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Abstract. This paper attempts to interpret the observed 
changes in reproductive strategy of female North Sea 
plaice since 1900 in the light of possible genetical selec- 
tion exerted by the fisheries. Somatic growth of juvenile 
plaice increased between the 1950s and the 1980s, prob- 
ably as a response to an increase in food availability. 
Adult growth rate was constant, except during a period 
of increased population abundance when somatic growth 
decreased. Both length (Lma~ and age at first sexual matu- 
rity decreased since 1900. No firm evidence was obtained 
for a change in total reproductive investment, although 
size-specific fecundity was reduced in the period of in- 
creased population abundance, suggesting a trade-off 
between egg numbers and egg size. Analysis of the 
phenotypic response of maturation to an increase in 
juvenile growth suggested that only a part of the decrease 
in Lma t could be ascribed to the observed increase in 
juvenile growth. The unexplained part of the change in 
Lma t corresponded with the predicted change due to ge- 
netical selection by the fisheries. This supported the 
hypothesis that fishing caused a genetical change in L~at, 
although an unequivocal interpretation is not possible 
from a descriptive study. 
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Exploitation by the fisheries of natural populations can 
be considered a large-scale experiment on life-history 
evolution (Horn and Rubinstein 1984; Nelson and Soul6 
1987; Stokes et al. in press). Life-history theory predicts 
that, due to the substantially enhanced mortality, geno- 
types coding for high fecundity or early maturation will 
be favoured over genotypes coding for low fecundity or 
delayed maturation (Gross 1985; Law and Grey 1989; 
Rowell in press; Rijnsdorp in press). However, since 
teleosts are well known for their phenotypic plasticity 
(Purdom 1979; Stearns and Crandall 1984; Roff 1992; 
Nelson in press), changes in reproductive parameters 

may also be due to phenotypic plasticity in response to 
an enhanced availability of food at reduced population 
sizes (Nelson and Soul~ 1987). 

A direct avenue to the study of genetical selection in 
natural populations is restricted to experiments with fish 
with a short generation time and small body size (Silli- 
man 1975; Reznick and Endler 1982; Reznick et al. 
1990), but is not readily available for commercial species 
which are in general characterized by a relatively large 
body size and a long generation time. An indirect ap- 
proach, however, may be envisaged. The indirect ap- 
proach explored in this study focused on phenotypic 
variability in reproductive parameters in response to 
variations in growth rate and temperature. Once the 
phenotypic plasticity is known, the phenotypic response 
can be predicted from the observed changes in growth 
and compared to the observed changes in reproductive 
parameters. If the observed change differs from the 
phenotypic response, a genetical explanation is likely. 
However, ultimate proof is not possible since changes in 
other environmental factors may always be suggested to 
have contributed to the observed changes in reproductive 
parameters. 

A prerequisite of this approach is that the observed 
variability in reproductive parameters is mainly due to 
variability in environmental conditions. Heritability esti- 
mates for life history traits in teleosts indicate that about 
24% of the phenotypic variability in a trait is due to 
genetical variability, fulfilling our prerequisite (Roff 
1991, 1992; Policansky in press a). The assumption that 
the conditions for growth affect reproductive parameters 
is not unlikely since reproduction is intimately linked to 
the process of acquisition and allocation of energy (Jones 
1976; Roff 1983; Rothschild 1986; Stearns and Koella 
1986; Rijnsdorp and Ibelings 1989). 

The species chosen for this study is plaice, Pleuronec- 
tesplatessa L., a flatfish species which has been commer- 
cially exploited in the North Sea for more than a century. 
Current exploitation imposed an additional fishing mor- 
tality of about 40% above the annual mortality of 10% 
due to natural causes on fishes of 2 years and older 



392 

(> 18 cm) (Rijnsdorp et al. 1991; Rijnsdorp in press). 
The biology of plaice has been studied intensively since 
the late 19th century (Heincke 1908, 1913; Masterman 
1914; Wimpenny 1953; Bannister 1978) and substantial 
changes have been documented in somatic growth (Be- 
verton and Holt 1957; Bannister 1978; Rijnsdorp and 
van Beek 1991 ; Rijnsdorp and van Leeuwen 1992), onset 
of sexual maturity (Rijnsdorp 1989) and fecundity (Hor- 
wood et al. 1986; Rijnsdorp 1991). 

This paper attempts to disentangle the phenotypic and 
genetic components in the observed changes in matura- 
tion and reproductive investment (fecundity, ovary 
weight) between three time periods: (I) around 1900; (II) 
1946 1949, and (III) 1960-1990. The paper presents a 
new analysis of changes in the onset of sexual maturity 
between period I (Wallace 1909, 1914) and period III, 
reviews the changes in somatic growth and reproductive 
investment reported in previous papers (Rijnsdorp 1991 ; 
Rijnsdorp and van Leeuwen 1992) and reviews the 
phenotypic plasticity in maturation and reproductive 
investment in response to growth rate (Rijnsdorp 1990, 
1993). Finally, the change in reproductive parameters, 
corrected for the phenotypic response, will be discussed 
against the background of the possible selective effects of 
fishing estimated by a simulation presented in Rijnsdorp 
(in press). 

Observed changes in somatic growth, maturation 
and reproductive investment 

Somatic growth 

Although changes in somatic growth of plaice have been 
reported by various authors (reviews in Bannister 1978; 
Rijnsdorp and van Beek 1991), the interpretation of the 
data remains complicated. Samples may not always be 
representative because the mean length of a particular 
age group increases with increasing distance from the 
coast (Heincke's law; Wimpenny 1953). Other uncertain- 
ties are due to possible inconsistencies in the age deter- 
minations of different authors over a long time. 

In order to circumvent these methodological prob- 
lems, we apply the results of Rijnsdorp and van Leeuwen 
(1992), who reconstructed changes in somatic growth of 
female plaice between 1930 and 1985 from the growth 
patterns of otoliths. The back-calculation method was 
validated by Rijnsdorp et al. (1990). This approach has 
the advantage that representative samples were taken 
from fully recruited age groups that were collected during 
the reproduction period when the fish gather on the 
spawning grounds in the southern North Sea. 

Figure 1 illustrates substantial changes in somatic 
growth that have occurred since 1930. Somatic growth 
in period III was higher than in the other periods in size 
classes smaller than 25-30 cm. Somatic growth of size 
classes >30 cm did not differ between period I and 
period III, but was lower in period II. From the relation- 
ship between the annual growth increments and body 
length, a growth curve can be reconstructed for the three 
periods studied. Because the historic reconstruction 
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Fig. 1. Average annual growth (length increment in cm) of female 
plaice in relation to the body size (cm) at the start of the year in three 
periods (I, 1930-1940; II, 1946-1949; III, 1975-1985) as obtained 
by back-calculation from otoliths. The growth at body size zero 
refers to the size attained after the 1st year of life. Vertical bars 
indicate • 2 SE 
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Fig. 2. Growth curves of female plaice for three time periods (I, 
1930-1940; II, 1946-1949; III, 1975-1985) reconstructed from the 
back-calculated length increments shown in Fig. 1 in comparison 
with the observed lengths at age in period I (Heincke 1908; Wallace 
1914) and period III (Rijnsdorp and Ibelings 1989) 

back-calculated from the otoliths did not go back before 
1930, we assumed that growth in period I (around 1900) 
was similar to growth in 1930-1939. This assumption is 
supported by the correspondence of back-calculated and 
observed growth rates in both historic (Heincke 1908; 
Wallace 1914) and recent data sets (Fig. 2). 

The reduction in somatic growth of the size classes 
> 30 cm in period II followed a threefold increase in the 
plaice stock in the southern North Sea during the 
1939-1945 war when fishing was substantially reduced 
(Baerends 1947; Margetts and Holt 1947; Jenssen 1947; 
Beverton and Holt 1957; Simpson 1959; Rijnsdorp and 
van Leeuwen 1992). The increase in growth rate of the 
smaller size classes between period II and period III is 
probably related to an increase in the availability of food 
(de Veen 1976, 1978; Rijnsdorp and van Beek 1991). 

Maturation 

Data on the onset of sexual maturity were available for 
period I (Wallace 1909, 1914) and period III (1960-1985; 



Table 1. Results of the ANCOVA of the 
maturity length relationships of female 
North Sea plaice for period I (1904-1911) 
and period III (1960 1990) according the 
GLM model: logit Y = L + A + T+ 
L.A + L.T+ A.T+ L.A.T 

SS df MS F P 
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L" 2918 1 2918 1268.6 <0.01 
A a 383.9 5 76.8 33.4 <0.01 
7 ~ 636.6 1 636.6 276.8 <0.01 
L.A 91.47 5 127.3 55.3 <0.01 
L.T 50.10 1 50.1 21.8 <0.01 
A. T 0.4075 2 0.203 0.09 n.s. 
L.A.T 2.343 2 1.171 0.50 n.s. 
Multicolinearity 6438.4 
Error 174.4 74 2.357 
Total 10870 91 

Y= number of mature females; L =length; A = age; T= time period ; L.A = interaction of 
length and age; L. T= interaction of length and time period; A.T= interaction of age and 
time period; L.A. T= interaction of length, age and time period. The table gives the marginal 
contribution of each covariable to the model. The multicolinearity term indicates the ex- 
plained variance that can not be ascribed to a single covariable 
a Neglecting the interaction terms 

Rijnsdorp 1989, 1993). The number  of  mature  females 
(Y) was studied as a function of  length (L), age (A) and 
time period (T) employing a G L M  model (Baker and 
Nelder 1978; McCullagh and Nelder 1983) with a bino- 
minal error distribution (~) and a logit link function: 

los]it Y = L + A + T + L . A + L . T + A . T + L . A . T + e  (1) 

where L.A ,  L .T ,  A . T  and L . A . T  denote the total set of  
interaction terms of  the main independent variables. The 
logit link function corresponds to a logit t ransformat ion 
of the propor t ion  of  the populat ion that  is sexually ma-  
ture. The independent variables were all tested for their 
marginal contribution to the explained variance. The 
model included all independent variables that had 
previously been shown to have a biological meaning. 
Onset of  sexual maturi ty  is expressed as the length at 
which 50 % of  the fish became mature  (Lma 0. Lma t c a n  be 
estimated f rom Eq. 1 at logit Y= 0. The approximate  SE 
of Lma t w a s  calculated from the variances of  the linear 
predictor, given by the N A G  statistical package G L I M  
(Baker and Nelder 1978), at a value of  the linear predic- 
tor of  zero. At this value the confidence limits are ap- 
proximately symmetrical. 

The results of  the A N C O V A  showed that  two of  the 
three primairy interaction terms L.A and L.T were highly 
significant, indicating that  the slope of the maturi ty-  
length relationship differed significantly between age- 
groups and time periods (Table 1). The lack of  signifi- 
cance of  the interaction term A.T indicated that the age 
effect is not significantly different between periods. The 
observed proport ions of  maturi ty  and the fitted 
maturity-length relationships for period I and period I I I  
are shown in Fig. 3. The slope of  the maturi ty  ogives 
tended to increase with age. Further,  the ogives were 
shifted to smaller length with increasing age, indicating 
that the matura t ion  probabil i ty is higher for slower- 
growing fish. 

The lengths at 10%, 50% and 90% maturi ty  were 
estimated f rom the fitted maturi ty-length relationships 
and plotted in Fig. 4. The lines connecting the 10% and 
90% length-at-age points form an envelope that  encom- 

1.00 I a) period I: 1904-1911 

0 25 * * age 4 

0 00 ~ e  

20 25 30 35 40 45 
Body size (cm) 

m Age 4 

Age 5 

'~ Age 6 

o Age 7 

1.00 ~ . . . . . . . . . .  ~ m - m ~ '  

period Ilk 1960-1990 ~ . ~ /  ~ ~  [] Age2 D )  
0.75 ~ age//dA~5/~//,'~/~"7~ ~ CI Age3 

I � 9  . , . ,  ~ " ~"~ 4 
i 

0.50 T jo// j /c3" .age 2 $ Age 6 

0.25 i * 

0.00 L + + 4--- . . . . .  

20 25 30 35 40 45 
Body size (crn) 

Fig. 3a, b. Proportion of mature female plaice in relation to length 
for a period I (1904-1911) and b period II (1960 1990). Lines show 
the fitted maturity ogives for separate age groups. The data points 
show the observed proportions of mature females 

passes the juvenile-adult transition points of  individual 
fish in the population. Although the envelopes of  both 
periods showed some overlap, the envelope of  period I 
is shifted to smaller sizes, and more recently maturi ty 
occurred at a younger age and smaller size. In period III,  
Lma~ is 5.8, 4.2 and 3.9 cm lower than in period I at ages 
4, 5 and age 6, respectively. The shift in the matura t ion  
envelope coincided with an increase in growth rate 
(Fig. 4). 
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Fig. 4. Maturation envelopes that encompass the individual juvenile 
- adult transition points of female plaice for period I (1904-1911) 
and period III (1960-1990) and associated average growth curves 
(dashed line, period I; full line, period III). The envelopes were 
constructed from the estimated length at which 10 % and 90 % of the 
females reached maturity at various age groups. Within the en- 
velopes the relationship between Lm,t, at which 50 % of the females 
reached maturity, is plotted against age 

Reproductive investment 

Data on the fecundity of plaice were available for the 
three periods (Reibisch 1899; Franz 1910a, b; Simpson 
1951; Horwood et al. 1986) and have been reviewed by 
Rijnsdorp (1991). Since 1900, no obvious increase in 
size-specific fecundity has been observed except for the 
smaller size classes ( < 4 0 c m ;  Fig. 5). However, the 
fecundity samples of period I originated from the south- 
eastern North Sea, where Lma t was around 40 cm (Rijn- 
sdorp 1989). Hence, the size classes that showed an in- 
crease in fecundity comprised mainly recruit spawners, 
which may have had a lower fecundity than repeat spaw- 
ners (Hislop 1988). 

The main change in fecundity observed during this 
century was a 30-60% decrease in period II (Fig. 6). The 
reduction in the number of eggs in period II, however, 
did not coincide with a proportional decrease in ovary 
weight, suggesting that egg size must have increased. The 
reduction in fecundity and the inferred increase in egg 
size coincided with a substantial reduction in somatic 

growth. Calculation of the relationship between the sur- 
plus production, defined as the sum of the somatic 
growth and reproductive investment expressed in units of 
weight, from the back-calculated somatic growth and 
observed ovary weights, showed that surplus production 
in period II was 20-32% lower than in period III, whereas 
the reproductive investment was only 13 % lower (Fig. 7). 

Phenotypic plasticity 

Maturation 

Sexual maturation is a developmental process which can 
be characterized for each individual fish by a transition 
point in the length-age space. These individual juvenile- 
adult transition points are not fixed but may be influ- 
enced by environmental conditions (Stearns and Cran- 
dall 1984; Stearns and Koella 1986; Chambers and Leg- 
gett 1987, 1992). The family of individual transition 
points can be represented by a maturation envelope en- 
compassing all size-age combinations at first maturation 
of individuals of a single genotype raised under different 
environmental conditions (MacKenzie et al. 1983; Poli- 
cansky 1982, 1983). For a natural population, compris- 
ing a variety of genotypes raised under different environ- 
mental conditions, a maturation envelope be constructed 
from the maturity - length relationships at each age 
(Chambers Leggett 1987, 1992; Rijnsdorp 1993) as 
shown in Fig. 4. 

From these maturation envelopes it is inferred that the 
probability of maturation increases with growth rate: 
a small fish at a particular age will have a lower probabil- 
ity than a large fish of that age. However, comparison of 
two fish that have reached a similar size at different ages 
shows that the faster-growing fish has a lower probability 
of maturation than the slower-growing fish. These con- 
trasting results imply that maturation is influenced by the 
length reached at spawning as well as the growth history 
in previous years. 

A further analysis of the effects of growth history 
during the juvenile phase on the maturation process was 
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Table 2. Coefficients of the GLM multiple regression model of the 
logit maturity probability as a function of the ultimate length (L) 
and the relative growth rate in the last completed year (G_ 1), 2 years 
(G-z) and 3 years (G-3) prior to sampling: logit Y = e~+J3L+ 
7(G - 1) + 8(G _ 2) + q)(G _ 3) (from Rijnsdorp 1993) 

Coefficient SE 

--8.244 0.9924 
0.2698 0.03038 

7 --0.2406 0.07066 
8 0.0374 0.6438 

0.1141 0.05535 

Table 3. Coefficients of the linear regression Y = a +  [~Xwhere Y= 
length at first maturity (Lmat, cm) at sampling age 4 and 5 and 
X= the length attained at age 4(L~, cm) of cohorts of female plaice 
in the southern North Sea born between 1956 and 1985 

Sampling age 4 Sampling age 5 

Coefficient SE Coefficient SE 

Lmat 

P 
F 
/7 
P 

= a+ 13L4 
46.51 3.80 40,67 3.09 

--0.461 0.112 --0,306 0.09l 
0,636 0.558 

27 27 
<0,05 <0.05 
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Fig. 7. Annual surplus production (somatic growth plus reproduc- 
tive investment in kg) and reproductive investment (kg) in relation 
with body weight (kg) in period II (1946-1949) and period III 
(1975-1985). The substantial increase in surplus production be- 
tween the periods does not coincide with a proportional increase in 
reproductive investment 

made by Rijnsdorp (1993). A study of the probability of 
maturity of individual females in relation to back- 
calculated individual growth curves suggested a 3-year 
maturation time. Maturation probability was significant- 
ly related to the ultimate size reached as well as to the 
relative growth rate 1 and 3 years prior to sampling 
(Table 2). Relatively fast growth 1 year prior to sampling 
(G_ 1) was associated with a lower maturation probabil- 

ity, whereas relatively fast growth 3 years prior to sam- 
pling (G_ 3) was associated with a higher probability of 
maturation. An effect of growth on maturation was fur- 
ther suggested by the negative correlation between the 
Lma t and the length attained at age 4 (L~) of cohorts born 
between 1956 and 1985 (Table 3). 

Reproduction 

Phenotypic plasticity in reproductive investment in re- 
sponse to growth is indicated by various experimental 
studies in both plaice (Horwood et al. 1989; Rijnsdorp 
1990) and other teleost species (Scott 1962; Bagenal 
1969; Wootton 1973, 1977; Hislop et al. 1978; Waiwood 
1982; Townshend and Wootton 1984; Springate et al. 
1985; Knox et al. 1988; Bromage et al. 1990; Kjesbu et 
al. 1992). However, a descriptive study relating the rela- 
tive width of the last annulus of the otolith with the 
size-specific fecundity or ovary weight did not reveal such 
an effect (Rijnsdorp 1990). A similar results has been 
obtained for sole (Millner et al. 1991). Also, the analysis 
of the inter-year variability in somatic growth and size- 
specific fecundity did not reveal a clear relationship 
(Rijnsdorp 1990, 1991). The relative constancy of the 
size-specific reproductive investment is further cor- 
roborated by the comparison of the ovary weights be- 
tween 1948-1949 and 1980-1985 when the levels of sur- 
plus production, i.e. the energy in excess of maintenance 
requirements that is available for somatic growth and 
reproduction, were substantially different (Fig. 7). 
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Since the experimental studies did not  address the 
problem of energy allocation between reproduction and 
somatic growth in individual fish, and generally manipu-  
lated food rations only during par t  of  the annual cycle, 
the discrepancy between the descriptive and experimental 
studies may  be due to variations in the temporal  pat tern 
of  food availability (Rijnsdorp 1991 ; Kjesbu et al. 1992). 
It  is, therefore, concluded that even under large varia- 
tions in the conditions for growth the size-specific re- 
productive investment of  female plaice is constant.  

The reduced fecundity and the inferred larger egg 
weight in period II  coincided with reduced somatic 
growth in the larger females (Fig. 1). The simultaneous 
change in fecundity and somatic growth on one hand and 
the peak in spawning stock biomass due to the reduction 
in fishing during the 1939-1945 war (Baerends 1947; 
Marget ts  and Hol t  1947; Jenssen 1947; Beverton and 
Hol t  1957; Simpson 1959; Rijnsdorp and van Leeuwen 
1992) on the other hand, suggests that a trade-off be- 
tween egg numbers and egg size may  occur at  a high level 
of  spawning stock biomass. 

Correcting the observed change in length at first 
maturity for phenotypic plasticity in response to changes 
in growth 

With the quantitative relationships describing the effects 
of  juvenile growth on the probabil i ty of  matura t ion  we 

may evaluate their contribution to the observed change 
in Lm~ t between period I and period III.  

The effect of  the change in juvenile growth between 
period I and period I I I  on the Lma t was  estimated in two 
ways, Approach  A followed the G L M  analysis of  Rijn- 
sdorp (1993) in which the matura t ion  probabil i ty (Y) of  
individual females was related to ultimate length (L) and 
back-calculated previous growth rates G_I ,  G_ 2 and 
G-3: logitY=~+~L+y(G_t)+~(G_j+q)(G 3), With 
the parameter  estimates of  the G L M  model of  Table 2 
and the previous growth rates of  Table 4, Lm,, can 
be estimated when logit Y=0 ,  thus L m a t = - - ~  - I  
(ct + ?(G_ 1) + ~(G_ 2) + q~(G_ 3)). The calculation in- 
dicated that  the increase in juvenile growth between 
period I and period I I I  may  have resulted in a decrease 
in Lm,t of  0.18 cm and 0.67 cm at age 4 and age 5, respec- 
tively (Table 5). The approximate  standard errors, which 
were estimated f rom the variance of  the finear predictor 
at a value of the linear predictor of  zero, showed that  the 
predicted change in Lrnat did not differ significantly from 
zero (Table 5). 

A second estimate (approach B) was obtained from 
the regression between Lma t and the length attained at age 
4 (Table 3). Between period I and period III ,  the L4 
increased by 7.4 cm (Table 4), leading to a change in L ~ t  
of  - 7 . 4 x 0 . 4 6 1 = - 3 . 4 c m  at age 4 (SE=0.83)  and 
~7 .4  x 0.306= - 2 . 2 6  cm at age 5 (SE=0.67) .  

The observed change in Lm~, can now be corrected for 
the predicted change f rom the increase in juvenile growth 

Table 4. A, Length (cm) at age of female 
North Sea plaice in three time periods as 
reconstructed from otolith back-calcula- 
tions and B, the relative annual growth 
rate in comparison with a standard growth 
rate at age i ( G  i = 10.8--0.18 Li)  and 
mean growth rate at age 1 of 8.3 cm 

Age A 
(0 Backcalculated length at age (L i in cm) 

B 
Relative growth rate 

1930 1939 1946-1949 1975-1984 1930-1939 1946-1949 1975-1984 

l 7.0 7.6 8.7 - 1.30 -0.70 0.40 
2 13.5 15.0 18.2 -3.04 -2.03 0.27 
3 19.5 21.8 26.3 -2.37 - 1.30 0.58 
4 24.9 27.7 32.3 - 1.89 -0.98 -0.07 
5 29.6 32.5 36.6 - 1.62 - 1.01 -0.69 

Table 5. Procedure to estimate the 'unex~ 
plained' change in Lma t between period I 
and period III from the observed change 
and the predicted change due to phenotyp- 
ic plasticity in response to the increase in 
juvenile growth for age group 4 and 5 

Age 4 Age 5 

Change SE Change SE 
in in 
Lmat Lmat 

Change in Lm~t (cm): 
Observed - -  5.83 0.70 -- 4.24 0.47 

Approach A: 
A Predicted from jnvenile growth rate -0.18 1.45 -0.67 1.26 

Unexplained = observed-A -5.65 1.61 -3.57 1.35 
Approach B : 
B Predicted from length at age 4 -3.41 0.83 -2.26 0.67 

Unexplained= observed-B --2.42 1.09 -- 1.98 0.82 

The effect of juvenile growth on Lma t was estimated following two approaches. Approach A 
makes used the GLM model that relates the maturation probability with length attained and 
relative growth rates in three previous years. Approach B employs the linear regression of 
Lma t and L 4 



following approaches A and B. The results showed that 
in all of  the four cases a decrease in Lm,t remained, 
suggesting that the increase in growth rate can only 
explain a part  of  the observed change in Lm,~. The ap- 
proximate standard errors of  the corrected change in Lm,~ 
are rather wide, but  the 95 % confidence interval did not 
include zero in any of  the four cases (Table 5). 

Life-history evolution in reproductive parameters 

M a t u r a t i o n  

In the above section we have obtained indirect support 
for the hypothesis that fishing has caused genetical selec- 
tion for earlier maturat ion:  the observed change in Lma t 

cannot  be fully explained by the phenotypic response to 
an increase in juvenile growth. In this section we will 
investigate whether the observed change in Lma t c o r r e s -  

p o n d s  to the expected change due to genetical selection 
by the fisheries. 

The selective effects of fishing were studied using a 
simulation model, which described the cost of  reproduc- 
tion in terms of  decelerated somatic growth and reduced 
future reproduction (Rijnsdorp in press). The relative 
fitness of  various combinations of  length at first maturity 
and reproductive investment was estimated at the current 
pattern and level fishing mortality at age. Reproductive 
investment was modelled as a fixed proport ion of  the 
body energy reserves. Fitness was calculated as the life- 
time reproductive output. The fitness profiles indicated 
that the current exploitation select for genotypes coding 
for reduced Lma t o r  an increased reproductive investment 
(Fig. 8). 

The selection differential, which represents the dif- 
ference between the quantitative trait of  the parents and 
that of  the stock from which they were selected, was 
estimated from the fitness profiles and the observed vari- 
ance in Lm,~ (g 35, ~ = 2 . 5  cm). Figure 9 illustrates the 
calculation. When there is no selection, the population 
before and after selection will be composed of females 
that mature according to the distribution shown. How- 
ever, when selection occurs, the composition of  the popu- 
lation after selection will have changed. The effect of  
selection is indicated by the fitness profile, which reflects 
the relative proport ion of  each L~ t  in the population 
after selection. The selection differential (s) can now be 
estimated as the difference between the average Lma t (pop- 
ulation before selection) and the average Lm. t weighted 
over the fitness profile (population after seleetion). The 
calculation estimated S at 0.27 cm per generation. The 
associated generation time was estimated at 7.7 years, 
corresponding to 8.8 generations over the interval of 68 
years between period I (midpoint 1907) and period III 
(midpoint 1975; Rijnsdorp in  press). 

The quantitative relationship between the selection 
differential (5) and the change in a quantitative trait per 
generation (R) is given by the expression R = h 2 S,  where 
h 2 is the heritability coefficient (Falconer 1989). With the 
estimates of  S from the simulation and R from the cor- 
rected change in Lm~ t per generation, the corresponding 
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Fig. 8. Fitness profiles for the length at first maturity (Lm, 0 for 
different levels of reproductive investment (7) expressed as the ratio 
of gonad weight to the total body weight. The fitness is expressed 
relative to the current reproductive strategy : Lma ~ = 33 cm, 7 = 0. l 6 
(from Rijnsdorp in press) 
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Fig. 9. Normal distribution of the length at first maturity in female 
plaice (g = 35 cm, (y = 2.5 cm) and the relationship between the fit- 
ness (lifetime reproductive investment) and Lmat. The arrow indica- 
tes the average length at first maturity, weighted over the fitness 
profile, representing the Lma t after selection. The selection differen- 
tial S=0.27 was estimated from the difference between the Lma, 
before (dashed line: Lmat = 35 cm) and after selection (arrow ." L'm,t= 
34.73 cm) (from Rijnsdorp in press) 

h 2 was estimated (Table 6). Approaches A and B yielded 
substantially different estimates of  h 2 due to the dif- 
ference in the estimated contribution of  the increase in 
growth to the phenotypic plasticity in Lm~ ,. Three of the 
heritability estimates were higher than unity, which is in 
theory the maximum possible value. The heritability esti- 
mate for age 5 from approach B, although < 1, is still 
high compared to the average value h 2=0.24 for life 
history traits of  teleosts (Roff 1991; Polikansky in press 
a). 

The high values of h z may be due to a number of 
factors, which will be discussed below. The most impor- 
tant one is the low precision of  the estimated change in 
Lma t after correction for environmental effects (Table 5). 
The 95% confidence limits around the corrected Lmat 
included values which yield heritability estimates that are 
closer to the average value of h2=0.24 derived from 
breeding experiments. This can be shown by calculating 
the h 2 corresponding to the lower 95% confidence limit 
of the corrected Lrnat. These h 2 values range between 0.37 
and 1.02 for approach A and between 0.10 and 0.14 for 
approach B. 
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Table 6. Summary of the selective effects 
of fishing (from Rijnsdorp in press) and 
the estimated change in L,,,t after correc- 
tion for the phenotypic plasticity in re- 
sponse to juvenile growth from Table 5 

Age 4 Age 5 

Selective effects of fishing (from Rijnsdorp in press) : 
Time span (years) 
Generation time (years) 
Number of generations 
S= predicted selection differential 

68 
7.7 
8.8 

--0.27 

Change in Lma t after correcting for phenotypic plasticity 
Approach A : 
Unexplained change in Lmat (cm) -5.65 
R = unexplained change in Lmat per generation - 0.64 
h 2 = heritabitity (h a = R.S- 1) 2.38 
Approach B : 
Unexplained change in Lma t (cm) -2.42 
R =unexplained change in Lm,t per generation --0.28 
h2=heritability (h2= R.S 1) 1.02 

-3.57 
-0.41 

1 . 5 0  

- 1 . 9 8  

-0.22 
0.83 

It cannot  be ruled out that between period I and 
period III other environmental factors may have changed 
that contributed to the observed change in Lm~ t. Tem- 
perature might be such a factor, as monthly temperature 
records showed that the average summer temperature at 
a coastal station on the nursery grounds increased by 
approximately 1 ~ C between period I and period III (van 
der Hoeven 1982; Rijnsdorp and van Leeuwen 1992). 
A possible influence of  temperature on the onset of  sex- 
ual maturi ty is suggested by the increase in Lmat with 
latitude, which might be related to latitudinal differences 
in temperature. A temperature effect was further sug- 
gested by the negative correlation between the Lma t of  
4-year-old females and the water temperature on the nur- 
sery grounds during the summer of  the year prior to 
spawning. If  Lma t decreases at higher water temperatures, 
we can expect temperature to have contributed to the 
observed decrease in Lma t. From the slope of  the negative 
relationship between Lma~ and temperature the contribu- 
tion can tentatively be calculated as - 0 . 7  cm (Rijnsdorp 
1993). However, this estimate is uncertain because the 
ambient temperature conditions and the critical time 
period during which the process of  maturat ion may be 
affected are not  known. Further,  the correlations of  Lma t 
and temperature were insignificant for the other quarters 
as well as for 5-year-old females. 

The discrepancy between the expected and observed 
change in Lma t may be due to inaccuracies in the esti- 
mated selection differential. The simulation did not take 
account of the observed changes in growth and likely 
variations in the level of  exploitation. The slower growth 
of juveniles in the  first part of this century implies that 
the generation time, defined as the age at which 50% of  
the life-time reproductive output  is realized, must have 
been longer, reducing the speed of  genetical selection. 
However, the estimated generation time will decrease if 
the level of exploitation has been underestimated. This 
might indeed be the case because the pattern and level of  
fishing mortality prior to 1950 are still uncertain. Bannis- 
ter (1978) derived an average instanteneous fishing mor- 
tality coefficient in the 1930s o f F =  0.3, whereas Beverton 
and Holt  (1957) and Gulland (1968) derived a value of  

F=0 .7 .  Therefore, the level of  0.5 used in the present 
study cannot be very precise. Preliminary results of a 
reanalysis of  the 1930 data corroborated the high level 
of  fishing mortality of  F =  0.7. A higher level of  exploita- 
tion in the early part  of  the century would imply a 
stronger selection for reduction in Lma t and in the genera- 
tion time. 

Finally, if heterosomal genes contribute to the geneti- 
cal coding of maturation, the selection on maturat ion in 
females will be affected by the selection on maturat ion of 
males. Rijnsdorp (in press) showed that the selection 
differential of  Lm,t of  males was substantially higher than 
that of  females, S =  1.89 and S =  0.27, respectively. This 
implies that the estimated selection differential of  females 
may have been underestimated. 

It is obvious that the above analysis must be con- 
sidered speculative because of  the many uncertainties. 
Therefore, a conclusive interpretation of  the observed 
changes in Lma , is not  possible. The results can neverthe- 
less be regarded as support for the hypothesis that fishing 
has caused genetical selection in Lma t because of the 
qualitative agreement between the direction of the ob- 
served and predicted change in Lmat, and because the 95 % 
confidence interval of  the unexplained change in Lm,, 
encompassed values that corresponded with the predict- 
ed selection differential and likely coefficient of  heritabil- 
ity. 

Reproduction 

The simulation showed that the current level of  exploita- 
tion imposed a strong selection for an increase in re- 
productive investment (Fig. 8). Contrary to this expecta- 
tion, no evidence was obtained that reproductive invest- 
ment has changed since 1900. One possible explanation 
for the lack of  change in reproductive investment may be 
that morphology imposes a constraint on the maximum 
reproductive investment (Roff 1992). Jones (1974) 
showed that the number of  eggs per gram body weight 
varies substantially between flatfish species with a coef- 
ficient of  variation CV = 97 % (range 142-4193 eggs.g- 1), 
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while the volume of eggs per gram body weight is much 
less variable, C V = 2 0 %  (range 534~922 mm3). Secondly, 
the simulation model included a cost of  reproduction in 
terms of  a reduction in growth and future reproduction 
but not in an increase in mortal i ty rate. Although the 
latter is very difficult to measure, it is generally assumed 
in life history theory (Roff  1991, 1992; Reznick 1992; 
Stearns 1992). In plaice, a mortal i ty cost is not  unlikely 
since spawning causes a substantial reduction of the body 
condition of  both  males and females, which may  make 
the fish more  vulnerable to diseases and predation. 

Discussion 

This study focused on the genetical effects of  exploitation 
on size at maturi ty  and reproductive investment. How- 
ever, exploitation may  lead to genetical effects on other 
characteristics such as growth rate (Nelson and Soul6 
1987; Law and Rowell in press; Stokes et al. in press), 
sex change (Charnov 1981) and genetic diversity (Smith 
et al. 1991). In plaice, the increase in growth rate since 
1900 is unlikely to be related to genetical selection, be- 
cause of the relatively short period over which the in- 
crease in growth occurred (20 years) and because recent 
experiments on the m ax i m um  growth of  plaice showed 
similar values to experiments carried out at the beginning 
of this century (Rijnsdorp and van Leeuwen 1992). 

The possibility of  genetical changes in life-history 
parameters  such as the size and age at first matur i ty  and 
reproductive investment is well accepted, because ex- 
ploitation is selective and life history characters are herit- 
able (Nelson and Soul6 1987; Stokes et al. in press; Po- 
likansky in press a). Conclusive evidence for life-history 
evolution in exploited natural  populations,  however, is 
hard to obtain, al though there are .some suggestive exam- 
ples (reviews in Nelson and Soul6 1987; Stokes et al. 
1993). This paper  provides a suggestive example of  life- 
history evolution in the decrease in the size at matur i ty  
since 1900. Other examples are provided by Handford  et 
al. (1977) and Ricker (1981). Handford  et al. (1977) 
showed that growth rate as well as size at maturi ty de- 
creased, but  age at maturi ty  increased, in Coregonus 
clupeaformis in response to a gillnet fishery for more  than 
30 years. Ricker (1981) showed that  size at matur i ty  
decreased in pink salmon (Oncorhynchus 9orbuscha) and 
chinook salmon (0 .  tshawytscha) and estimated that  the 
observed change corresponded with heritabilities of  
about  0.25. 

Conclusive evidence that  exploitation may  cause life- 
history evolution stems f rom experimental work (Rez- 
nick et al. 1990). Although fisheries can be considered a 
large-scale experiment on life history evolution, the ex- 
perimental conditions are not well known. Hence, it is 
not realistic to expect that  such field studies will yield 
conclusive evidence. In our case a multitude of  uncertain- 
ties with regard to the level of  historic mortal i ty  rates, the 
genetics of  matura t ion  and the phenotypic plasticity in 
matura t ion  in response to temperature and growth re- 
mained. Nevertheless, a more  refined analysis of  the 
expected selective effects of  exploitation and of  the con- 

tribution of environmentally induced changes in Lma t a re  

possible in future when more detailed studies on these 
aspects become available. Further,  simulation of  the 
selective effects of  the current exploitation suggested that 
selection for a decrease in Lma , still continues, so more 
clearcut effects may  be expected in future when longer 
time series will be available. Longer  time series will have 
the additional advantage that  the power of  the statistical 
tests increases with the number  of  observations. 

The evidence presented in this paper  and others un- 
derscores the necessity of  considering the implications of  
possible genetic effects of  exploitation in fisheries man-  
agement (Policansky in press b). Law and Grey (1989) 
explored the potential  effects of  genetical changes in Lma t 

on the yield of  Arcto-Norwegian cod. For  plaice, a con- 
tinuation of  the exploitation at the current level may 
further reduce Lmat (Fig. 8), which may  lead to a decrease 
in the equilibrium yield to the fishery of  about  5 % (Rijn- 
sdorp 1992). Although the decrease in yield seems rather 
small, it nevertheless emphasizes that negative long-term 
effects of  exploitation may occur, which should be incor- 
porated in fisheries management  considerations. Simula- 
tion studies seem powerful tools to explore the sensitivity 
of  the yield for different patterns of  exploitation, which 
may  guide fisheries managers  to formulate short- term 
management  advice within genetically safe long-term 
limits. 
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