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Summary. There has been an ongoing controversy over 
how to decide whether the distribution of species is "ran- 
dom"  - i.e., whether it is not greatly different from what 
it would be if species did not interact. We recently 
showed (Roberts and Stone (1990)) that in the case of 
the Vanuatu (formerly New Hebrides) avifauna, the 
number of islands shared by species pairs was incompati- 
ble with a " r a n d o m "  null hypothesis. However, it was 
difficult to determine the causes or direction of the com- 
munity's exceptionality. In this paper, the latter problem 
is examined further. We use Diamond's  (1975) notion 
of checkerboard distributions (originally developed as 
an indicator of competition) and construct a C-score 
statistic which quantifies "checkerboardedness".  This 
statistic is based on the way two species might colonise 
a pair of islands; whenever each species colonises a differ- 
ent island this adds 1 to the C-score. Following Connor  
and Simberloff (1979) we generate a "control  group"  
of random colonisation patterns (matrices), and use the 
C-score to determine their checkerboard characteristics. 
As an alternative mode of enquiry, we make slight alter- 
ations to the observed data, repeating this process many 
times so as to obtain another "control  group".  In both 
cases, when we compare the observed data for the Van- 
uatu avifauna and the Antillean bat communities with 
that given by their respective "control  group",  we find 
that these communities have significantly large checker- 
board distributions, making implausible the hypothesis 
that their species distributions are a product  of random 
colonisation. 
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from species incidence data, something about the forces 
responsible for population distributions in an archipela- 
go. (For earlier work in this area, see e.g. Connor  and 
Simberloff (1979); Strong et al. (1984); Harvey et al. 
(1983)). We discussed some of the weaknesses in previous 
methods of analysis, and introduced a way of detecting 
non-random effects by the use of an "island-sharing" 
statistic. 

Here we develop and extend this work, using another 
statistic - the "checkerboard score" - to test actual dis- 
tributions for non-randomness. The concept o f "  checker- 
boardedness" was discussed by Diamond (1975) in a 
paper which effectively launched the modern controversy 
over species assembly. Studying the Bismarck Archipela- 
go avifauna, he deduced seven rules of species assembly 
that asserted the existence of certain patterns and "perm- 
issible combinations" of species, arguing: " IT ]he  sim- 
plest distributional pattern that might be sought as pos- 
sible evidence for competitive exclusion is a checker- 
board distribution. In such a pattern, two or more eco- 
logically similar species have mutually exclusive but in- 
terdigitating distributions in an archipelago, each island 
supporting only one species" (pp. 382388). Further:  
"Checkerboard distributions are of great interest in dem- 
onstrating the existence of competitive exclusion" 
(p. 392), and in fact the "simplest and clearest pattern 
that might be produced by competition is a checker- 
board distribution" (Diamond and Gilpin, 1982, p. 65). 

The new step below lies in quantifying checkerboar- 
dedness. A "C-score"  measure is offered, which proves 
suitable for examining actual species distributions, and 
gives conclusions (in the Vanuatu and Antilles cases) 
that accord well with our previous findings, but disagree 
with other analyses such as Connor  and Simberloff 
(1979). 

In a previous paper (Roberts and Stone 1990) we consid- 
ered the difficulties arising when one tries to deduce, 
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Checkerboard patterns 

To examine in detail the checkerboard patterns of large 
communities, it is convenient to describe the data in ma- 
trix form, as is customary in many biogeographic analy- 
ses. A "presence/absence" or "incidence" matrix is used 



to depict which species are present and where. In the 
study that follows, each column of the incidence matrix 
represents a known island, and each row a particular 
species. A "1"  appearing in the (i, p)th entry denotes that 
species i (59 is on island p (@), while a "0"  means it 
is absent. Thus the incidence matrix _A=(a~p) has the 
entries 

aip= 1 if ~ occurs on @, 

= 0 otherwise. 

The following " thought  experiment" suggests a way to 
quantify the "checkerboardedness" of an incidence ma- 
trix. Suppose two species ~ ,  ~ are released, with each 
species constrained to settle on one and only one of 
two particular islands Jp, Jq. Considering their possible 
assembly arrangements, note first the basic checkerboard 
pattern, in which one species occurs on @ but not on 
~ ,  whereas the other is on ~ but not on @. Such an 
event will show up thus in the incidence matrix _A: 

4 
1 . . . 0 . . .  

We will call such an arrangement a basic checker- 
board unit; it might be the outcome of some exclusion 
process. If we are attempting to decide whether there 
are factors causing a particular species pair to favor 
checkerboard arrangements, it is of course insufficient 
to study their occurrence on only two particular islands. 
For a fuller picture we must examine their checkerboard 
patterns - or lack of them over all pairs of islands. 

We now show how to calculate Cij, the number of 
checkerboard units formed by the two species 5~i, 5~, 
when all island pairs are taken into account. By way 
of example, suppose the row entries of the incidence ma- 
trix A for species ~ ,  ~ are as shown in (a) below: 

[10001101011[1110000011110000111 

N1111OlO111ol]111o1111oo[ [1111oo1 
(a) (b) (c) 

Now re-arrange the pattern, putting the co-occurrences 
and co-absences at the beginning, so as to obtain (b). 
Then drop the co-occurrences and co-absences, which 
contribute nothing to Ci), and obtain (c), which has 2 
x 4 = 8 checkerboard units. Thus, Cij = 8. 

In the general case, the number C~ of checkerboard 
units that involve ~ and 5:j, can be calculated as follows. 
Let S~j be the number of co-occurrences of ~ and 
(i.e., the number of islands that the two species Share). 
If ri is the ith r o w  sum of the incidence matrix, 

Cij -~- ( r i -  Sij) ( r j  - -  Sij ). 

(The first factor on the right here is the number of l 's 
in the ith rOW which have a 0 below them in the j'th', 
the second factor is the number of l 's in the jt~ row 
which have a 0 above them in the i t~ row.) 

We define the checkerboard score for a particular 
colonisation pattern (matrix) as the mean number of 
checkerboard units per species-pair of the community. 
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For M species, there are P=M(M-1)/2 species-pairs, 
and hence the C-score is: 

c:22c,/p. 
i<j 

Using this statistic, we examine the same field data as 
Connor and Simberloff (1979), and extract the C-score 
for each observed data set. Following the method al- 
ready used with the statistic S ~ (see Roberts and Stone 
1989), we then determine the significance of this score 
in two different ways: 

First, we compare this value with that given by a 
" random"  sample of matrices, to see if its value is unusu- 
al. These matrices will come from an ensemble generated 
in accordance with a suitable null hypothesis. For a com- 
ment on this last glib phrase, on why the appellation 
"random" needs qualification, and  on the doubts attach- 
ing to this procedure, see Roberts and Stone (1990) and 
below. 

Second, we alter the data slightly, while still obeying 
certain constraints, and compare the altered C-score 
with the original value, to see how unusual the latter 
value is in the set of closely-similar colonisation patterns. 

Imposing the constraints 

Connor and Simberloff (1979) randomly generated "pos- 
sible worlds" of biogeographic patterns to test a null 
hypothesis of random colonisation. They felt it reason- 
able to incorporate three constraints. Briefly, these re- 
quired the number of islands ri colonised by the i tla spe- 
cies ~ ,  and the number of species s, occupying the pth 
island Jp, to agree with the actual number; also, a species 
could not settle on an island, if the number of species 
accompanying it there lay outside the range of its actual 
numbers of companion species. (For a more detailed dis- 
cussion, see Roberts and Stone (1989).) 

It was believed that these constraints allowed for fac- 
tors that could be always present, whether the species 
interacted or not - factors due, for example, to the island 
species-area relationships, species colonisation abilities 
or species incidence functions. 

However, these constraints have been accused of 
making a suitable null hypothesis impossible, by smug- 
gling in species-interaction effects. Evidence presented 
in Roberts and Stone (1990) indicates that this is a ser- 
ious objection; nevertheless, these very constraints will 
now be imposed as part of what might (as in that paper) 
be called an afortiori strategy. 

The relabel-equivalence of incidence matrices 

Two incidence matrices will be called relabel-equivalent, 
if they can be derived from each other merely by inter- 
changing (i.e., swapping) pairs of rows and/or columns. 
For  example, matrices _B and _D below are not relabel- 
equivalent, while matrices _B, _E and F are all relabel- 



76 

equivalent, as simple manipulations will confirm. For  
example, by interchanging columns 2 and 4 in matrix 
_B, one obtains _F. 

1100 1100 

1100 1010 

~ =  0011 ~ =  0101 ~ =  

0011 0011 

1010 1001[ 

0101 = 1001 

1010 ~ 0 1 1 0 "  

0101 0110  

Swapping rows (columns) describes the relabelling of 
species (islands). Thus if one examines co-occurrence sta- 
tistics - such as the number of species-pairs, -trios, etc. 
that share n islands - all relabel-equivalent matrices must 
have the same co-occurrence patterns (as Connor  and 
Simberloff (1979) pointed out). 

So defined, relabel-equivalence obviously satisfies the 
mathematical requirements for an equivalence relation 
(see e.g. Saracino (1980), p. 81), and thus allows us to 
sort the incidence matrices into equivalence classes. Two 
matrices from distinct classes will be non-relabel-equiva- 
lent, while members of the same class will all be relabel- 
equivalent. 

Members of the same (relabel-) equivalence class all 
have the same C-score. To see this, let C be the score 
of a given incidence matrix; if P is the number of species 
pairs, then 

c=yyc,/P. 
i<j 

Suppose now that, after swapping row f with row g, 
the incidence matrix has the new score C'. Then after 
the row swap, 

C'ij = Cij, for i < f  and j < g, 

C'fj = Cgj and C'gj= Cf~ for all j. 

Hence 

c'=Zyc,/P=C, 
i<j 

which proves the invariance of C to row interchanges. 
A similar argument applies to column interchanges. 

As an example, consider all 4 - x - 4  presence/ab- 
sence (incidence) matrices in which each row sum and 
each column sum is 2. The C-scores of those displayed 
above are easily found to be 

C(_B) = C(_E) = C(_F) = 16/6 = 2.67, 

C(_D) = 12/6 = 2.00. 

We see that the three relabel-equivalent matrices _B, _E 
and _F all have the same C-score. 

An important  point about  sampling procedures now 
arises. By examining only non-equivalent matrices, Con- 
nor and Simberloff (1979) imply that, in the ensemble 
of allowable matrices, each distinct equivalence class 
should be given equal weight. As a relevant case study, 
we generated all the different 4 - x - 4  matrices of row 
and column sum two 90 in all. These 90 contain only 
two equivalence classes, represented by _B and _D respec- 
tively. There were 18 distinct matrices relabel-equivalent 

to _B, with a C-score of 2.67, and 72 distinct matrices 
relabel-equivalent to D, with a C-score of 2.00. 

Even when all members of a set are relabel-equiva- 
lent, each matrix stands alone in representing a unique 
colonisation pattern. Each such pattern is equally likely 
when the species, while obeying the above constraints, 
are presumed to colonise independently of each other. 
Thus the patterns equivalent to _D will occur four times 
as often as the extreme checkerboards equivalent to ma- 
trix _B. It is therefore incorrect to give the two different 
matrix classes equal weight as do Connor  and Simberloff 
(1979). 

In more general terms, recall that each "randomly 
colonised" matrix is supposed to represent a particular 
outcome - a set of (named) species on a set of (named) 
islands - whereas each relabel-equivalence class repre- 
sents a whole set of outcomes, even though they happen 
to have a common value for the statistic C characterising 
their co-occurrence patterns. In our case, the null hy- 
pothesis is that species colonise islands completely inde- 
pendently of any interactions between them. So there 
is no reason why one matrix or colonisation pattern 
should be more probable than another. Thus it is distinct 
matrices, not equivalence classes, which must be given 
equal probability measure, contrary to the procedure of 
Connor  and Simberloff (1979). 

Generating random matrices 

To generate the full ensemble as we did above, or even 
to calculate its size, is not practicable for constrained 
matrices much larger than 4 - x - 4 .  Accordingly, we 
used a computer  to generate a representative random 
sample. (We had to be on guard against the flaws con- 
tained in some procedures extant for generating allegedly 
random numbers - see the discussion in e.g. Park and 
Miller (1988).) Two methods were employed, the same 
conclusion following from each: 

a) The method of random interchanges 

Take a pair of islands, and select any species which oc- 
curs on the first of them but not on the second. Then 
find, if possible, a species which occurs on the second 
but not on the first. Then, if we interchange the species 
between islands, each still occurs on the same total 
number of islands, and each island still contains the same 
number of species; that is, such an interchange leaves 
the island-total and species-total constraints still obeyed. 
But, by performing an arbitrary number of such inter- 
changes, we generally obtain a different species distribu- 
tion over the islands - with different checkerboard 
scores. (For a fuller description, see Roberts and Stone 
(1990).) 

b) The Milne method 

Connor  and Simberloff (1979) attempted to generate a 
random sample of allowable matrices, in a manner that 



in some respects resembled a colonising process (guided 
by the null hypothesis of random colonisation). Thus 
species were (randomly) picked one at a time, and placed 
on a randomly chosen available island (subject to the 
three constraints). This continued until either the pres- 
ence/absence matrix was filled, or a "hang-up" situation 
arose. 

"Hang-ups" occur when, after inserting a number 
of l's within the matrix, it becomes impossible to fill 
the matrix any further without breaking the given con- 
straints. For example, the partially-filled matrix _G below 
(with row and column totals adjoined) can never be com- 
pleted and has thus "hung up". On the other hand, _// 
is an allowable matrix subject to the same constraints. 

G= 
m 

0111 3 1110 

0110 2 1100 

?000 2, H =  1010 

1000 1 0001 

3221 3221 

3 

2 

2. 

1 

Connor and Simberloff found that "hang-up" situations 
occurred with great frequency, when they attempted to 
generate large and tightly structured matrices by this 
matrix "filling" method. The problem leads to a large 
amount of computer time being required to produce a 
single allowable member of the ensemble. However, B. 
Milne (private communication) has recently developed 
a technique for randomly filling a constrained matrix, 
so that a large number of allowable matrices can be 
generated rapidly. The computer program makes use of 
a look-ahead technique, whereby a "1" is inserted in 
the matrix only if it will not produce a "hang-up" situa- 
tion. Using this program, a sample of 1000 matrices was 
quickly generated for each data set examined. 

Analysing an ensemble 

To help explain the procedure employed, we analyse 
(after Gilpin and Diamond (1982)) a simple case: 
2 0 - x - 2 0  matrices with all row and column sums equal 
to ten. (This would describe an archipelago in which 
each of the twenty islands contained ten bird species, 
and each of the twenty bird species inhabited ten islands.) 
1000 such matrices were generated randomly by the 
Milne method, the sample yielding the estimates: 

(C)  =29.009, a(C) =0.136. (Sample size 1000) 

Random interchanging (for details see Roberts and 
Stone (1990)) produced a similar histogram with 

(C)  =29.026, or(C) =0.147. (Sample size 1000) 

Note that the two methods give very similar statistics. 
Of interest are the two matrices _U and _V below, with 
C-scores of 52.6 and 30.3 respectively. In the whole en- 
semble, the most exclusive matrix possible would be 
equivalent to the matrix U. 
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U= 
m 

V= 

11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
00000000001111111111 
C(U) = 52.6, 
00101011110100001110 
11010100001011110001 
00101111001001001110 
11010000110110110001 
10110000000011111011 
01001111111100000100 
10011101011001001100 
01100010100110110011 
00101011100100110110 
11010100011011001001 
11010111100001011000 
00101000011110100111 
10000111100011001110 
01111000011100110001 
11001100100111000110 
00110011011000111001 
00010101101011101010 
11101010010100010101 
01101101010001010101 
10010010101110101010 
c(v) = 3 0 . 3 .  

Matrix U's C-score of 52.6 exceeds the estimated mean 
by almost 200 times the estimated standard deviation. 
Not one of the 1000 randomly generated matrices had 
a C-score so extreme; the largest was less than four times 
the estimated s.d. Thus the C-test easily picks high levels 
of exclusiveness. 

Diamond and Gilpin (1982) examined the matrix _V 
above (their Fig. 4), where ten out of the possible 190 
pairs are in a "perfect checkerboard" arrangement. They 
reported that although "the inference of exclusion was 
very strong" in this matrix, the Connor-Simberloff test 
found nothing unusual. (But note Simberloff and Connor 
(1984) who state that, after classes are lumped together, 
their Z 2 test finds the matrix _V is indeed exceptional.) 

The C-score test for this matrix, on the other hand, 
gives C(_V)= 30.3. Using the Monte Carlo estimates for 
the distribution parameters (see above), this value ex- 
ceeds the mean by more than ten times the estimated 
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Fig. 1. Histogram of the frequency distribution of values of the 
checkerboard score C, in a sample of 1000 random colonisation 
patterns for avifauna of the Vanuatu archipelago. The sample was 
generated by the Milne method. The actual value of C, indicated 
on the figure ("Observed"), exceeds any found in the sample 

s.d. Confirming the rarity thus suggested, not one of the 
1000 randomly-generated allowable matrices was so 
highly exclusive. Thus the C-test finds the checkerboar- 
dedness of _V to be highly significant. 

These tests give us some confidence in the procedure's 
ability to detect extreme patterns. 

Analysis of field-data - the Vanuatu avifauna 

The field-data on the Vanuatu (formerly New Hebrides) 
avifauna (56 bird species on 28 islands), gathered by Dia- 
mond and Marshall (1976) and examined by Connor 
and Simberloff (1979), will now be re-analysed using the 
C-test. Upon randomly filling 1000 matrices by the Milne 
method, subject to the constraints derived from the actu- 
al field-data (i.e., fixed row and column sums as well 
as incidence ranges), the histogram of Fig. 1 was ob- 
tained, giving the estimates 

(C)  =9.128, a(C)=0.072. (Sample size 1000) 

The same test was performed again, on a sample gen- 
erated by the method of random interchanges. The statis- 
tics found were altogether similar to those obtained by 
the Milne method. The method of interchanges gave the 
estimates 

(C)  =9.112, a(C) = 0.067. (Sample size= 1000) 

Yet the observed matrix had the score C(Vanua- 
tu)=9.53, distant from the mean by almost 6 times the 
(estimated) standard deviation. More transparently, the 
largest C-score in the sample of 1000 matrices was only 
9.409 by the Milne method (9.347 by the method of inter- 
changes) giving a Monte Carlo estimate for the probabil- 
ity P that the null hypothesis was true: 

P<0.001. 

These results conflict sharply with those obtained by 
Connor and Simberloff, whose R-mode analysis pro- 
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Fig. 2. As Fig. I, but for Antillean bats. The actual ("Observed") 
value of C was exceeded by only 20 patterns in the sample 

duced a very close matching between the observed and 
expected matrix, with Za=16.34 (27 df) giving 0.95>P 
>0.90. We have already shown (Roberts and Stone 
(1990)) the reasons for this discrepancy. Briefly: the chi- 
square test is inappropriate for this R-mode analysis be- 
cause the cell-numbers are far from independent; and 
even if the chi-square test were valid, the number of 
degrees of freedom (27) used by Connor and Simberloff 
is more than twice the value estimated by fitting the 
first moment of the empirical data given by the random 
sample. 

Analysis of field data - the Antillean bats 

The above analysis was repeated for the data on the 
Antillean bat community (59 species on 25 islands) given 
in Baker and Genoways (1978). The sample histogram 
(see Fig. 2) as found by the Milne method gave the esti- 
mates: 

(C)  = 3.441, o-(C) = 0.051. (Sample size 1000) 

The method of random interchanges gave: 

(C)  = 3.451, o-(C) = 0.055. (Sample size 1000) 

The observed matrix had the score C(Antilles)--3.57, 
which exceeded the (estimated) mean by 2.6 times the 
(estimated) standard deviation (Milne method), or 2.2 
times (method of random interchanges). To confirm the 
rarity of the observed matrix, of the 1000 allowable ma- 
trices randomly generated by the Milne method, only 
20 (2.0%) were found to be so highly exclusive. By the 
"method of interchanges", 37 (3.7%) of a sample of 1000 
allowable random matrices were as exclusive. 

A complementary test 

Although the tests above give evidence of some weight, 
the work shares a defect with all the previous studies 
on this topic using allegedly random samples: they have 
never been proved random. As discussed in Roberts and 
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Table 1 

n (Number of interchanges) 

(0) 10 20 100 

N (Number in the sample) 
(1) 1000 1000 1000 

(C> 
(9.53) 9.40 9.32 

Number with C_> observed 
(1) 9 0 0 

200 400 

I000 1000 

9.12 9.11 9.11 

0 0 

Stone (1990), the possibility is left open small though 
it may appear - that the selection method does not yield 
a sample having (at least asymptotically) the distribution 
in the ensemble. 

We therefore repeat here, for the Vanuatu case, the 
complementary test described in the previous paper: we 
carry out n random interchanges on the observed inci- 
dence pattern, where n is only a small fraction of the 
total number of checkerboard units ( = M ( M - - 1 ) x  C/ 
2 = 14676), and study the properties of the resulting ma- 
trix. Repeating this process N times (starting each time 
with the observed pattern), we have a sample of N matri- 
ces to compare with the observed pattern. 

The results for the Vanuatu data are shown in Ta- 
ble 1. 

Again, as in the previous paper, the implication of 
these results can be shaped into a challenge for anyone 
wishing to claim that the observed Vanuatu distribution 
is not exceptional: if this claim is true, then it should 
not be difficult to construct other colonisation patterns 
obeying the constraints (independently of the observed 
data, and not having some manifestly special design like 
that of the matrix _U above), which have a "local maxi- 
mum"  comparable in strength to that of the observed 
pattern. This means: patterns which can stand compari- 
son with one that, when a mere 0.14% of its checker- 
board units are altered, yields a pattern of lesser checker- 
boardedness, and does this for every such (random) alter- 
ation in a sample of i000. 

Conclusion 

The statistic C used above suggests itself as a handy 
tool in the analysis of species distributions. Its use has 
exposed the Vanuatu and Antilles data sets as resulting 
from unusual colonisation patterns, with significantly 
high checkerboardness. The null hypothesis - that the 
data differs little from what one would expect had the 
islands been randomly colonised - is to be doubted, at 
the (empirical) significance levels of P < 0.001 (Vanuatu) 
and P < 0.04 (Antilles). 

Although others have reached similar conclusions 
(e.g. Gilpin and Diamond (1982), Wright and Biehl 

(1982)), it should be noted that their work did not incor- 
porate the constraints assumed by Connor  and Simber- 
loft which are fully included above (and in our previous 
paper - Roberts and Stone (1990)). 

The constraints may well incorporate, as has been 
suggested, built-in hidden structures arising from compe- 
tition. But the above results show that, if so, they are 
far from including the full impact of the processes at 
work, as revealed in the significantly higher C-scores of 
the field data. 

Can we therefore conclude that evidence has been 
found here, for biological factors which tend to keep 
species apart? After examining this question, and prob- 
ing more deeply with the C-score technique, we believe 
that the truth is somewhat more complicated than this; 
a report is in preparation. 
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