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Abstract. A bilinear formulation of elasto-dynamics is offered which includes, as a special case, "Hamilton's law of varying 
action". However, the more general bilinear formulation has several advantages over Hamilton's law. First, it admits a larger 
class of initial-value and boundary-value problems. Second, in its variational form, it offers physical insight into the so- 
called "trailing terms" of Hamilton's law. Third, numerical applications (i.e., finite elements in time) can be proven to be 
convergent under correct application of the bilinear formulation, whereas they can be demonstrated to diverge for specific 
problems under Hamilton's law. Fourth, the bilinear formulation offers automatic convergence of the "natural" velocity 
end conditions; while these must be constrained in present applications of Hamilton's law. Fifth, the bilinear formulation 
can be implemented in terms of a Larange multiplier that gives an order of magnitude improvement in the convergence of 
velocity. This implies that, in this form, the method is a hybrid finite-element approach. 

List of symbols 

b arbitrary constant l) coefficients of ~oj 
Ai, Aj vector of integrals, i = 0, j t time, sec 
A (v) linear operator on v to, t 1 limits of action integral, Hamilton's law 
A (v) Hamilton's form of A T end of time period, sec 
B (u, v) bilinear operator u, v u solution for displacement, m 
B(u, v) Hamilton's form of B ~i approximation to u, m 
Bij, Bij, B~j matrix of integrals u 0 initial value for u, m 
C constant, N/m v test function, m 
c number of floating-point operations ~ limited class of v, m 

per coef. evaluation x spatial coordinate, m 
f, f(x) force per unit length, N/m /~ flapping angle, rad 
F, F0, F L forces, N ? Lock number 
J number of functions in series for fi A time increment, sec 
k spring rate per unit length, N/m 2 2 Lagrange multiplier 
K spring rate, N/m # longitudinal stiffness EA, N (Eqs. 1-18) 
K,,ox maximum value of K # advance ratio of rotor (Eqs. 33-34 and figures) 
L~ Lagrangian, non-dimensional @i, Pi polynomial functions 
L length of beam, m ~o non-dimensional time, azimuth angle 
m mass per unit length, kg/m 3 ( ) variation of ( ) 
M mass, kg c~ W virtual work 
Mmo~ maximum value of M ( )' d ( )/dx 
n number of functions in series for ~ (') d( )/dt 
N number of elements in domain (*) d/d 
p momentum density, kg/sec [ ] matrix 
P, Po, Pr momentum, kg-m/sec { } column vector 
qi generalized coordinates ( ) row vector 

1 Introduction 

1.1 Background 

D i r e c t  t ime  m a r c h i n g  has  l o n g  been  a s t a n d a r d  p r o c e d u r e  fo r  the  s o l u t i o n  o f  i n i t i a l - v a l u e  p r o b l e m s  
in the  t ime  d o m a i n .  I n  r e c e n t  yea r s ,  howeve r ,  r e s e a r c h e r s  have  been  s t u d y i n g  a l t e r n a t i v e  m e t h o d s  
o f  s o l u t i o n  t h a t  a r e  m o r e  c o m p a t i b l e  w i t h  the  f i n i t e -d i f f e r ence  a n d  f i n i t e - e l e m e n t  m e t h o d o l o g i e s  
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used for spatially-dependent problems. There are several potential advantages to such an approach. 
First, finite elements in time offer a unified solution strategy for the space-time domain which could 
give synergistic improvements in computational efficiency. Second, finite elements in time could be 
applied to the energy (or action) rather than to the differential equations, thus saving the cost of 
derivation of these equations. Third, finite elements in time could be tuned to give minimum error 
at points for which the greatest accuracy is desired. 

Several such methodologies are now in the literature under various titles such as Petroff-Galerkin, 
weighted residuals, Hamilton's law, time finite elements, etc. Although all of these are based on the 
same fundamental laws of mechanics (Newton's laws or Hamilton's formulation), they differ greatly 
in their numerical application, and none offers a proof of convergence. In this paper, we offer one 
particular method, based on bilinear operation theory, for which convergence is assured. We also 
show that most of the other methods can be demonstrated to diverge under certain conditions. 

1.2 Previous work  

The concept of finite elements in time was introduced independently by Fried and Argyris (Fried 
1969; Argyris and Sharpf 1969; Oden 1972). Their work is based on direct numerical application of 
Hamilton's principle 

tl 
c~ S Lad t  = 0 

to 

Argyris correctly notes that, for this equation to hold, ~ q(to) and ~ q( t l )  must be constrained to be 
zero in the numerical approach. The same observation is made by Smith and Smith (1974). Cecil 
Bailey (Bailey 1975, 1976, 1977) performs a direct numerical solution of the more general Hamilton's 
law of varying action. 

t l  t~ t l  

c5 Lad t  - i~__ 1 qi + (~ W d t  = O 

to to to 

Although the trailing terms are often seen as irrelevant in the derivation of equations, they are 
important for numerical solutions. Bailey notes that the retention of these terms allows solutions 
for which 6 q need not be constrained at t 1 . However, he does constrain 6 q (to) and c~ 0 (to) to be zero 
due to the fact that, in an initial-value problem, q (to) and c)(t0) are specified. Virgil Smith (Smith 
and Smith 1977; Smith 1977) questions Bailey's interpretation of Hamilton's principle; and he 
proposes a Galerkin procedure for space-time problems that is numerically equivalent to Hamilton's 
law under certain restrictions on qi(t) and cSqi(t ). 

It was not long after this that other authors were attacking the direct numerical solution of 
Hamilton's law. In (Hitzl and Levinston 1980), the method is applied to problems of celestial 
mechanics. Simkins (1978, 1981) notes that, by breaking the domain into small segments, the 
numerical applications of Hamilton's law gives rise to h-version "finite elements" in the time domain. 
Smith (1979) replies, that the method of weighted residuals gives the same result but without the 
semantics problems associated with the word "variational". Further vigorous discussion continues 
in the literature on this subject (Bailey 1980; Smith 1981); however, most of it centers on the 
philosophical arguments associated with the different applications and not on the accuracy of 
numerical results. 

Baruch and Rift (1982) offer six possible formulations of finite elements in time, each based on 
Hamilton's law with various constraints on 6 q and 6 0 at t = to and t = tl. Each formulation gives 
a slightly different numerical solution algorithm. The authors note that their fourth method, for 
which 6 q (tl) = 0, gives by far the best convergence; but their first method, Hamilton's law as used 
by Bailey, gives worst convergence. (Baruch and Rift 1982) also use very small elements to obtain 
a marching algorithm, thus closing the gap between numerical integration and timewise finite 
elements. In (Rift and Baruch 1984), however, the same authors note that (under certain conditions) 
the finite element formulation can become numerically unstable; and this instability is demonstrated 
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mathematically. As a solution to the stability problem, the authors replace ~ q, which appears in 
Hamilton's law, with 6 ~/as suggested by Smith (1984). Thus, they make the observation that "6 q" 
in the formulation does not need to be restricted to a literal variation of q. Instead, Hamilton's law 
must hold true for all functions, ~ q, regardless of their origin. In essence, Baruch and Rift offer a 
weighted-residual (rather than variational) form of Hamilton's law. These ideas are further developed 
and applied in (Rift and Baruch 1984). In (Borri et al. 1985), a comment on (Rift and Baruch 1984), 
the authors claim that the six variations are artificial and do not adhere to the true meaning of 
Hamilton's law. 

Recently, the method of finite elements in time has also been applied to systems of equations 
with periodic coefficients, such as are present in the modeling of helicopter dynamics (Borri et al. 
1985; Borri 1986; Izadpanah 1985, 1986). Borri (Borri et al. 1985) applies a time-marching version 
of Hamilton's law (analogous to Euler integration) to helicopter problems. However, in contrast to 
(Baruch and Rift 1982) and (Rift and Baruch 1984), he notes that the trailing terms in Hamilton's 
law should be written in terms of unknown momenta (Pli and P2i) rather than explicitly in terms of 
a La/e(ti. 

t l  t l  

~ Ladt + ~ [-r2i(~qi(tl) a t. Pii(~qi([o)] ~- ~ (~ Wd t  = 0 
t o i = 1 t o 

This allows a natural convergence to 4i (to) rather than a constraint of qi (to). This concept is further 
developed in (Borri 1986). Izadpanah (1985, 1986) offers a fully bilinear formulation of finite 
elements in time, which is the basis of this work. 

1.3 Scope o f  work 

In this paper, we offer a more general formulation of elasto-dynamics than that presented in 
(Izadpanah 1985). In particular, we present a bilinear formulation that is applicable to boundary- 
value, initial-value, and periodic problems of elasto-dynamics. This more general formulation is 
stated in a completely generic way, but specific examples are given for beams and spring-mass systems 
to illustrate the implementation. The development here leads to several important advantages of 
the present formulation over previous numerical work based on Hamilton's law, Hamilton's princi- 
ple, or Galerkin methods. Of primary importance is the establishment of a convergence proof for 
the new formulation as well as the demonstration that numerical applications of Hamilton's law 
can (and often do) fail to converge. Applications of the new and old methods to problems of 
helicopter stability are also presented for the case of simple helicopter blade flapping, and these 
yield insight into the numerical effectiveness of the method. 

2 Formulation 

2.1 Special case o f  spring-mass system 

Perhaps the best way to introduce the bilinear formulation of dynamic systems is to compare it with 
the standard, bilinear formulation of elasticity. We begin with the governing equation for a uniform 
beam-segment of length L on elastic foundation (Fig. 1). 

k u - # u " = f  

FL = # ." (L), Fo = # u" (0) 

u (0) = Uo, u (L) = UL 

(1 a) 

(l b,c) 

(1 d,e) 

We consider the segment to be an isolated free-body element so that Fo, FL, Uo, and UL may or may 
not be known, depending on the problem. 

Next, we compare Eq. (1) with the equation of motion for a simple spring-mass oscillator over 
a given length of time 0 < t < T (Fig. 2), 



76 

l) 

k 

Fo H f(xb ~.~ 
k 

t x--~u(x) 

1 2 

.l u(t) 

Computational Mechanics 3 (1988) 

Figs. 1 and 2. 1 Schematic of beam; 2 schematic of 
spring-mass-system 

K u  + Mi i  = F (2 a) 

P T =  M f i ( T ) ,  P o =  Mfi(O) (2 b, c) 

u (T) = ur, u (0) = u 0 (2 d, e) 

where P0, Pr ,  u0 and ur may or may not be given, depending on the problem. Except for the sign 
of the second-derivative term, Eqs. (1) and (2) are exact mathematical  analogies of each other. 

Now, the bilinear formulation of the spatial problem, Eq. (1), is well known, (Babuska and 
Szabo, to be puN.; Rektorys 1980) and can be written in operator notat ion as 

B ( u , v ) = A ( v )  for all v (3) 

where 
L L 

B ( u , v ) = ~ ( k u v + # u ' v ' ) d x ,  A ( v ) = ~ f v d x + F s v ( L ) - F o v ( O )  (4a, b) 
0 0 

That Eqs. (3) and (4) are equivalent to Eq. (1) is easily seen from integration by parts 

L 
B (u, v) - A (v) = ~ (k u - # u" - f )  v dx  - [FL - # u' (L)] v (L) + [F0 - # u' (0)1 v (0) = 0 

0 

(s) 

For Eq. (5) to equal zero for all v (x), clearly each of Eqs. (1 a)-(1 c) must  hold. 
By analogy, it would seem that a bilinear formulation of dynamics could be set in the same way 

as Eq. (3) with 

T T 
B(u ,v )  = ~ (Kuv  - Mi~iJ)dt, A (v) = ~ F v d t -  P r y ( T )  + Pov(O) (6a, b) 

0 0 

Again, integration by parts shows that Eqs. (3) and (6) are equivalent to Eq. (2). 

T 

B(u ,v )  - A (v) = ~ (Ku + Mi i  - F ) v d t  + [ P r -  M~i (T)] v ( T )  - [P0 - Mr7 (0)] v(0) = 0 (7) 
0 

For Eq. (7) to be valid for all v (t), clearly each of Eqs. (2 a)-(2 c) must  hold. Therefore, Eqs. (3) and 
(6) comprise a bilinear formulation of the dynamics of a spring-mass system. 

2.2 Variational form 

In order to obtain greater insight into the nature of this formulation, it is instructive to consider a 
special case which has importance in the spatial problem. In particular, we refer to the case v = 6 u, 
in which v is taken as the variation of the displacement. In that case, the spatial problem, Eqs. (3) 
and (4), reduces to 
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£ L 

ku2 + ~#u "2 d x =  f ~ u d x  + Fcc~u(L)-Fo6u(O ) (8) 

0 0 

Equation (8) has important  physical significance in that it equates the variation of  the potential 
energy to the virtual work done on the system by f(x),  F L, and F 0 . This, then, is a variational (or 
energy) formulation of the spatial problem. 

By analogy, we can write a variational formulation of the temporal problem, Eqs. (3) and (6), 
when v = ~ u. 

T T 

aff'Ku2-SM 21dt=fFaudt-  au(r)+P° u(O)k2 2 (9) 
0 0 

Equation (9) also has a direct physical interpretation. The left-hand term is the negative variation 
of action. The integral term on the right-hand side can be thought  of  as the "virtual action" applied 
to the system over the time interval 0 < t < T. Here, "virtual action" has the precise definition of 
the time-integral of  virtual work. This definition of  virtual action leads to a physical interpretation 
of the last two terms in Eq. (9). Consider the following manipulation. 

T T 

Virtual acti°n = f 6u(t)Fdt = f du(t) dP (10a) 

0 0 
PT 

Virtual action = ~ 6 u d e  (10 b) 
Po 

where P is the momentum.  
A comparison of  Eq. (10b) with Eq. (9) identifies the last two terms in Eq. (9) as the virtual 

action entering (Poc~Uo) and leaving (Prc~ ur) the system at the boundaries of the time interval. 
Therefore, just as the right-hand side of  Eq. (8) contains both the virtual work done on the spatial 
domain 0 < x < L and the virtual work done across the boundaries, the right-hand side of  Eq. (9) 
represents both the virtual action done during the time domain and the virtual action that crosses 
the boundaries. Thus, we interpret Eq. (9) as a variational statement of dynamics. Namely, the 
variation of the action plus the virtual action over any time interval 0 < t < T must sum to zero. This 
is easily generalized to a complete theory of elastodynamics. In particular, the variation of the action 
plus the virtual action done on the domain must  sum to zero (Fig. 3). On the spatial boundaries 
[(x = 0, L), (0 < t < T)], the "virtual action" is the temporal integral of  the virtual work. On the 
time boundaries, [(t = 0, T), (0 < x < L)], the "virtual-action" is taken to mean the spatial integral 
of virtual-action density which is defined as p 6 u, momen tum per unit length times virtual displace- 
ment. On boundaries that cut across space time (such as a moving consraint), the virtual action 
takes the form of a convective momentum/force  balance. 

I I I I I 

Fig. 3. Space-time domain and boundaries 
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2.3 Comparison with Hamilton's law 

At first glance, the manipulat ion in Eqs. (1)-(9) may seem almost trivial because the various forms 
of the equations are all equivalent when u (t) is the exact solution (provided no impulsive forces 
exist). However, these various forms can give quite different results when applied to approximations 
for u (t), ~ (t) ~- u (t), and when enforced over only a limited class of v (t), ~ (t). The true numerical 
convergence depends upon the nature of the operators in Eq. (3), B (fi, 3) and A (3). 

For the bilinear formulation presented here and in (Borri et al. 1985; Borri 1986; Izadpanah 
1985, 1986), these operators are defined by Eqs. (6 a) and (6 b). We note that B (fi, t~) is a symmetric, 
bilinear operator; and A (~) is a linear operator that contains possibly unknown momenta ,  Po and 
PT. The numerical method of every other reference involves replacement of  these unknown momenta  
by their Mzi counterparts. This changes the basis of numerical convergence because it places the 
trailing terms into the bilinear operator (both u and v appear in Mi~v). Thus, we have for the 
methods (Fried 1969; Argyris and Scharpf 1969; Oden 1972; Smith and Smith 1974, 1977; Bailey 
1975, 1976, 1977, 1980; Smith 1977, 1979, 1981; Hitzl and Levinston 1980; Simkins 1978, 1981; 
Baruch and Rift  1982; Rift  and Baruch 1984a, b). 

T 
/?(fi,~) = A (~), B(~t ,~ )=~(K~t~-M~d)d t+M~(T)~(T) -M~(O)~(O)  (11 a,b) 

0 

T 

fl(~) = ~F~dt ( l l c )  
0 

with various constraints on ~ (0) and ~ (T). The Galerkin formulation 

T 
B(~t,~) = ~ (K~t + Mh')~dt (12) 

0 

is also suggested by Smith (1977). It is equivalent to Eq. (11 b) provided ~ has C 1 continuity. 

Several observations are important  in the comparison of the present formulation, Eq. (6), with 
the majority of previous work, Eqs. (11) and (12). First, we note that  the trailing terms in Eq. (11 b) 
destroy the symmetry of the operator. (In the following section we will also show that they destroy 
convergence.) The only means to eliminate them in Hamilton's  law is to constrain v (0) = v (T) = 0, 
which results in Hamilton's  principle. This is done in (Argyris and Scharpf 1969) and (Smith and 
Smith 1974), and in method 2 of (Baruch and Rift  1982). However, with or without this constraint, 
the equivalence of Eqs. (11 b) and (12) implies that the natural boundary conditions (P0 = Mu0 and 
P r  = M @ )  will not  be enforced by/~ (fi, 3) = A (~). Thus, these methods require constraints on the 
velocity end conditions. Therefore, the trial functions fi must  be chosen from C 1 (velocity and 
displacement continuity) rather than from the more general CO; and this over-constraint of the 
problem impacts convergence. Equation (12) suffers from the same drawback, since the ~" terms 
demand a piecewise con t inuous / /which  simplies ~ must  be from C ~, not C °. 

In contrast, Eq.s. (6) show that the present formulation preserves a symmetric operator; and Eq. 
(7) shows that Mfi will converge naturally to the desired momen tum as B (fi, 3) - A (3) approaches 
zero. In fact, Eq. (7) implies a quite different constraint on v than has been previously prescribed 
for initial-value problems. In particular, at an end for which P is known, v must  not be zero so that 
M~ will converge to P. On the other hand, at an end for which P is not known, v must  be set to 
zero in order to eliminate the unknown.  (Ari alternate strategy, suggested in (Borri et al. 1985; Borri 
1986) is to leave P0 or P r  as unknown variables. This however, is not allowed in the convergence 
proof.) 

For boundary-value problems, the variational from v = 6 u exactly fulfills this requirement since, 
if u is prescribed at some point (P unknown),  then v = 5 u = 0. For  initial-valsue problems [u (0) and 

(0) prescribed], however, v = 5 u gives exactly the wrong v constraints (v (0) = 0, v (T) • 0, rather 
than (v (0) ¢ 0, v (T) = 0). 
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3 Convergence 

3.1 Approximate solutions 

In the numerical formulation of the problem, we assume a solution for u from some limited class 
of functions ~b/, j = 1, J. 

J 
=  :(t)qj (13) 

j = l  

Now, fi is only an approximation to u (except in the limit as J ~ oc) and can exactly satisfy neither 
the differential equations and boundary conditions of Eq. (1) nor those of Eq. (2). Similarly, 
cannot satisfy the bilinear formulation, B (fi, v) = A (v), for all possible v. A numerical solution can 
be obtained, however, if one restricts the class of v to some subspace, ~, such that B (~, F) = A (F) for 
all F in the subspace. For example, we can write 

f(t) = ~ ~&(t)ri (14) 
i=1 

Any mathematical  p roof  for the numerical solution for u (t) must  show that, as g is expanded to 
cover more and more of the space of admissable functions, then ~ will converge to u. 

Clearly, the choice of  q5 i and ~pi is related to the convergence in a very direct way. In the bilinear 
formulation, ~Pi and q5 i are completely independent. In the variational case, however, ~i = qSi, and 
ri = c5 qi. Clearly, then, the convergence will be affected by the choice of bilinear formulation. In this 
section, we wish to address this convergence. 

3.2 Sufficient proof of  convergence 

In this section, we deal the coup de grace to Hamilton's  law (as a computat ional  tool) by showing 
that: (1) the nonsymmetric terms in/~ (z), c5 z~) preclude proof  of convergence, and (2) specific cases 
of divergence can be demonstrated for well-formulated problems. On the other hand, the bilinear 
formulation is proven to converge; and specific numerical examples are given for which the bilinear 
formulation eliminates the divergence found with Hamilton's  law. 

For  spatial boundary-value problems, convergence can be proven based on the following proper- 
ties of B(u,v) and F(v), (Babuska and Szabo, to be publ.; Rektorys 1980). 

(1) F(v) linear: F(bv) = bF(v) 
(2) B (u, v) bilinear: B (b u, v) -- B (u, b v) = b B (u, v) 
(3) B (u, v) symmetric: B (u, v) = B (v, u) 
(4) B (u, v) positive definite, i.e. 

T 
B(u,u)>O if ~ u 2 d t > 0  

0 

For  the temporal problem, the positive-definite property is lost; but convergence can still be proven 
for both initial-value and boundary-value problems (even for a nonsymmetric B) provided that: (1) 

and ~ are chosen from C °, and (2) and alternative property holds in lieu of numbers (3) and (4) 
above. This property is the Lax-Milgram Lemma (Babuska and Szabo, to be puN.; Rektorys 1980; 
Aubin 1979). It is a sufficient condition for convergence and is given by 

IB(u,v)l < C (u2+ ~a)dt  x (v2+ ~2)dt = Cllu, itJI x Ifv, iJJI (15) 

Where C is a constant independent  of u and v. The above condition ensures that small perturbations 
in problem parameters will result in small perturbations to the generalized solution. 

The verification of Eq. (15) for the bilinear formulation given in this paper, Eq. (6), follows from 
the Schwarz inequality: 
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T T 
IB(u,v)l <=  Klul × Ivl dt + fMl l × leldt 

0 0 
T T 

gmax~[U ] x Iv id t  + MmaxSVtl × I~[dt  
0 0 

VT -]1/2 
=< KmaxL!u2dtJ x VrL!v2dtj31/2 

[-T -]1/2 

1_0 _1 

< ~ x  + M2max (/./2 + t72)dt x (/)2 + b2)dt 

Thus, the property is demonstrated to hold if we take 

c = I / K G  + M G  

Computational Mechanics 3 (1988) 

(16) 

3.3 Failure of Hamilton's law 

In contrast, in the numerical formulation of Hamilton's  law,/? (u, v) has two extra bilinear terms 
that prevent the establishment of the above property 

I/7 (u, v)l < IN (u, v)l + M [~i (0)1 Iv (0)[ + Mini (T)I Iv (T)l (17) 

The two underlined terms in IB (u, v)l cannot be limited to less than the norm in the above equation. 
For example, consider 

v ( t )= l ,  ~ ( t ) = 0  for a l l t  (18) 

0, O < t < _ T - A  (19) 

u( t )= 1 T - 1  T - A < t < T  

(t) = / 0 ~  0_< t_< T -  A (20) 

/ , T -  A < t <  r (21) 

It follows that 
1 

lu (T)[ x Iv (T)I = - (22) k 

v a + iJ 2) dt = T~/2 (23) 

I ! (u2+f i2 )d t l l / 2=IA+A; l /2  (24) 

Thus, no matter how large one maskes C, there is always a A small enough such that 

M > jIu, fiII x IIv,~ll = C (25a, b) M[~ (T)I Iv (r) t  = X 

This does not imply that numerical application of Hamilton's  law will never converge, as convergence 
has been demonstrated in a great number  of cases. However, it does imply that one can find 
individual examples for which convergence will not  occur. 
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4 Numerical applications 

4.1 M a t r i x  formula t ion  

Numerical solutions to dynamics problems by use of the above, bilinear formulation can be couched 
in a matrix framework. We consider an approximate solution, fi, as in Eq. (13) with a restricted class 
of test functions, ~, as in Eq. (14). Substitution into Eqs. (3) and (6) gives a matrix formulation of  
an approximate solution for a temporal problem. 

<ri) [Bij ] {@} = <r i )  £Ai} (26) 

where 
T T 

Bij = [~ (Kq)iqSj - M ( v i ~ j ) d t ,  Ai = ~ F ~ i d t  - P T ~ i ( T )  + Po~i(O) (27a, b) 
0 0 

Since Eq. (26) must be valid for all r i, we can eliminate ri from the equation to obtain n equations 
in J unknowns. 

The constraints on t~ and ¢ must now be included, and this can be handled in a variety of  ways. 
For example, for an initial-value problem, we have (~ (0) = u 0, Mfi (0) = P0) as given, with ~ (T) 
and PT unknown. Thus, we hve two constraints. 

J 
~(0) = ~" Oj(O)q i = u0, ¢(T) = ~ tpi(T)r i = 0 (28a, b) 

j= l  i=l  

Equation (28a) can be included as an augmented equation in Eq. (26). Equation (28 b) can be 
included through multiplication by an aribitrary Lagrange multiplier, 2, and then by addition of 
that term to the left-hand side of Eq. (26). This gives, as a constrained equation, 

F [Bij] (~ i  T)} ( } A; 
A ; =  ~ F ~ i d t  + Po~i(O) (29a, b) 

 u0j' o 

where t p i ( T ) P T  has been eliminated from A' due to the constraint v (T) = 0. Equation (29) is taken 
with J = n (the same number of functions in fi and ~) to yield n + 1 equations in n + 1 unknowns 
to be solved for qj and 2. 

Of course, there are other ways to do this besides use of the Lagrange multiplier. For example, 
if we take 

~ (0) = 1, q~j(0) = 0 j # 1 (30a) 

~ (T) = 1, ~pi(T) = 0 iva 1 (30 b) 

Then the constraints become trivial 

ql = U0, r 1 = 0 (30 c) 

The Lagrange multiplier is, then, effectively eliminated from Eq. (29); and we have in n - 1 equations 
in n - 1 unknowns 

' = • - • uo (31 a) 
[B~:I , (A;~ ( B ~ l J  

where B~j is Bij with the first row and column removed, and where 

2 = A~ - -  B l l U  0 - -  ( B 1 2  . . .  Bin ) (31 b) 
n 

In contrast, the same development for Hamilton's law differs slightly (but significantly) in its 
numerical formulation. Equations (27 a) and (27 b) become: 
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T T 
Bij = ~(KgPi~i- M~iOj)dt  + MOi(T)() j (T)  - MOi(O)@(O) Ai--- ~FdPidt 

o o 
(32 a, b) 

Furthermore,  an initial-velocity constraint must  be added to Hamilton's  law which implies a second 
auxiliary equation. Also, the relation v = 8 u implies constraints on both v (0) and ~ (0) which implies 
two Lagrange multipliers. The results is 

F[Bo] {qSi(0)} {q~/!0)}l f{qj} ) J { 2 i } ] ,  
= u0 (33) 

k 0 

with Ai from Eq. (32b). A comparison of Eqs. (29) and (33) reveals the similarities and differences 
in the two formulations. 

Again, 21 and 22 can be eliminated, if desired, by judicious choice of q~, ql, and q2. Thus, the 
Hamilton's  formulation is similar to the bilinear formulation but with differences in numerical 
details. However, it is exactly these details that cause Eq. (29) to converge unconditionally; whereas 
Eq. (33) can results in divergence. 

A similar development occurs for other choices of end conditions or for other constraints on ~. 
For multiple elements (i.e., many finite-elements in time over a domain), each solution is applied 
sequentially, exactly as above, over the time domain of interest, with the end values of one segment 
[u (T) and ~ (T)] used as the initial conditions for the next. 

4.2 Significance of Lagrange multipliers 

Lagrange multipliers, such as those introduced in Eqs. (29)-(33), often have important  physical 
meaning; and this is the case in the present formulation. A comparison of Eqs. (26) and (27) with 
(29) reveals that  2 is numerically identical to Pr ,  the final momentum.  This fact provides an 
extraction technique to obtain an improved estimate of  fi (T). 

Equation (7) shows that P r  must  approach M u  (T) as the number  of  functions, n, is increased. 
However, one would expect Pr/M to converge much more rapidly to fi (T) than does the actual 
time derivative of fi, 

J 
~t(T) = ~ ~i(T)qj (34a) 

j = l  

The reason for this expectation is that Eq. (34 a) involves derivatives of the trial functions, ~bj, which 
can be more sensitive in convergence than ~bj itself. On the other hand, the formulation 

i~(T) ~_ 2/M (34b) 

is not subject to these sensitivities and represents more of a least-squares estimate of the final 
velocity. A similar effect is present in the space domain for which it is well known the summation 
of forces and moments  on a beam is a much more accurate measure of stresses at an end than are 
the second and third derivatives of deflection at that  end. Equation (31 b), the special case of v (T) 
constrained by choice of ~i, shows this clearly. The extraction equation for 2 (in this case separate 
from the solution for q) is expressed as a summation of external forces and internal momenta.  

Therefore, whether or not one explicitly invokes a Lagrange multiplier to enforce v (T) = 0, one 
should calculate 2 = P~ in order to obtain the mo st accurate estimate of u (T). In the case of multiple 
elements, this is extremely important.  Thus, u (T) and P r  for a particular segment should be used 
directly as u (0) and P0 for the next segment. Such a formulation is analogous to the mixed or hybrid 
finite-element method in space for which deflections and stresses are the state variables. It should 
be noted here that, in the marching algorithm of  (Borri 1986), P r  is moved to the left-hand side of 
the equation (along with u (T)) as an unknown.  Thus, al though v (T) is not  formally set to zero, the 
numerical result is the same as the present method with Lagrange multiplier. However, we recom- 
mend the formulat ion without an explicit Lagrange multiplier, Eq. (31 a). 
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Once we have made the above observations, it is quite natural to extend this concept in order 
to obtain a better approximation for the momentum P (t) (i.e., for the velocity) at any point in the 
domain. Having recognized that the Lagrange multiplier represents a momentum balance, we can 
write the momentum at time t as 

t 

P ( t ) = P o + ~ ( f - K ~ ) d t  or P ( t ) = A o - ( . . . B o j . . .  ) {qj} (35a, b) 
o 

where 
t g 

Ao = Po + f fdt  and Boj= [.K(ajdt (35c, d) 
o o 

This is again analogous to the spatial problem, in which force equilibrium gives 
x 

F(x) = Fo + 5 (K~t - f )  dx (35e) 
0 

One can easily prove that P(T) in equation (35b) is identically equal to P r  = 2 of the bilinear 
formulation, provided that v (t) = 1 can be exactly represented by a linear combination of the ~pi's 
retained in the numerical results. This is most certainly the case for any practical set of qJi 's. 

5 Numerical results 

In this section, we apply three finite-element formulations to the flapping dynamics of a helicopter 
rotor blade. The system is a second-order differential equation with periodic coefficients. 

D + 8 I1 + ~/t simp]/~ + I1 + 8 (~ #cos~p +/x2sin2~p)]/7 = 0 (36) 

The solution of this equation must be found over one period (0 < ~¢ < 2 re) in order to find stability 
information from the Floquet transition matrix, [24]. 

We will now compare numerical results from application of Hamilton's law of varying action 
(Method H) with results from the new, bilinear formulation, (Methods B 1 and B2). In B 1, ti (T) is 
obtained from the series, Eq. (34 a). In B2, u (T) is obtained from the Lagrange multiplier, Eq. (34 b). 
The basis functions for both ~bi and ~Pi are taken as Legendre polynomials over the range [ -  1, 
+ 1], unless otherwise noted in the results. We have obtained results with other polynomials; and 
there is little effect of polynomial choice, as long as the polynomials are reasonably orthogonal. All 
results are for one element (N = 1) unless stated otherwise. 

5.1 Hover 

For comparison purposes in the following results, we will consider fl (2 re) and/~ (2 n) in response to 
the initial conditions fl (0) = 0, fl (0) = 1. These values are two of the four elements of the "Floquet 
transition matrix"; and relative comparisons with these elements are representative of those for the 
other two elements and for the Floquet eigenvalues themselves. Figure 4 presents the results of 
Methods H and B as compared to an exact solution for # = 0. The response,/7 (2 n), is plotted versus 
n, the number of polynomials used in the series. At 6 polynomials, the error with Hamilton's law is 
about 2%; and little improvement is obtained when the 7th polynamial is added. However, by 9 
polynomial terms, the errors has rapidly converged to less than 0.1%. With the bilinear formulation, 
the convergence is even better; and only 8 polynomials are needed to reach 0.1%. accuracy. At 6 
polynomials, however, the accuracy of the bilinear formudlation is slightly inferior to that of 
Hamilton's law. The reason for this cross-over is straightforward. In Hamilton's law, one enforces 

(0); and this is more accurate when fewer functions are used, provided it converges. However, as 
more terms are added, this advantage disappears. This is analogous to the advantage of Galerkin 
over Ritz methods when only a few comparison functions are used. However, once enough terms 
are used so as to converge on ~ (0), this difference is lost. 



84 Computational Mechanics 3 (1988) 

0.042 

0.0/+I 

~g 
N 0.0/+0 ' 

0.039 

/ \ \ 
/ \ 

/ F" 
/ 

/ 

(,/" 

o Exact 

- - ~  - Hamilton's low 

---~-- Bitineor formutotion 

0.030 

O.OZfi E Exact 
H Homitfon's law 

\ B1 B1 Biiineor with # from poty. 
0.020 / 82 Bit[n. ,~ from [ogr. mutt. 

\ 0.015 

~ 00101 8; 

0.0050 H ~  E 

-0.005 

0.038 ~ I ~ r ~ I I -0.010 
7 8 0 10 11 12 13 1/+ 

No. of basis functions No. of basis functions 

4 5 

Figs. 4 and 5. Flapping at end off period, # = 0.0; Flapping velocity at end of period, # = 0.0 

8 9 10 11 12 13 

In Fig. 5, we present the same data for/~ (2 re). In this figure, two curves are provided from the 
bilinear formulation. B1 is /~ from the polynomial derivatives and B2 is /~ from the Lagrange 
multiplier. Comparison of the H and B1 curves provides the same relative conclusions as in Fig. 4. 
However, with B1, the convergence for/~ is seen to be much slower than that for/3. With B2, on the 
other hand, there is a dramatic improvement in/~ convergence; and the accuracy of # (2 re) from 2 
rivals that of/3 (2 ~) for accuracy. Thus, our original speculation on the convergence of the Lagrange 
multiplier is supported. 

5.2 Forward flight 

Next, we move on to higher advance ratios, which introduces periodic coefficients into the equations. 
Figures 6-9 show the evolution of/3 (2re) convergence as advance ratio is increased. No exact 
solutions are available, but high-precision time-marching results are taken as essentially exact. In 
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Fig. 6, at # = 0.1, we see a definite retardation in the convergence of  Hamilton's law, with 1% error 
still present at n = 10. (Note that Fig. 6 has a compressed scale as compared to Fig. 4.) The bilinear 
formulation, however, converges rapidly. At p = 0.3, Fig. 7, a further degradation in Hamilton's 
law is seen, and the results oscillate about the true solution as n is increased. The error is now 4% 
for n = 10. The bilinear formulation, on the other hand, still converges quickly with less than 0.1% 
error at n = 10. At # = 0.5, Fig. 8, greatly expanded scale is required to capture the large errors 
present in results with Hamilton's law. At n = 12, the error is over 100%. In contrast, bilinear results 
are essentially converged at n = 1 l. Last, at # - 0.7 (Fig. 9), the same scale shows a better, but still 
poor, results for Hamilton's law; while convergence is achieved at n = 11 for the bilinear formulation. 

Additional insight into the convergence problems of Hamilton's law can be obtained by a cross- 
plot of  this same data versus advance ratio for specified valves of  n. Figure 10, for 10 basis functions, 
shows that the accuracy decreases with advance ratio and that the bilinear formulation has only 
20% as much error as does Hamilton's law. At 11 basis functions, Fig. 11, we see that Hamilton's 
law and the bilinear formulation each show improved convergence; but the bilinear form is essentially 
exact whereas Hamilton's law has 10% error at # = 0.9. As we add one more basis function, 
n = 12, Fig. 12, we see clearly the numerical difficulties encountered by Hamilton's law. Although 
the error is maximum near # = 0.5, large errors still persist at all advance ratios greater than 0.5. 
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Interestingly, at 13 basis functions, Fig. 13, the convergence anomaly disappears; and we return to 
a more uniform curve. Still, however, results with the bilinear formulation excel those with Hamil- 
ton's law. Thus, we see that Hamilton's law can sometimes yield spurious results despite the fact 
that it often does converge. Furthermore, for 7 basis functions or more, results with Hamilton's law 
are always less accurate than those with the bilinear formulation. 

5.3 Numerical efficiency 

Although a detailed discussion of the numerical efficiency of the bilinear formulation is beyond the 
scope of this paper, we would like to demonstrate that the method is competitive with conventional 
time-marching solutions. Figure 14 provides three plots of the error in flap damping in hover 
(calculated from the Floquet transition matrix) versus the required CPU time on a VAX 750 
computer. One plot depicts the performance of "Hamming's modified predictor-corrector" (from 
the IBM Scientific Subroutine Package). The second plot is the performance of B 1, the bilinear 
formulation with velocity from ~. The third plot is the performance of B2, the bilinear formulation 
with Lagrange multiplier. The predictor-corrector results, indicated by the squares, are calculated 
for I00 to 900 time steps in increments of 100. The bilinear results are calculated for 6 to 15 
polynomials in increments of 1. 

Several important conclusions can be drawn from this figure. First, at low CPU's (i.e., at larger 
errors), the predicator-corrector is much more efficient than is the bilinear formulation. This is due 
to the relatively high cost of performing the required integrals. However, as the required error 
becomes more exacting (and CPU increases), the rate of convergence is quite different among the 
three methods. For the predictor-corrector, if one neglects the start-up CPU, the error decreases as 
CPU -5 (which is to be expected to a fourth-order method). For B1, however, the error decreases 
as CPU-t3; and, for B2, the error decreases as C P U  -29. We conclude, therefore, that the bilinear 
formulation with Lagrange multiplier is spectacularly better than the same method with velocity 
from ~. We also conclude that, for small error bounds, the bilinear formulation can actually be more 
efficient than time marching, even for constant-coefficient cases. 

As a final comparison, we look at the numerical efficiency as a function of both the number of 
elements, N, and the number of polynomials per element, n. Here, we use the integrals of Legendre 
polynomials as the trial functions. Figure 15 provides this comparison. The vertical axis is the error 
in/~ (2 re). The horizontal axis is the total number of operations in the comptutation (normalized 
CPU). Curves are provided for 2 to 8 polynomials per element. The number of elements is an 
implicit paramater that varies along the curves. For a given error criteria, there is a specific value 
of n which provides the lowest CPU. Thus, there exists a locus of optimum points which is formed 
by these optimum segments. This locus gives the best combination of N and n for an hp finite 
element in time. The optimum N is usually 2 elements per period. Also shown on the curve are x's 
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Figs. 14 and 15. 14 Per cent error vs. CPU,/~ = 0.0. 1 Bilinear formulation (Method B1); 2 Hamilton's law (Method H); 3 
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which represent the efficiency of a fourth-order predictor corrector. For  this particular case (c = 16 
operations per coefficient evaluation), the predictor-corrector results lie tangent to the hp optimum. 
Thus, there is only a small error region, n e a r  10 -3,  for which conventional time marching is better 
than the bilinear formulation. For  smaller c, there is a larger range for which this conventional 
marching technique is superior to finite elements. For  larger c, finite elements are always superior 
to standard marching. More details are provided in (Izadpanah 1986). 

6 Summary and conclusions 

The conclusions of this work are: 
(1) The use of Hamilton's  law of varying action, as a basis for numerical solutions of time 

problems, is not always stable and can result in divergence and incorrect answers even as the number  
of polynomials is increased. 

(2) A bilinear formulation of dynamics is introduced. In one of its special cases, it is a variational 
statement of dynamics which states that the variation of the "Action", plus the "Virtual action" 
(taken over a space-time domain and crossing the space-time boundaries) must  sum to zero. 

(3) The bilinear formulation can be used as a basis for numerical, finite-element solutions of 
time problems. These can be proven to be convergent, provided that the test functions are constrained 
in a very precise way depending on the problem. For  example, for initial-value problems, one must  
have 

(0) # 0, = 0 

(4) Numerical results with the new formulation (and with the Lagrange multiplier used as an 
estimate of velocity) eliminate all previous numerical difficulties and display a computat ional  
efficiency competitive and often superior to that of time marching. This efficiency is enhanced by 
the opt imum choice of  the number  of  elements, which depends on the desired accuracy for a given 
problem. 
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