ORIGINAL PAPER

Christian Johannisson · Peter Högberg

¹⁵N abundance of soils and plants along an experimentally induced forest nitrogen supply gradient

Received: 15 July 1993 / Accepted: 8 December 1993

Abstract ¹⁵N abundances of soils and a grass species (Deschampsia flexuosa (L.) Trin.) were analysed in a forest fertilization experiment 10 years after the last fertilization. Nitrogen had been given as urea, at seven doses, ranging from 0 to 2400 kg N ha⁻¹. Previously, we have shown that plants in systems experiencing large losses of N become enriched with ¹⁵N. This was explained by the fact that processes leading to loss of N, e.g. ammonia volatilization, nitrification followed by leaching or denitrification and denitrification itself, tend to fractionate against ¹⁵N. In this experiment, ¹⁵N abundance increased with dose of N applied in both grass and soil total-N, but more so in the grass. This was interpreted to be due to the grass sampling small but active pools of N subject to losses. In contrast, soil total-N largely consists of inactive N that does not immediately exchange with pools of N from which fractionating losses occur. Hence, soil total-N shows a large pretreatment ¹⁵N memory effect, and is, therefore, an integrator of the long-term N balance. When short-term changes (years, decades) in N balances are monitored using variations in ¹⁵N abundance, plants are more suitable indicators of such change than is soil total-N.

Key words ¹⁵N · Forests · N cycling · Soil N pools

Introduction

Elevated levels of nitrogen deposition, and adverse effects thereof on terrestrial and aquatic ecosystems, are of increasing concern (Aber et al. 1989; Schulze 1989; Tamm 1991). Högberg (1990b, 1991) proposed studies of the abundance of the stable nitrogen isotope ¹⁵N to monitor changes in the N balance of ecosystems. Processes leading to loss of N, i.e. NH_3 volatilization, nitrifi-

C. Johannisson (🖂) · P. Högberg

Section of Forest Soils, Department of Forest Ecology, Swedish University of Agricultural Sciences, S-901 83, Umeå, Sweden cation followed by denitrification or leaching, and denitrification, discriminate against the heavier ¹⁵N (Shearer and Kohl 1986). This leaves the remaining N enriched in ¹⁵N as suggested by Vitousek et al. (1989) and experimentally verified by Högberg (1990b, 1991) and Högberg and Johannisson (1993) studying plants in a forest fertilization trial.

When fertilizer N has a ¹⁵N abundance lower than that of soil-derived N, nitrogen fertilization should lower the ¹⁵N abundance of N in the system (Kohl et al. 1973). However, as stated above, when inputs of N are large, this initial decrease is followed by an enrichment in ¹⁵N (Högberg 1991) as a result of loss of N (Högberg and Johannisson 1993).

It has generally been concluded that the ¹⁵N abundance of vegetation reflects the ¹⁵N abundance of N sources available to the plants (Shearer and Kohl 1986). Commonly, plants have lower ¹⁵N abundances than soil total-N (Gebauer and Schulze 1991; Handley and Raven 1992; Virginia and Delwiche 1982; Vitousek et al. 1989), but exceptions have been reported (Pate et al. 1993). Gebauer and Schulze (1991) showed that the ¹⁵N abundance of both soil total-N and N in fine roots increased with depth in a spruce forest, but also that the ¹⁵N abundance of roots was 0.5–4.2 δ ¹⁵N (‰) lower than that of soil total-N.

The relation between the ¹⁵N abundances of plants and soils is evidently crucial when evaluations of N balances and the development of N saturation are to be based on plant samples (Högberg 1990b, 1991). For example, Sutherland et al. (1993) found a greater variability in ¹⁵N abundance of plants than of soils in durum wheat fields, and attributed this to the greater susceptibility of the small mineral-N pool to isotopic fractionation than the larger inert soil organic-N pool. In this paper we show how a wide range of defined N additions to a forest have affected ¹⁵N abundances of both plants and soils, and based on these observations, make inferences about soil N pool dynamics.

Materials and methods

The experimental site is located in a Norway spruce (*Picea abies* Karst.) forest on a gentle slope, at Nyby in northern Sweden ($64^{\circ}20^{\circ}N$, $18^{\circ}27^{\circ}E$, 370 m a.s.l.). The soil is a podsolized sandy-silty till supporting a rather poor tree stand. In 1966, when the stand was 142 years old, the mean tree height was only 16 m. The field layer is dominated by *Vaccinium myrtillus* L., while the grass species *Deschampsia flexuosa* (L.) Trin. is sparsely distributed (Kellner 1993). Soil pH_(H20) varies between 4.0–4.5 and 4.0–4.2 in the mor layer and in the upper 5 cm of the mineral soil, respectively (H.-Ö. Nohrstedt, pers. comm.). The C/N ratio of the H-layer of the mor is around 32. Deposition of N is below 5 kg ha⁻¹ yr⁻¹.

We studied the experiment D67 maintained by the Research Institute SkogForsk. Two blocks of plots, with seven 30×30 m plots each, had been fertilized with urea at seven levels (NO-N6) in the years of 1966, 1971, 1976 and 1981. Total additions of N varied between 0 and 2400 kg ha⁻¹. The experimental design is summarized in Table 1. We have not measured the ¹⁵N abundance of fertilizer-N, but know that the fertilizer was supplied by a Swedish manufacturer, Supra, which has been reported to produce urea significantly depleted in ¹⁵N (Högberg 1990b). Low annual additions of urea ($\overline{x} = 36$ kg N ha⁻¹), supplied by Supra, caused a consistent decline in ¹⁵N abundance in a nearby experiment during the period 1971–1989 (Högberg 1991).

Fertilized spruce grew consistently better than non-fertilized spruce, and responded positively to each fertilization without obvious signs of saturating responses to N. There was, however, no additional growth effect of N applications at levels greater than N4 (F. Pettersson, pers. comm.). In 1989, the annual increment of basal area on fertilized plots was 120–240% of that on control (NO) plots. Nitrogen fertilization also increased the coverage of *D. flexuosa* at the expense of *V. myrtillus*.

Ten cores (10 cm diameter) of the mor-layer were taken at random from the inner 20 × 20 m of each plot in late August 1991, i.e. 10 years after the last fertilization. The H-layer was used for analysis. A composite sample of a few grams of vegetative shoots of the grass *D. flexuosa* was taken from each of the plots (see Högberg et al. 1986). The samples were ovendried (70°C, 48 h). Subsamples of soils and grass were ground in a ball mill and analysed for total-N and ¹⁵N abundance (Haystead, 1983). Results are reported in per cent N and in δ ¹⁵N (‰): δ ¹⁵N = 1000 × (R_{sample}-R_{standard})/R_{standard}(‰), where R=mass 29/mass 28, and the standard used was pure N₂ with a ¹⁵N abundance of -2.6 δ ¹⁵N (‰) relative to atmospheric N₂ (Mariotti 1983).

The dominating field layer species, V. myrtillus, assimilates little NO_3^- (Gebauer et al. 1988; Högberg et al. 1990; Lee and Stewart 1978; but see Ingestad 1973). In contrast, D. flexuosa, although preferentially utilizing NH_4^+ (Gigon and Rorison 1972), also readily assimilates NO_3^- (Högberg et al. 1986; Lee and Stewart 1978) and was, therefore, used as an indicator of ¹⁵N of the pools of N available to plants. Whether NH_4^+ or NO_3^- is taken up

 Table 1 Experimental design of the experiment D67 at Nyby

Number of blocks Number of treatments Number of fertilizations Years of fertilization	2 7 4 1966, 1971, 1976, 1981	
N applied (kg N ha ⁻¹)	Per occasion	Total
N0	0	0
N1	120	480
N2	180	720
N3	240	960
N4	360	1440
N5	480	1920
N6	600	2400

also depends on their concentrations and mobility in the soil system (see e.g. Marschner et al. 1991).

Data were analysed by the GLM procedure (e.g. $^{15}N_{soil}$ = block; covariate N-dose) of MINITAB (PC Version 8.0, Microsoft Corp., 1991). Partial correlation between $^{15}N_{soil}$ and $^{15}N_{grass'}$ and between $^{15}N_{soil}$ and N concentration in the soil, was calculated after elimination of treatment and block effects. It was tested whether the (theoretical) partial correlation was zero by means of the test statistic $t = r_1 (n - 4)^{1/2} / (1 - r_1^2)^{1/2}$, where r_1 is the coefficient of correlation between residuals. The statistic t has approximately a t-distribution with n-4 degrees of freedom under the null-hypothesis (a modification of Quade 1989). In the case of the soil samples, means per plot were used in the analyses.

Results

Ten years after the last fertilization, treatment effects on ¹⁵N abundance were still evident in the soil and in the grass. The ¹⁵N abundance of the soil and of the grass increased with dose of N fertilizer applied (P = 0.014 and P = 0.000, respectively; Fig. 1). The grass had a lower ¹⁵N abundance than the soil, but the increase in ¹⁵N was larger in the grass than in the soil (P = 0.000). Nevertheless, when treatment effects on ¹⁵N abundance were partialled out or accounted for, variations in ¹⁵N of the grass were highly correlated with the ¹⁵N abundance of the soil $(r_1 = 0.806, P = 0.002)$. For example, relatively high ¹⁵N abundance in the grass in treatment N1 in block 1 corresponded to a high ¹⁵N abundance in the soil. The difference between the grass and the soil was significantly smaller in block 1 (P = 0.004). The standard deviation of the mean for each plot varied between 0.6-1.7 δ^{15} N (‰) in the soil, i.e. it was large compared to the absolute values.

The concentration of N in the soil increased with level of fertilizer application (Fig. 2, P = 0.000). A block effect was found (P = 0.039); block 1 having a somewhat higher N concentration than block 2. There was no sig-

Fig. 1 ¹⁵N abundances of soils (*open symbols*) and of the grass species *Deschampsia flexuosa* (*closed symbols*) in 1991, in relation to amount of N applied during the period 1966–1981 to plots at Nyby. *Squares*, block I; *circles*, block II

Fig. 2 Nitrogen concentrations of soils (H-layer) in 1991, in relation to amount of N applied during the period 1966–1981 to plots at Nyby. Symbols as in Fig. 1

nificant treatment effect on the N concentration in the grass. When treatment effects were partialled out, neither the ¹⁵N abundance of the grass nor that of the soil were correlated with the N concentration of the soil $(r_1 = -0.031 \text{ and } r_1 = 0.012, \text{ respectively}).$

Discussion

Most N in soils is in the form of organic N (Tamm 1991), and the greater portion of soil organic N is fixed in stable forms (Jansson 1958; Paul and Clark 1988; Paul and Juma 1981). This humus N may constitute a passive organic phase existing more or less beside the pathways of the mineralization-immobilization turnover cycle (Jansson 1958). The active organic phase would then be more readily mineralizable N of plant and microbial origin plus N in the living microbial biomass. Nitrogen transformations, e.g. mineralization, nitrification and immobilization, within the biologically active pools of microbial N, NH_4^+ and NO_3^- are considerable although the actual concentrations of NH_4^+ and, especially, $NO_3^$ are low in forest soils (Davidson et al. 1992).

After fertilization urea is hydrolysed to NH₃, which readily reacts to form NH₄⁺. Estimates of volatilization losses of NH₃-N during the first few weeks after fertilizer application vary from <5% to >40% of the N applied in urea fertilized forests (Nason et al. 1988). NH₃ is, furthermore, chemically incorporated into stable organic compounds in the mor layer (Foster et al. 1985). Volatilization of NH₃ fractionates against ¹⁵N (Shearer and Kohl 1986), leading to ¹⁵N enrichment of the soil NH₄⁺ pool. Except for the first few weeks following fertilization, losses by NH₃ volatilization should be negligible from the acid soils at Nyby.

In this experiment, the last fertilization took place 10 years before the study. The ¹⁵N abundance of plant N should primarily reflect the ¹⁵N abundances of NH_4^+ and NO_3^- in the soil solution or on exchange sites plus active organic pools of N. Losses of soil-N in urea-fertil-

ized forests should be from the NH_3/NH_4^+ pool directly following fertilization, and thereafter from the $NO_3^$ pool, and therefore affect the isotopic composition of these pools, as well as that of pools of N exchanging with them (see Davidson et al. 1992). In contrast, the ¹⁵N abundance of soil total-N is an integrated measure of the ¹⁵N abundance of all pools of N, which involves dilution of treatment effects on ¹⁵N abundance by a large pool of old unreactive stable organic N. Hence, the change in ¹⁵N abundance of the soil is less evident than that of the grass (Fig. 1).

Theoretically, the plants could acquire a higher ¹⁵N abundance than soil total-N at high levels of N application (Fig. 1), as a result of increasingly higher ¹⁵N enrichment of active pools of N. This has now been observed in a nearby experiment similar to the Nyby trial (L. Högbom & C. Johannisson, pers. comm.). Plants and soils have also been studied along a steep natural N supply gradient c. 50 km from our site in Nyby; the difference in ¹⁵N abundance between plants and soils diminished with increasing supply of N there also (M. Högberg & P. Högberg, pers. comm.). Recently, Pate et al. (1993) reported that in Australian woodland disturbed by fire, resin extractable NO_3^- and NO_3^- in the xylem sap was enriched with ¹⁵N relative to soil total-N. The ¹⁵N abundance of plants increased with increasing utilization of NO_3^- , and some plants reached a higher ¹⁵N abundance than soil total-N. This contradicts the simple view that one only has to consider that products should become progressively depleted (Högberg 1990a), which would be appropriate in a closed system without losses.

We have assumed that fertilizer-N had a lower ¹⁵N abundance than soil total-N. The fact that the lowest ¹⁵N abundance of soil total-N is found in N2, from which treatment the ¹⁵N abundance progressively increases with amount of N applied, supports this assumption.

Exchange of N between active and passive pools of N, should, with time, reduce the magnitude of the ¹⁵N enrichment of the active pools of N. As the experiment was sampled 10 years after the last treatment, this could explain why the difference in ¹⁵N abundance in the grass between the lowest and the highest dose of N applied was only one-third of the difference found at Norrliden (Högberg 1990b), which was studied under conditions of experimental steady-state, i.e. during the 18th year of annual fertilizations. Estimates of the microbially available pool of N (Nordgren 1992) at Nyby showed no differences between treatments in 1993 (A. Nordgren, pers. comm.). Neither did we observe any increase in N concentration in the grass with increasing dose of N applied, which is in contrast to the large increase in soil N concentration (Fig. 2). Hence, the isotopic labelling of the pools of N available to plants is largely reflecting the N dynamics during and shortly after experimental treatments, and not the current N dynamics.

In conclusion, applications of unlabelled N to a forest ecosystem induced increases in ¹⁵N abundances of

both soils and plants, which were detectable 10 years after the last treatment. Workers interested in monitoring short-term (years, decades) changes in N balances of forests by use of variations in ¹⁵N abundance (Högberg 1990b) should observe the plants, which sample small, but active pools of soil N involved in losses from the system as well as other fractionating processes, rather than soil total-N, which mainly represents passive N carrying a large ¹⁵N memory effect. Those interested in the long-term N balance should analyze the soils.

Acknowledgements We would like to thank L. Bondesson for advice on the statistics, H.-Ö. Nohrstedt and F. Pettersson at Skog-Forsk and G.R. Stewart, Brisbane, Australia, for valuable information. The work was financially supported by the Swedish Research Council for Forestry and Agriculture (SJFR), and is also a contribution to the EC project NiPhys.

References

- Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378– 386
- Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148– 1156
- Foster NW, Beauchamp EG, Corke CT (1985) Immobilization of nitrogen-15-labelled urea in a Jack pine forest floor. Soil Sci Soc Am J 49:448-452
- Gebauer G, Schulze E-D (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining *Picea abies* forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198-207
- Gebauer G, Rehder H, Wollenweber B (1988) Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomical groups of Europe. Oecologia 75:371–385
- Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. J Ecol 60:93-102
- Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985
- Haystead A (1983) Analysis of nitrogen isotope ratios by mass spectrometry. In: Smith KA (ed) Soil Analysis: Instrumental Techniques and Related Procedures. Marcel Dekker, New York, pp 377-406
- Högberg P (1990a) ¹⁵N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486
- Högberg P (1990b) Forests losing large quantities of nitrogen have elevated ¹⁵N:¹⁴N ratios. Oecologia 84:229–231
 Högberg P (1991) Development of ¹⁵N enrichment in a nitrogen-
- Högberg P (1991) Development of ¹⁵N enrichment in a nitrogenfertilized forest soil-plant system. Soil Biol Biochem 23:335– 338
- Högberg P, Johannisson C (1993) ¹⁵N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150

- Högberg P, Granström A, Johansson T, Lundmark-Thelin A, Näsholm T (1986) Plant nitrate reductase activity as an indicator of availability of nitrate in forest soils. Can J For Res 16:1165–1169
- Högberg P, Johannisson C, Nicklasson H, Högbom L (1990) Shoot nitrate activities of field-layer species in different forest types I. Scand J For Res 5:449–456
- Ingestad I (1973) Mineral nutrient requirement of Vaccinium vitisidea and V. myrtillus. Physiol Plant 29:239-246
- Jansson SL (1958) Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships. Ann Roy Agr Coll Sweden 24:101-361
- Kellner O (1993) Effects on associated flora of sylvicultural nitrogen fertilization repeated at long intervals. J Appl Ecol 30:563–574
- Kohl DH, Shearer GB, Commoner B (1973) Variation of ¹⁵N in corn and soil following application of fertilizer nitrogen. Soil Sci Soc Am Proc 37:888–892
- Lee JA, Stewart GR (1978) Ecological aspects of nitrogen metabolism. Adv Bot Res 6:1-43
- Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural ¹⁵N abundance measurements. Nature 303:685–687
- Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce (*Picea abies* (L.) Karst.). Trees 5:14–21
- Nason GE, Pluth DJ, McGill WB (1988) Volatilization and foliar recapture of ammonia following spring and fall application of nitrogen-15 urea to a Douglas-fir ecosystem. Soil Sci Soc Am J 52:821–828
- Nordgren A (1992) A method for determining microbially available N and P in an organic soil. Biol Fertil Soils 13:195–199
- Pate JS, Stewart GR, Unkovich M (1993) ¹⁵N natural abundance of plant and soil components of a *Banksia* woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N₂-fixing abilities of component species. Plant Cell Environ 16:365–373
- Paul EA, Clark FE (1988) Soil Microbiology and Biochemistry. Academic Press, San Diego
- Paul EA, Juma NG (1981) Mineralization and immobilization of soil nitrogen by microorganisms. Ecol Bull 33:179–195
- Quade D (1989) Partial correlation. In: Kotz S, Johnson NL (eds) Encyclopedia of Statistical Sciences. John Wiley, New York, pp 117–120
- Schulze E-D (1989) Air pollution and forest decline in a spruce (*Picea abies*) forest. Science 244:776–783
- Shearer GB, Kohl DH (1986) N₂-fixation in field settings: estimations based on natural ¹⁵N abundance. Aust J Plant Physiol 13:699–757
- Sutherland RA, Kessel C van, Farrell RE, Pennock DJ (1993) Landscape-scale variations in plant and soil nitrogen-15 natural abundance. Soil Sci Soc Am J 57:169–178
- Tamm C-O (1991) Nitrogen in Terrestrial Ecosystems (Ecological Studies 81). Springer, Berlin, Heidelberg, New York, p 15 and p 75
- Virginia RA, Delwiche CC (1982) Natural ¹⁵N abundance of presumed N₂-fixing and non-N₂-fixing plants from selected ecosystems. Oecologia 54:317–325
- Vitousek PM, Shearer G, Kohl DH (1989) Foliar ¹⁵N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78:383–388