 
synaptic site i and the soma s [Eq. (19)]. Obviously, 
different types of membranes yield different degrees of 
voltage attenuation. To clarify this concept we de- 
termine for a cat retinal ganglion cell of the 6 class 
(Boycott and W~issle, 1974) the region within which the 
voltage attenuation at a given temporal frequency is 
always below a given factor (25 % in Figs. 15 and 16). In 

other words, the voltage attenuation between any 
synapse within this region and the soma is in no case 
larger than 4. For a passive membrane a faster and 
more rapid change in voltage will enhance this attenu- 
ation, i.e. reduce the region of low attenuation (Fig. 15). 
Thus, the synaptic weight of a particular synapse 
decreases with increasing transiency of its presynaptic 
input. If the ganglion cell is endowed with a quasi- 
active membrane incorporating a prominent induc- 
tance the situation reverses (at least for frequencies 
up to the resonant frequency): a given synapse can 
preferentially influence the somatic potential in a 
frequency band centered around fmax while it is less 
effective at lower and higher frequencies [see Fig. 5 in 
Enroth-Cugell et al. (1983) for some evidence of this; 
her finding that the extracellularly recorded response of 
X ganglion cells increases at higher temporal stimulus 
frequencies can also be explained, however, by the 
differential response of the photoreceptors and bipolar 
cells]. Interpreted in terms of receptive fields it 
follows that such a neuron integrates over a large 
area for rapid (but not too rapid) signals and over a 
smaller area for slow signals, as experimentally found 
in rods of the turtle (Detwiler et al., 1978, 1980). 
The data of Enroth-Cugell and colleagues do not 
support an analogous conclusion for X ganglion cells: 
while they measure some variation in the radius of 
the receptive field center as a function of the stimulus 
frequency (Fig. 7 in Enroth-Cugell et al., 1983) they did 
not observe a systematic variation common to all cells. 

Interestingly, a recent theory of monocular depth 
perception explicitly requires a receptive field organi- 
zation that decreases in size with increasing time, i.e. 
decreasing in size with decreasing temporal frequency 
(Buxton and Buxton, 1983). 

8.5 Conclusion 

We would like to end this paper with some specu- 
lations concerning the function of single neurons. 
Differing from the classical view where a neuron is 
considered mainly as threshold device, we picture a 
nerve cell as a complicated computational machine 
performing a variety of logical operations on its inputs. 
The basic units of information processing are patches 
of membranes, simple synaptic circuits or dendrites 
isolated from each other and from the soma (Schmitt et 
al., 1976; Poggio and Torre, 1981). Examples of these 
local circuits are the conjunction of a (shunting) in- 
hibitory synapse with an excitatory one, mediating a 
highly selective veto operation (for a summary of this 
view see Swindale, 1983) or dendritic spines, possibly 
one of the elementary building blocks of memory 
(Koch and Poggio, 1983a). Applying this concept to 
the present study, we have to emphasize the analog 
aspects of the computations involved. Since there is no 
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c l e a r  a l l - o r - n o n e  d i f f e r e n c e  b e t w e e n  a p a s s i v e  a n d  a 

q u a s i - a c t i v e  m e m b r a n e  a n y  t y p e  o f  b i n a r y  i n f o r m a t i o n  

p r o c e s s i n g  s e e m s  i n a p p r o p r i a t e .  I f  g r a d e d ,  e l e c t r o t o n i c  

p o t e n t i a l s  s e r v e  i n  s o m e  n e r v e  ce l l s  (e.g. n o n - s p i k i n g  

n e u r o n s )  a s  t h e  m a i n  m e d i u m  o f  s i g n a l i n g  a n d  i n f o r -  

m a t i o n  p r o c e s s i n g  a v a r i e t y  o f  o p e r a t i o n s  c o u l d  b e  

p e r f o r m e d ,  i n  s h a r p  c o n t r a s t  w i t h  t h e  l i m i t e d  n u m b e r  

o f  o p e r a t i o n s  a v a i l a b l e  i f  a l l - o r - n o n e ,  s p i k e - l i k e  e v e n t s  

a r e  u s e d  a s  t h e  e l e m e n t a r y  c a r r i e r s  o f  i n f o r m a t i o n .  

M u l t i p l i c a t i o n -  a n d  d i v i s i o n - l i k e  o p e r a t i o n s ,  i n t e g r a t -  

i n g  a n d  d i f f e r e n t i a t i n g ,  d i r e c t i o n  s e l e c t i v i t y  a n d  s p a t i o -  

t e m p o r a l  f i l t e r i n g  c a n  b e  l o c a l i z e d  i n  s m a l l ,  s p e c i a l i z e d  

s u b u n i t s  o f  t h e  n e r v e  ce l l  r a t h e r  t h a n  r e q u i r i n g  s e v e r a l  

o r  a l a r g e  n u m b e r  o f  n e u r o n s  i f  t h e s e  o p e r a t i o n s  a r e  t o  

b e  c a r r i e d  o u t  u s i n g  s p i k e  t r a i n s .  

Appendix I 

Propert ies  o f  a Passive M e m b r a n e  with an Induct ive 
Branch 

Consider the electric circuit shown in Fig. 2, consisting of an 
inductance I and resistance r~, in parallel to a capacity c and shunted 
by a resistance r. The square of its impedance is given by 

iz(co)12 =r2  r~ +co212 
AO) 4 + B(D 2 "~ C (AI. 1) 

with A=(crl) 2, B=12 +(crrl)2--2cr21, and  C=(r +rt) 2. Finding the 
extrema of this symmetric function, i.e. 

0~--- = 0 ,  (AI.2) 

yields two solutions 

o9=0 

and 

co4 + 2  (~) m2 +cons t  = 0 ,  (AI.3) 

where const = (Br 2 - lZC)/Al 2. It is easy to show that this biquadratic 
equation has at most one solution for positive frequency values. The 
solutions of (AI.3) have the form 

~Om.x = + ( -- "h- 2 + (z l- * _ const)- 1/2)-- 1/2 (AI.4) 

where z z is the time-constant of the inductive branch, i.e. z~ = l/r r If 
const < 0, c%~,2 has always one negative and one positive solution. 
For co n s t > 0  no real solution exists. Therefore, if cons t<0 ,  [z(co)[ 2 
has at most one extremum for positive frequencies, a maximum 
[because for very large frequencies [z(co)[ 2 goes to zero due to the 
presence of the capacity]. In order for this maximum to exist, r z must 
obey const < 0, i.e. the following relation 

4 c 2 1 

This fourth-degree polynomial is negative for a range of rrvalues 
between 0 and some positive, finite rz. or." Notice, that due to the 1~r- 
term, r~, ~r~t decreases for increasing leakage resistance r. For r I = O, i.e. 
the ideal resonant circuit, fm.x=(lc) -1/2. For  increasing rl, const 
becomes more negative leading to a higher ~Om~ until const reaches 

its minimum. Subsequent increase of rt decreases the resonant 
frequency until at rt=r~.c,lt, const=0,  and ~o~x merges into the 
extremum at co = 0. We conclude that for a range of rrvalues between 
0 and r~.~r . the membrane impedance peaks at some positive 
frequency with q > 1. The same can also be said for r, c, and l-  1 : for 
sufficiently small values of the shunting resistance r, the membrane 
capacity c or for sufficiently large values of the inductance l, 
expression (AI.5) will always be negative. 

If the passive RC-element in Fig. 2 is replaced by a general 
lowpass impedance z~(~o), the argumentation is similar. Since 
Zm(~O ) = a(co) + ib(o~) has by definition, an extremum at co = 0 it follows 
that  a > 0 ,  b=0 ,  and (da/do))=O. The amplitude of the total mem- 
brane impedance is 

]z(~o)l 2 = ( a2 + b2) (r~ + w2l 2) 
(r I + a) 2 + (b + m/) 2 ' (AI.6) 

It is straightforward to show that for a range of rrvalues between 0 
and some non-zero value, [z(m)[ 2 has one extremum at some positive 
frequency. 

Appendix II 

Ban@ass  Behaviour o f  a Linear,  Inf ini te  Cable 

Given an infinite cable with constant diameter and a membrane 
characterized by the membrane impedance zm(oJ) with real- and 
imaginary-part a(o~) and b(oJ), i.e. Zm(OJ ) = a(o~) + ib(co). Assuming that 
this membrane impedance shows ban@ass  behaviour, we will prove 
that : 

the input impedance/((0,  a0 is also a bandpass with the same 
resonant frequency a n d  vice versa, 

the transfer funct ion/((x,  ~o) for any x is a bandpass 
the space constant 2(m) is a bandpass. 
Following Eq. (6) we obtain for the square of the amplitude of 

the input impedance 

[/((0, co)[ 2 = 0.25r,[zm(a~)[. (AII.1) 

Taking the first derivative with respect to frequency yields 

3[/((0, co)[ 2 r~ a[zm(~o)[ (AII.2) 
&o 4 &o 

Therefore, if z,,(co) has a peak at some frequency value co . . . .  so 
does the input impedance and vice versa. 

Because the steady state membrane impedance z,,(cn=0) is 
purely ohmic and z,,(co) is, like /((x,~0) and 2(co), a symmetric 
function in co, we make use of the following three relations : 

a(m)l,o = o > 0 b(m)[~o = o = 0 a(o~)'l,~ = o = 0, (AII.3) 

where prime denotes differentiation with respect to o). In order for 
Zm(CO) to be a bandpass, Izm(~o)[ must increase in some neighbourhood 
of zero. This is equivalent with demanding that the second derivative 
at ~o=0 should be positive. We have then 

a2[z,.(~o)[ 2 32(a(co)a(m)' + b(m)b(m)') 
00) 2 OlD 

= 2(a(~o) '2 + a(~o)a(m)" + b(co) '2 + b(~o)b(o~)"), (AII.4) 

where doubleprime denotes the second derivative with respect to m. 
Evaluating this expression at co=0 gives a necessary and sufficient 
requirement for z,.(o~) to be a bandpass 

aa" + b '2 > 0 (AII.5) 

with a = a(co =0)  and b=b(m =0). Since a and b '2 are both positive, a 
sufficient condition is that the second derivative of a(o~) at ~o = 0 (a") 



be positive. Because of Eq. (AII.2) the same applies also to / ( (0 ,  co). 
Following Eq. (8), the frequency-dependent space constant can be 
written as 

f /a(co)  - ib(co) \1/21 
2(co)-l=Re~/a(co)2 +b(co)~) ~. (AII.6) 

Because Re {(~ + i f l )  1 / 2 }  = (~  + (~2  + f12)~/2)1/2 2 - 1/2 if c~ > 0 ,  we have 

/ a(co)2 + b(co)2 \a/2 
2(co) = | z l'z } (AII.7) 

\a(co)+(a(co)Z +b(co) ) i } " 

A necessary and sufficient condition for 2(co) to show bandpass 
behaviour is 

c%o 2 ~o=o >0" 

Evaluating this expression leads to 

~22(co) = 2 -  3/aa- 3/:(aa" + 1.5b'2). (AII.8) 
C3('02 m=o 

Comparing this with Eq. (AII.5), it follows that the latter 
relation (aa"+ b '2> 0) implies the former. The converse is, however, 
not necessarily true : knowing that 2(09) is a bandpass does not imply 
that/s co) must also be one. 

For the last part of the proof, we make use of Eq. (9): 

IK(x, co)l = I/~(O, co)le -~/x~) . 

Differentiating twice with respect to co and evaluating the result 
at co=0 [taking into account that the first derivative of 2(09) and 
/s co) are zero at co =0]  leads to 

O:[/s co)l = (/s 0)" + x2(0)- z2(0)"/((0, 0))e- ~/z(o). (AII.9) 
~3co2 co = o 

If we assume that the input-impedance is a bandpass, i.e. 
/((0, 0)" > 0, we know that ),(0)">0 (see above). Because x is the 
distance between the sites of input and output, i.e. x > 0 ,  the whole 
expression (AII.9) will be positive and K(x ,  co) is a bandpass. 
Unfortunately, the inverse does not hold. Evaluating (AII.9) in terms 
of a and b reduces to the relation 

aa" + 1.5b '2 >0 .  

From this we can only deduce that if ;[(co) is a bandpass so is/((x,  09) 
and vice versa. 

A p p e n d i x  III  

Membrane Parameters for  the Linearized, Hodgkin- 
Huxley Equations 

The membrane current density I, for the squid giant axon modified 
by a variable channel density t/ [see (15)] may be written as 
(Hodgkin und Huxley, 1952) 

d V  
I = c ~  +tl~N.m3h(V - VN~)+~IOkna(V-- V r ) + g , ~ , k ( V -  Vlr 

(AIII.1) 

where the variables m, n, and h are governed by three first-order 
differential equations : 

dn 
dt =~.-(~.+fl.)n= n+-n ,  

~'n 
dm m| - m 

- -  (AIII.2) ~-  =~=--(~m+/~)~ = ~m ' 

dh h~ - h  
d t  = c~h - (c~h + flh)h = - - '  

"gh 

3l 

where the steady-state values and the time constants are related to 
the rate constants by n~ = e,/(c~,, + ft,) and z, = 1/(c~, + ft,) etc., and the 
rate constants themselves depend only on voltage (for a precise de- 
scription of this dependence see Hodgkin and Huxley, 1952). 
Linearization about the potential ~ leads to a description of the 
membrane conductance in terms of linear, voltage- and time- 
independent electrical elements. We will not go into the details of 
this procedure but simply give the resulting equations [for a detailed 
description of the linearization see Mauro et al. (1970) or Sabah and 
Leibovic (1969)]. The activating (m) Na+-current is equivalent to a 
resistance 

1 
R ~ , -  rl~N,m3h (AIII.3a) 

in parallel with an inductive branch consisting of a resistance 

~m-t- flra 
r* = (AIII.3b) 

_ ~ . . . . .  {d~m d(~= + ~=)~ 
tlgNam n tv - -  gNa) /~-  - - m ~ )  

and an inductance 

r; 
* - - -  (AIII.3c) 

lm-- O:m + flm " 

As in all subsequent equations, the variables m, n, and h, and all rate- 
constants and their derivatives are evaluated at V. Since for 
V ~ < P < V l c ,  r*, and l* are always negative, we convert these 
elements into a positive resistance r~ and positive capacity %, 
shunted by the negative resistance RN~ : 

rmRNa 
RN~-- , , ,  (AIII.4a) 

RN~ + r m 

r m = - r~*, (AIII.4b) 

% =  ~ - , .  (AIII.4c) 
rm 

The inactivating (h) Na+-current yields two positive elements: a 
resistance 

C~h + flh 
r h - (AIII.5a) 

V. "[d~h h d(~h+flh)~ //~Nam3( V -  Na)/~= -- T )  

in series with an inductance 

r h 
lh -- eh + fib" (AIII.5b) 

The activating (n) K § is described by three positive elements. 
An inductive branch 

C~n + fin 
r, - /d% d(c% + fl,)~ ' (AIII.6a) 

4@kn3(V - V K ) ~  - n ~ - V - -  ] 

1 n - -  rn ~,+f l ,  (AIII.6b) 

shunted by a resistance 

1 
R~-//0/on 4 . (AIII.6c) 

To arrive at the final representation of the membrane (Fig. 4), we 
combine the three shunting resistances into one new resistance r 
(with rio~k = 1/0"leak ) 

1/r = 1/ri~,k + 1/RN, + 1/R K . (AIlI.7) 
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Since RNa is negative [(AIII.4a)], r can also be negative. 
However, one requirement for a stable, linear system is that the total 
steady-state resistance be positive, i.e. i /r+ 1/r,+ 1/rh>O (Sect. 5.1). 
Assuming a value of 3333.3f~cm 2 for the membrane leakage resis- 
tance and 1 gF cm-2  for the membrane capacity, the linearization 
around the membrane resting potential (~ '=0) yields the following 
values (with r / = l  and independent of the diameter): 
r = 4070.2 f] cm 2 ; c = lp.F c m - :  ; r m = 2317.2~ cmz ; 
c m = 0.102 gF cm-  z ; r, = 1177.9 f~ cm2 ; I, = 6.43 H cma ; 
r h = 13971.1 f~ cm 2 ; 1 h = 119.0H cm 2. The intracellular resistance r, 
was assumed to be 70f~cm (see also Sabah and Leibovic, 1969; 
Mauro et al., 1970). The resting potential of the ionic batteries were 
VN,=l l2 .0mV and VK=-12 .0mV.  The battery of the leakage 
resistance was adjusted to the variable channel density to retain the 
original resting potential of the cell : 

V, - - ( VN" RK) (AIII.8) 
l e a k -  ~RNa q- r leak ' 

To understand how the circuit elements vary with changing time 
constants z, we use the same kind of linearization procedure as 
above to define the impedance for the K § activation system in terms 
of the variables n o and %. This yields straightforwardly 

{dn~ ( n ~ - n l  dT, t 
r. ~ = 4rl~rn3(V- Vr) ~ - ~  - \ ~ - ]  ~ ] ,  (alII .9a) 

l~ = z,r n . (AIII.9b) 

If only the kinetics of the channels, without their voltage de- 
pendence, are changed, i.e. only %, (AIII.9) can be written as 

~ (AIII.10a) r , -  z~a+b ' 

2 

% (AIII,10b) 
l. - z . a  + b ' 

where the constant a is always positive (for the usual voltage range 
between V K and VNa ) and b is positive for a depolarization a n d  
negative for a hyperpolarization. Hence, for very fast kinetics, both 
the resistance and the inductance will be very small and tend in the 
limit to zero. For increasing slower kinetics, r, increases to a finite 
boundary value while the inductance increases without limit. 
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