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Summary. Principal components analysis is widely used 
as a practical tool for the analysis of multivariate data. 
The aim of this analysis is to reduce the dimensionality 
of a multivariate data set to the smallest number of mean- 
ingful and independent  dimensions. The analysis can 
also provide interpretable linear functions of the original 
measured variables that may serve as valuable indices of 
variation. A brief introduction to principal components 
analysis is given herein, followed by an examination of a 
particular set of multivariate data accruing from a study 
of acute brain injuries in a pediatric population, in which 
severity of brain injury had been assessed with the Glas- 
gow Coma Scale (CGS). Principal components analysis 
reveals that the GCS sum score is a particularly ineffi- 
cient summarizer of information in this cohort. The de- 
termination of an objective weighting of measured vari- 
ables, as provided through principal components analy- 
sis, is essential in the construction of meaningful neuro- 
logical scoring instruments. 
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Introduction 

The analysis of multivariate data can be a difficult and 
frustrating problem. One frequently used approach is to 
reduce the dimensionality of the data, so as to engender 
easier understanding, visualization, and interpretation. 
This reduction in dimensionality can entail some loss of 
information that may be in the data; hence, any reduc- 
tion ought to retain sufficient detail for adequate repre- 
sentation of the original data. The purpose of this note is 
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to describe principal components analysis, a classical sta- 
tistical reduction technique introduced by Karl Pearson 
in 1901 [4] and further developed by Hotelling [1]. We 
first address the issues of dimensionality reduction and 
information loss with principal components and then 
consider neurological scoring instruments in this con- 
text. 

Principal components analysis 

We begin with the familiar representat ion of the density 
function 

1 e-(X - -  ~)212~32 
f (x)  - ~ 2  

of the univariate normal distribution. The density func- 
tion is symmetrical about the value g, a location parame- 
ter which represents the mean of the distribution; a sec- 
ond parameter,  the variance, designated «2, represents a 
measure of spread or dispersion. For  example, about 
68.3% of the density mass lies within 1 SD « = 1 /~  of the 
mean It, and about 95.4% lies within 2 SD of g. The 
normal distribution is an idealization, but serves as an 
adequate approximation for many random variables ob- 
served in practice: indeed, by the central limit theorem 
in probability theory,  although a random sample may 
come from a non-normal population, the sample mean 2 
will typically be approximately normally distributed for 
large sample sizes. 

Perhaps less familiar is the notion of a bivariate (and 
more generally, multivariate) normal distribution. A mul- 
tivariate probability distribution can be defined com- 
pletely by specifying the distributions of all linear combi- 
nations of its components.  Thus, the random variables 
X1 and X2 have jointly a bivariate normal distribution if 
and only if all linear combinations aX1 + bX2 are univar- 
iate normally distributed, for any prespecified constants 
a and b. In Fig. 1 a we give the density function of a bi- 
variate normal distribution for X1 and X2, when Xl is 
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univariate normal  with mean  la1 = 3 and variance 0-12 = 2, 
X2 is univariate normal-wi th  mean  la2 = 3 and variance 
0-_« = 2, and the covariance of  X~ and X~, deno ted  0-12, is 
1. Note  that an additional parameter ,  the covariance,  is 
needed to characterize the bivariate normal  distribution; 
a related term, the correlat ion of  X~ and X2, deno ted  by 
O, is dimensionless,  and equals 0 - 1 2 / ~  2. We may 
easily show that - 1  _< p _< 1; if p = 0, then X1 and X2 are 
independent ,  and if p = + 1, then Xt and X2 are perfect- 
ly linearly correlated.  

It is convenient  when working in higher dimensions 
to summarize  the parameters  in vector  and matrix nota-  
tion. In p dimensions,  the r andom vector  X consists of  p 
componen t  univariate r andom variables, denoted  X1, 
X2 . . . . .  Xp; the mean  la will be a p x 1 vector ,  with the 
componen t  lai being the mean  of  Xi, i = 1, 2 . . . . .  p; and 
the covariance matrix E will be a p x p matrix, with ele- 
ments  0-il, i, j = 1, 2 . . . . .  p. The ith diagonal e lement  of  
y 0-i~, is the variance of  the ith componen t  of  X, Xi; we 
somet imes  denote  this by 0-i 2, as in the bivariate case. 
The  correlat ion coefficient between X~ and Xj is defined 
as 

B -  1/~-,.,- o-j1 o-~ o-j 

Consider  next a plane in Fig. l a  parallel to the X1 - 
X:  plane that slices through the density function.  This in- 
tersection would form an ellipse, as depicted in Fig. lb :  
that  is, the normal  distribution in two dimensions has 
constant  density on ellipses of  the form ( X - g ) T  2 - I  
(X - la) = c:, c being a constant .  [Here,  (X - la)T denotes  
the t ranspose of  the vector  (X - la), and 2; 1 denotes  the 
inverse of  the covariance matrix E. (X - la)T 2-1 (X - la) 
= c: is simply a linear algebraic rendit ion of  the equat ion 
for an ellipse.] These ellipses (or ellipsoids in higher di- 
mensions) are called the contours  of  the distribution, or 
the ellipses of  equal concentra t ion.  If  the mean  vector  la 
is the null vector  (all zeros),  these contours  are centered  
at the origin; and, when Y is diagonal (in the bivariate 
case, if X1 and X2 are independent ,  so that  0-12 = 0),  the 
contours  are circles (or in higher dimensions spheres or  
hyperspheres) .  Figure l c  relates the density and the con- 
tours of  the bivariate normal  distribution considered pre- 
viously, f rom a different perspective.  

Suppose now that the p × 1 vector X = (X1, X2 . . . .  , 
T Xp) has an arbitrary multivariate distribution. The prin- 

cipal componen ts  of  this distribution are uncorre la ted  
linear combinat ions  of  the original variates X1, X2 . . . . .  
Xp which successively account  for the most  part  of  varia- 
tion in a populat ion.  To make  this definition meaningful ,  
we must  indicate how to assess variation in the multivar- 
iate setting. We have already noted that  the matrix E 
consists of  paramëters  that are related to the univariate 
not ion of  variance. However ,  there also exist two com- 

Fig.1. a Density function of the bivariate normal distribution with 
mean vector bt = (~), and covariance matrix Y, = (2 ~). b Ellipses of 
equal concentration of the bivariate normal distribution pictured 
in a, showing the directions Y1 and Y2 of the principat compo- 
nents, c Composite of a and b, with etlipses of equal concentration 
projected below the bivariate density function 
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monly used univariate quantities that measure multivar- 
iate scatter: 

1. The generalized variance of Z, the determinant of E, 
denoted IZI; 

2. The total variation, trace (E), the sum of the diagonal 
elements of E. 

For  both measures, large values indicate a high degree of 
scatter of the distribution of X about its mean vector g, 
and low values indicate tight concentration about g. 
Now, the first principal component  is the normalized 
linear combination of the original variates with maximum 
variance; the second principal component  is that nor- 
malized linear combination which is uncorrelated with 
the first principal component  and has maximal variance 
(and so on, if we are working in dimensions higher than 
2. We may find p principal components of a non-singular 
p-dimensional distribution). Algebraically, principal com- 
ponents analysis is equivalent to an orthogonal transfor- 
mation of the original set of variables into a set of new 
variables which are uncorrelated with each other,  and 
which are ordered in terms of decreasing variance. More- 
over, the sum of the variances of the new variates equals 
the total variation, trace (E), and the product of the var- 
iances equals the generalized variance, [E I. 

Geometrically,  the principal components transforma- 
tion facilitates interpretation of the ellipsoids of equal 
concentration for the multivariate normal distribution, 
because the principal components  represent the major 
and minor semi-axes of the ellipsoids, as noted in Fig. lb .  
Principal components are orten used to replace the orig- 
inal variates by a smaller number of uncorrelated linear 
combinations of them without incurring much loss of in- 
formation. For example, if there is little scatter in the 
second principal eomponent  direction Y2 relative to the 
first principal component  direction Y1 in Fig. lb ,  little in- 
formation is lost by simply discarding Y2, and thereby re- 
ducing a two-dimensional distributional problem to one 
dimension. More generally, the proport ion of total vari- 
ation explained by, say, the first k principal components 
gives a quantitative measure of the amount  of informa- 
tion retained in the reduction ffom p to k dimensions. A 
rule of thumb for excluding or discarding principal com- 
ponents is to include just enough components to explain, 
say, 80-90% of the total variation. This attempt to reduce 
dimensionality is often described as parsimonious summa- 
rization of the data; the method of principal components 
analysis affords the means of determining whether such 
summarization has or even can be successfully achieved 
with particular data sets. We refer the reader to any of 
several recent books on multivariate statistical methods 
(e.g. [2]) for more detailed treatment of principal com- 
ponents analysis and related multivariate techniques. 

Application to neurological scoring instruments 

For concreteness, let us consider the Glasgow Coma 
Scale (GCS), perhaps the most frequently used method 
for measuring overall responsiveness in patients with 
acute cerebral disorders. The GCS is a clinical scale de- 

veloped by Teasdale and colleagues [5, 6] for assessing 
depth and duration of impaired consciousness and coma. 
It comprises independent determinations of three aspects 
of behavior: eye response (1-2-3-4 scale), motor  respon- 
siveness (1-2-3-4-5-6 scale), and verbal performance (1- 
2-3-4-5 scale), which when summed yield an overall num- 
erical rating between 3 and 15. Initially, the authors had 
recommended using the information of the three sub- 
scores by means of a profile, but in subsequent publica- 
tions the use of a sum score was emphasized. 

Our aim here is to examine whether the GCS sum 
score adequately summarizes the information available 
in the three individual scales. For  illustrative purposes 
we focus on the investigation by Kraus et al. [3], who re- 
ported on the nature,  clinical course, and early outcomes 
in a cohort of 709 pediatric patients suffering brain in- 
jury. Severity of brain injury was measured with the 
GCS. We are grateful to Dr. Kraus for making these 
data available to us for principal components  analysis. 

The numbers of individuals classified into the various 
categories on each scale follow a multinomial distribu- 
tion, for which the multivariate normal distribution pro- 
vides an adequate large sample approximation (via the 
central limit theorem mentioned above). (Note, how- 
ever, that many of the properties of principal compo- 
nents are not dependent  upon the assumption that the 
data follow a multivariate normal distribution.) The 
GCS scoring scheme on each scale is equivalent to taking 
a linear combination of the'  outcome events; the infor- 
mation content in this linear combination may be com- 
pared with the maximal information content available in 
the optimal linear combination, the first principal com- 
ponent,  in terms of total variation. Similarly, the overall 
GCS sum score represents another  linear combination of 
the outcome events considered jointly; the information 
content in this linear combination may be compared with 
that of the first principal component  from the joint dis- 
tribution of the eye, motor ,  and verbal scales. We com- 
pare the GCS scores and the corresponding first princi- 
pal components in Table 1, which is derived from indi- 
viduals in the Kraus study with GCS sum scores less than 
14 (so as to eliminate individuals who arguably pre- 
sented with non-severe brain injuries). 

It is apparent from Table 1 that, as might have been 
anticipated, the GCS scoring scheine preserves a distres- 
singly low proport ion of the total variation on each of 
the scales: the GCS scoring scheme accounts for 8.5% of 
the total variation on the motor  scale, 9.1% on the ver- 
bal scale, and 12.9% on the eye scale. Moreover ,  even if 
we were to optimize the assignment of scores, by means 
of the first principal component  that maximizes the pro- 
portion of total variation explained, we would not be 
successful: with the first principal component ,  we are ac- 
counting for merely 46.3-61.5% of the total variation on 
the scales. Even though this constitutes a substantial im- 
provement  over the GCS scoring scheme, we are never- 
theless incurring a measurable loss of information by 
such reduction of multivariate data to a univariate scale. 
This, of course, is not at all surprising, as there is no 
reason to expect solely one linear combination to cap- 
tute most of the relevant information present in a multi- 
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Table 1. Information content of Glasgow Coma Scale (GCS) scores 
and first principal component (FPC) in a study of pediatric brain 
injuries 

Scale Proportion of total variation 
explained by 

GCS score FPC 

Eye 0.129 0.615 
Motor 0.085 0.463 
Verbal 0.091 0.552 

Overall sum 0.086 0.444 

variate setting. This obviously pertains to the sum score 
also: much information is lost in reducing different clini- 
cal profiles to GCS sum scores, as the sum score accounts 
for a mere 8.6% of the total variation on the three scales 
simultaneously. The first principal component,  by com- 
parison, captures 44.4% of the total variation, but this 
again represents an intolerably large information loss. 
Even the first three principal components jointly account 
for less than 70% of the total variation on the three 
scales simultaneously: principal components analysis with 
these data demonstrates the futility of attempting to sum- 
marize the multivariate profiles in a univariate manner. 

Discuss ion  

The introduction of scales or scores for the assessment of 
neurological function represents operationally a reduc- 
tion of multivariate data to a univariate quantity. As 
mentioned before, the GCS was initially constructed to 
assess three independent aspects of functions that can be 
compromised in the presence of decreased conscious- 
ness. The use of a sum score was not recommended in 
the early publications. Furthermore,  the presently 3-15 
for the sum score had originally been 0-12 in earlier 
publications, indicating that the score values were sub- 
ject to change in the initial years after their introduction. 
A number of additional problems are associated with 
this scoring instrument: 

1. The score values are not distributed equally, thus pre- 
venting most statistical approaches from being conven- 
tionally performed with the results of the GCS. 

2. There exists the real possibility of "pseudoscoring," 
particularly with the verbal performance scale, if the 
type of injury or iatrogenic intervention (such as intuba- 
tion and artificial ventilation) precludes actual testing of 
verbal performance. 

3. Not all GCS values represent states that may be con- 
sidered "coma":  indeed, only two of the four items of 
the "eye response" subscore and two of the five "verbal 
response" items refer to conditions present in "coma". 

4. Issues of reliability, validity and interobserver varia- 
bility need to be addressed for a clinical instrument so 
widely used as the GCS, but are largely missing. 

5. Finally, the GCS was initially designed not as a scoring 
instrument in the psychological sense, but as a data-ana- 
lytic aid for the retrospective classification of patients. 

The fundamental question arises as to whether the re- 
duction of the information to a sum score effects an ade- 
quate representation of the information available with 
the original data. Principal components analysis presents 
us a solution to the problem of determining an optimal 
reduction if our data are multivariate normally distri- 
buted, namely, choose the first principal component:  
this represents the major axis of the ellipsoids of concen- 
tration of our data, and will have maximal variance of 
any normalized linear combination of our original var- 
iates. Moreover, we may quantify the proportion of the 
total variation of our original data that is preserved by 
the first, or any set of, components. A "successful" prin- 
cipal components analysis achieves a reduction in dimen- 
sionality from p to k dimensions, while simultaneously 
preserving about 80-90% of the total variation. Rarely 
will merely the first principal component suffice for this 
task - a fact that should caution against the indiscrimi- 
nate reliance on univariate scores for multivariate data 
summarization. 

Let us also remark that, if one nevertheless wishes to 
derive a univariate score for quantification, a further 
word of caution is in order: the first principal component 
will yield the optimal linear combination (that is, a scor- 
ing scheme for categorical data), but this is a data-de- 
pendent derivation. This is, the optimal scores will de- 
pend on the particular population under investigation, 
and will not in general be immediately applicable to a 
different clinical population. Prospective validation is es- 
sential before any particular assignment of scores can be 
universally recommended. 

In summary, for a number of reasons we discourage 
strongly the use of the GCS sum score. In addition to ap- 
parent weaknesses in the scale construction, validation 
and reliability, the amount of information loss incurred 
by simply summing across the individual scale scores can 
often be enormous. We instead recommend that the GCS 
be used in the way it was originally designed, namely, as 
a three-dimensional profile on eye, motor, and verbal 
responses. 
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