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Abstract. The spectrum ofinhomogeneous turbulence is modeled by an approach that is not limited to 
regimes of large Reynolds numbers or small mean-flow strain rates. In its simplest form and applied 
to incompressible flow, the model depends on five phenomenological constants defining the strength of 
turbulence coupling to mean flow, turbulence transport in physical and wave-number space, and 
mixing of stress-tensor components. The implications for homogeneous isotropic turbulence are 
investigated in detail and found to correspond well to the conclusions from more fundamental theories. 
Under appropriate limiting conditions, a turbulent system described by the model will relax over time 
into a state of approximate spectral equilibrium permitting a reduction to a "one-point" model for the 
system that is substantially like the familiar K - e  model. This yields preliminary estimates of the present 
model's parameters and points to the way to improved modeling of flows beyond the applicability of the 
K-e method. 

1. Introduction 

The theoretical modeling of complex turbulent flows, after decades of effort, is still far from adequate. 
Only the relatively simple one-point transport models (Launder and Spalding, 1972) come close to being 
useful for simulating flows of practical interest to the engineering community. Among these, models of 
the " K - e "  family (Launder and Spalding, 1974; Launder et al., 1972) are simple and robust, and have 
enjoyed the favor of many researchers; however, there are limitations in what such models can describe. K - e  
models can deal with flows close to spectral equilibrium, in a sense we define more precisely in this paper. 
One of their difficulties lies in the dissipation-rate evolution equation. Until the work by Dannevik 
et al. (1987) and Yoshizawa (1987) their derivation could be said to rely mainly on dimensionality argu- 
ments. The unknown physics is represented by adjusting the so-called "universal" coefficients appearing in 
the model. 

More general descriptions, including second-order models (Daly and Harlow, 1970), and models 
allowing for large density variations (Besnard and Harlow, 1988), have also been developed to enlarge the 
number of flows that can be simulated; however, they suffer from many of the same flaws of the K-e  models, 
especially that of a spectral equilibrium assumption. In addition, they have a somewhat inflated number of 
coefficients to be determined by comparison with experiments, again associated with difficulty in obtaining 
a dissipation-rate evolution equation. 
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We are interested in flows that are strongly out of equilibrium, for which the models mentioned above 
are not well suited. One general aim is to obtain a model that does not require a dissipation-rate equation. 
For nonequilibrium flows, a spectral approach is therefore attractive. Much work of this type has already 
been done in the case of homogeneous turbulence (Rose and Sulem, 1978). We avoid the extreme 
complexities of analytical approaches to turbulence, basing this work on a spectral model that includes 
numerically tractable approximations, and is realistic for inhomogeneous flows. 

In our model, as in earlier models applied to homogeneous isotropic turbulence, an initial state of 
turbulence may develop during a transient period into a self-similar regime in which wave-number 
distributions acquire a constant, or approximately constant, shape with scales depending on a space-time 
scaling law. This is the regime referred to above as spectral equilibrium. It presumes (1) turbulent Reynolds 
numbers large enough to allow a well-defined inertial range in the wave- number spectrum and (2) a cycle 
time for the dominant eddies that is small compared with mean-flow distortion time, as measured by the 
time variation of the strain rate. When it persists over time, it makes feasible the approximate description of 
turbulence by one-point transport models. 

This paper focuses on the development of self-similarity and how it leads to a K - e  model. This 
establishes the relevance and, in some points, the limitations of our model for equilibrium states, and 
provides a basis for future studies of fluids in rapidly varying transient states. Analysis begins in Section 
2 with velocity correlations between points x a and x 2. We obtain a spectral model for inhomo- 
geneous turbulence through a Fourier transform acting on the relative coordinate r = x 1 - x  2. This 
technique has been applied by Bertoglio and Jeandel (1987) and Schiestel (1987). Exact operator equations 
describing the turbulent flow are set forth. They do not form a closed set, and heuristic arguments are given 
on how to close them, so as to retain most of the features commonly believed to be characteristic of 
turbulent flows. 

A full understanding of the model in the homogeneous limit, including its limitations, would seem 
essential if more ambitious simulations are to be pursued. Thus, the homogeneous isotropic case was 
examined in some detail (Besnard et  al., 1990). The results are in good agreement with expectations 
regarding self-similarity, the Kolmogorov dimensional estimates, and so forth. We also describe the 
transient states and the rate of convergence to self-similarity. A remarkable result is the existence of simple 
analytical expressions both for the entire self-similar spectrum shape and for the rate of convergence to 
self-similarity from initial conditions in certain cases. A summary of this analysis is presented in Section 3. 
In Section 4 a few comments are made about the case of free shear layers (Kelvin-Helmholtz instability) and 
the convergence of the solution toward self-similarity. Self-similar spectra exist that are close to the spectra 
obtained in the homogeneous isotropic case. 

We can then assess, within the framework of our model, the limits of validity of the K-e  model 
obtained by considering moments of the model equations, in a postulated self-similar regime. This is done 
in Section 5. This provides a point of departure for improvements in more demanding circumstances. 
Finally, Section 6 summarizes our main themes and indicates some directions for extensions of the 
model. 

This paper assumes constant fluid density. Extension to compressible fluids with large density variation 
in space and time is under investigation. 

2. Spectral Model for Inhomogeneous Turbulence 

A. Evolution Equation 

We study an ensemble of flows of a fluid of constant density p and kinematic viscosity v. The velocity and 
pressure fields are separated into mean and fluctuating parts: 

U(x, 0 = u(x, t) + u'(x, 0, P(x, t) = p(x, t) + p'(x, 0, 

where u = (U) ,  p = (P) ,  and the brackets denote ensemble average. The two-point velocity correlation 
(generalized Reynolds tensor) is 

Rij(xl, x2, t) = (u'i(x 1 , t)u)(x 2, t) ). (2.1) 
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Hereafter, in Section 2, we omit the argument t for brevity. From the Navier-Stokes equation, we can 
derive (Schiestel, 1987) 

c3Rij(xl'xZ) - t Bij(xl,x2) + Cij(xl,x2)-I- I1j(Xl,Xz) + ~xl Tinj(xl,x2) (2.2) 

where S means that the enclosed expression is to be symmetrized by adding terms with i~j, x 1 ~ x 2 ,  
and 

Aij(Xl, x2) = 

B~(xl, x2) = 

Cii( xx, xz) = 

Hj(x1, x2) = 

Tinj(X1,  x2) = 

The incompressibility conditions lead to 

v(V 2 -}- V2)Rij(x1, x2), (2.2a) 

O~x U.(xl)Rij(x2, (2.2b) X2), 

u i(x 1)R.j(x 1, x2), (2.2c) 

<P'(X1)U)(X2) > 
, ( 2 . 2 d )  

P 

(ui(xl)u',(xOu)(x2) >. (2.2e) 

Ou~ _ ~u'i - 0,  (2 .3 )  c~x~ ~x i 

63~ll Rij(Xl,X2) = ~@2jRij(x1,x2) = O, (2.4) 

~2jl~j(X1,X2) = ~2jTinj(X1,X2) = O. (2.5) 

The mean-flow equation is 

~ui(x)0 = _u,(x)~,ui(x ) (c3/Ox,)p(X)p ~-vV2u,(x)-~R,n(x,x). (2.6) 

The expression of the pressure-velocity correlation Ylj in terms of R~j is obtained by solving for p' by 
computing V.~u'/c~t and using Green's theorem: 

[Ij(x1, X2)= t G(x1, x')dx'-~73, 0 ' ' ~x~ {2u,(x )Rm~(x, x2) + Tm,j(x', x2) } (2.7) 
3 OX n 

in which Green's function satisfies 

-V~G(x~, x') = ~(Xl - x') 

with boundary conditions appropriate to the fluid domain. If the fluid extends through all (three- 
dimensional) space, we can expect Hj(xl,x2) to go to zero as Ixll increases, ]x2[ being held fixed, and 
take 

1 
G(x 1, x') - 4rcixa _ x'[" (2.8) 

An image term could be added for wall effects; we avoid this step for now. 
To obtain a spectral model, we first define center and relative coordinates for two-points functions by 

1 x = ~(x, + x2), r = x~ - x 2 and introduce Fourier transforms, as described in detail in Appendix A. The 
Fourier transform of Ri~(xa, x2) is expressed as 

Ro(x,k)=fe-~k'rRij(x+2,x-2)dr. (2.9) 
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Let Eij be proportional to the shell-average of Rii over directions of k for fixed I k[ = k, and normalized so 
that ~ Eu(X , k) dk is the turbulent kinetic energy density (i.e., the energy per unit mass) at x. This means 

E,(x,k)  fR,,(x,k k2 = ). , (2.1o) 

and, from (A.2), E~j(x,k)= Eji(x,k). The one-point Reynolds stress tensor, which is responsible for 
turbulence effects in (2.6), is related to E,j by 

Rij(x, x) = 2 Eli(X, k) dk. (2.11) 

This result suggests the utility of working with E~j(x, k) as the basic variable in our spectral transport 
modeling, and this is indeed the approach we take in Section 2.B. 

Fourier transforms allow us to re-express (2.2) in (x, k)-space, formulated in terms of nonlocal operator 
expressions (see Appendix A). The result is (A.12), which is exact, but not complete and requires some 
approximation for nonlocal terms and for the third-order correlations in order to be tractable. We proceed 
in the following heuristic way. 

We expect Rij(xl, x2) to vanish as [r[ becomes large, and write L r as the two-point correlation length or 
turbulence length scale, i.e., the length such that R~(xl, x2) becomes ignorable for ]r[ > L w We assume, in 
addition, that correlation lengths for third-order correlations are of the order of or less than L r. We write 
L~t for the mean-flow length scale. One possible characterization of LM is that u(x + Ax) can be 
approximated by a few terms of a power series in Ax when lax[ < LM. 

Continuing heuristically, we expect length scales dominating mean flow to be, on the average, larger than 
those dominating the turbulent flow, which is roughly expressible as L r < L~t. A similar rationale is used in 
Yoshizawa (1984). Turbulent fluctuations are assumed to vary on much smaller scales than the mean flow, 
both in time and space. A small parameter expansion then leads to a series of spectral equations for which 
closures are provided using DIA formalism. The operator expression (see Appendix A) can be expanded in 
series of powers of derivatives. 

As shown in Appendix A, the magnitudes of successive terms can be interpreted as proceeding in powers 
of (Lr/L~t). The first step from the exact evolution equation for R~j to the model is to truncate the derivative 
expansion, retaining no more than the lowest relevant orders of x- and k-derivatives. The R~j equation 
reduces to 

1 2 ~ 0u. c~ 
 tR,(x, k) = k) + k) - k) + k) 2vkZRij(x, g v V  Rij(x, 

(0) (la) (lb) (2a) (2b) 

0u~ ~u i ~u. k. 
~-xx R,.j(x, k) - ~-~xRim(X, k) + 20-~- £ ~'7 [k~R,,o(x, k) + k;R~m(x, k)-] 

(3) (4a) 

kink. 1 kink.I- 0 T ~ T 
+ i-u-[k,T=.,(x, k ) -  k, T,..,(x, - k ) ]  + ~ --~-- k~x/ m"j(x'k) + G m"i(x'-k) ] 

(4b) 

kin{ 0 - k ) ]  k.k t c? + - k ) ] }  
+ ~-~ 5~x [k~T.,.a(x,k) + kjT,..~(x, k2 ax, [k'Tm"~(x'k) kJm.~(x, 

(4c) 

1 0 
- ik.[T,.j(x, k) - T/.i(x, - k ) ]  - ~ ~x  [T,,,j(x, k) + T3.i(x, - k)]. (2.12) 

(sa) (Sb) 

This equation is similar to one obtained previously by Menoret (1982), and used as a starting point by 
Bertoglio and Jeandel (1987). Our approach furnishes approximations at all orders, which can be obtained 
from Appendix A. In addition, the terms whose expressions are given in (2.12) can be related to specific 
physical processes. 
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Terms (1 a) and (1 b), respectively, show viscous dissipation and viscous diffusion. The terms (2a), (2b), and 
(3) represent advection and coupling to mean-flow gradients. The terms (4a-c) arise from pressure-velocity 
correlations; they include additional mean-flow coupling and triple correlation effects, arising from (2.7). 
The terms (5a) and (5b) are the triple correlation terms from (2.2e). The triple correlations are responsible for 
turbulent diffusion in x-space, which arises from the space-divergence terms, as well as for the cascading 
transfer of turbulence in k-space and the relaxation toward isotropy of the tensor E~j. 

B. An Evolution Equation for E o 

We do not model (2.12) directly. Equation (2.11) shows that we need an equation for Egj, as defined by (2.10), 
to solve the mean-flow equation. Integrating (2.12) over shells in k-space in terms (0), (la), (lb), (2a), and (3) 
and supplying additional factors as in (2.10) simply replaces Rij by E~i. For the purposes of this paper, we 
now integrate over the direction of k in the other terms as well, leaving only k = I kl as the wave-number 
coordinate, and assume that the results may be modeled in terms of mean-flow gradients and the Egj. The 
limitations imposed by this assumption are still under investigation; at this stage, it is mainly a matter of 
expediency. 

We propose, for each term to be modeled, the simplest, dimensionally correct, rotationally invariant, 
linear or nonlinear expression satisfying its intrinsic properties. 

Within the pressure-velocity correlation expression (terms (4a-c)), only (4a) involves mean-flow 
gradients. The k-space angular integration transforms (4a) into a mean-flow coupling term (MF) for the 
evolution equation: 

~bln ni 
M F  = ~- - (Mmj  + M'm¼), (2.13) 

cx,, 
where 

,i 1 ~ 2k,ki kZ dffak j T-R  Ix, k)a . 
The most general modeled form "~ for M,,j as a linear function of the E-tensor, and respecting the symmetries 

= 5 = M%, 

is, with the qi denoting constants, and E - Eu, 

M ~  = ql ((~ijEnm + 6.jE~,. + (~imEnj -}- 5.mEij ) + qE6.iEmj + q3(~mjEni -]- q43.~6,~jE + qs((~nm(~ij + 6nj3rni)E. 

Then (2.13) can be rewritten as 

/ ~u i ~uj 2 ~u. "~ /Ou.  ~Un E 2 ~u. "~ 

+ % 2 / - -  + - - ] E  + c x 6 i j - - E . , . ,  (2.13a) 

where 
Cn = ql + q2, CBI = qa + q3, CB2 = q4 + qs, (2.14) 

and 
2(5qi + q2 + q3) 

Cx = 3 

However, M F  must be traceless in i,j, and hence Cx = 0. This is required to secure energy balance between 
mean and turbulent energies. 

Additional constraints on the q~ are implied by the conditions 

ii nj  _ M,,j  = 2Emj , M,,j  - O. (2.15) 

The second relation follows from kjR~j -- 0, which is an approximate version of the incompressibility 
condition equation (A.5) resulting from neglect of O/Oxj relative to kj. The consequence for M F  is 

c m = 8c B -- 6, cB2 = - 3c B + ~ .  (2.16) 
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More generally, all the qi are related to c B if we comply with (2.15): 

t8 ql-------3CB+2, q2--4C8 - 2 ,  q3=l l cB  - 8 ,  q¢ _5CB+~_ ' qs=2CB 7 

This discussion is substantially the same as that given by Launder et al. (1975) (whose c 2 equals our qa) for 
the one-point modeling of the pressure-strain correlation. In particular, the relations among the coeffi- 
cients of the three coupling terms stem from the same physical circumstance, namely, the presumed slower 
variation of the relevant functions with x than with r, which we have expressed as LT/L M < 1. 

In term (2b) the order of k,, and O/Ok,, can be reversed. Denote the contribution to QE U& by MF'. By 
Gauss' theorem, 

1 (' 0 V ~U n -1 k 2 d ~  k 

1 3 /" Ou. k~ k 2 dfl k 

1 ~ /  0u,, ,,,\ ) 
Using the structure of the M-tensor developed above, we get 

1 Ou. M"" / Oui ~us 2 ~?u. \ /Ou. Ou. 2 c?u. \ 

[ Ou~ auj\ au. 

where 

-- 3cB 7 7c B 8 
c F = ~ + I ,  @I=cB lo, CF2-- 2 3' (2.17) 

MF' is conservative because of the k-derivative and need not be traceless with respect to i,j. It provides for 
transport of energy in k-space induced by mean flow. 

Terms (4b) and (5a) involve only turbulent correlations, and do not vanish for homogeneous isotropic 
turbulence. They are interpreted as describing the flux of Eij in k-space. They involve two different 
processes, cascading transfer between scales, denoted by K T, and return to isotropy in physical space. This 
latter term does not transfer energy between scales, but instead rearranges the distribution of stress among 
the components of Eij, and contributes to the decay of off-diagonal elements. It corresponds to the part in 
the pressure-velocity correlation, in single-point turbulence transport modeling, that contracts to zero and 
therefore does not alter the total energy. Here, we model this term, denoted as T M  (tensor mixing), by 
simple linear return toward isotropy: 

T M  = cuk,, /-~[½ E6ij - Ei~], 

where E = E(x, k) = Eu(x, k) is again the turbulent energy density. 
To model the cascading transfer term KT,  we can choose from the most sophisticated models, e.g., the 

distant-interaction algorithm (DSTA) (Kraichnan, 1987) and the Eddy-Damped Quasi-Normal 
Markovian model (EDQNM) (Lesieur, 1987), down to the simple diffusion approximations for the flux 
of energy in k-space of Leith (1967, 1968), or use intermediate ones, such as that of Heisenberg (1948). 
Yoshizawa (1984) used the DIA formalism to close a truncated series of spectral equations and could derive 
"one-point" transport equations. This other route to one-point transport models, although effective at 
providing spectrally integrated equations, is very complex. Indeed, the spectral equations that are the basis 
for Yoshizawa's derivation defy any analysis and, therefore, do not provide the kind of insight in turbulence 
spectral behavior that we can extract from our model equations. Although the physical transfer of energy in 
k-space is nonlocal, we restrict our model for phenomenological purposes, to a combined wave-like and 
diffusion-like approximation. We show in Section 3 that this type of phenomonology gives results closely in 
agreement with those of EDQNM for homogeneous isotropic turbulence. Thus, extending the work of 
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Leith, we propose 

0 0 / 3 r~OEij\ 

where c 1 and c 2 are constants. 
As one referee suggested, more physically motivated models may be chosen, such as (~ p2E(p)@)1/2 

instead of(k3E(k))l/2. We explored this numerically. The results showed little difference from those obtained 
with our local approximation, and support our initial choice, in regard to cascade of energy and stress. The 
suggestion can be important for, e.g., cascade of a passive scalar, however. 

The last terms to be modeled are (4c) and (5b). They are conservative in physical space, and were modeled 
as turbulent self-diffusion by Daly and Harlow (1970). A symmetrized spectral analog would be 

0 ' + 7 -  + D,,~?E,.  ] . - ~ x l l  CD__VDnt~_Ei j OXn 1_ OXl OJt 6xl Eni 

The diffusion coefficient D,l would be expressed as 

For  present purposes we simplify this, using, instead, a turbulent diffusion (TD) term 

0 / 0E,A 
TD = co~- - i  Vr-z-- I, 

o x . \  cx. / 

depending on a turbulent viscosity coefficient Vr, 

vT(x) = & .  (2.18) 

The spectral transport model equation for E,j, with the choices made above, will now be stated in full. 
The couplings of mean-flow gradient and energy tensor can be expressed with the aid of three traceless 
tensors, defined as follows: 

Ou~ Ouj 2 Ou. 
Aij = ~x,E"J + ~x Ei. -~6iJ~x E.m , (2.19a) 

Ol'tn Olin 2 OUn 
B,j = N E.j + ~ ein -- ~6,j~x m E.m , (2.19b) 

/Olii Olij~ E 
C,j = ~ ~jxj + Oxij . (2.19c) 

Also, let V be the operator in (2.12) depending on v and let T be the operator that defines transport in 
x-space and k-space: 

V v ( - 2 k  2 1 2 = + yV ), (2.19d) 

3 0 2 ~ 0 3 ~ 0  
T = Co~--VT~-- -- cl~;-,k kE + c2~7-,k kE-=v. (2.1%) ox. ox. vt~ x /kE  oK x/kEotc 

Then 

OEij 3Eij / Ou~ c~uj \ 
Ot + U n - -  = V[Eij ] + T[EI j  ] --  [ ~x Enj + ~--Ei. | + c~Aij + CB1Bij -J- CB 2 Ci j 

Ox= ox n I 

0 [ Ou. -1 
-}- ~ k  [ CFAij -[- crBij + CF1 Cij -[- CF26,j--E.m I + ¢MkN~(1Et~ij -- Eij). (2.20) ~Xm J 

There are five indepenent dimensionless phenomenological constants in this model, namely, cB, CD, Cl, C2, 
and c M. We expect these constants to be positive and of order unity, or less. (However, we do consider 
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Cl < 0 in Section 3.) They have to be determined through additional constraints, and/or empirical fits to 
experiments. Five additional constants, cm, cB2 , cF, cF1, and cF2 are determined from c B by (2.16) and 
(2.17). 

It is also useful to separate Eij into two parts, 

::~ Eij =- ½Ebij +Eij, (2.21) 

so that /~j  is traceless and represents the deviation of the energy tensor from isotropy. (Of course, /~ = E~j 
for i Cj.)/~ij is called the "anisotropic part" of E,j. Then, referring to (2.19), we get 

Bij -~ Bij -}- ½ Cij, 

where Aii, B~j are formed like A~j, B~j, but with the E tensor replaced by the/~ tensor. 
Evolution equations for E and E~j are obtained by applying 

E = t r a c e  E i j  , ff"ij ~- ((~ia~)jb - -  l(}ij(~ab)Eab 

in turn to (2.20), then substituting (2.21) into the results and recalling Ou,/Ox, = 0. This yields 

OE ~3E Ou,~ O / ~u,~ \ 
- -  + u , - -  = VIE] + TIE 3 - + 

0/~,j~t + u"~/~gj0x. = V I/~ijl + T I/~ij[ + (c, - 1)~tij + CBIBij  - - ~ -  -~ - '~  k cFAij + CFBij - -  C'~ 
(2.22b) 

There are, admittedly, a large number of terms in these evolution equations. However, each of the 
physical processes which the model addresses, namely, advection, viscous diffusion, viscous dissipation, 
turbulent diffusion in x-space, cascade in k-space, energy exchange between mean and turbulent flow, and 
exchange of stress among energy tensor components, is an essential part of turbulent processes and must be 
represented in some manner. 

In an earlier version of this model (Besnard et aI., 1990), we disregarded the cm and %2 terms in (2.20) for 
the sake of simplicity. This would be consistent with Launder et al. (1975), who found that in fitting their 
one-point model to experiment, the %-type term is dominant. We also disregarded the % cF~, and cv2 terms 
for the same reason. The simplified model was successfully applied in Gore et al. (1991). As noted in Section 
5, neglecting these terms does not have a visible effect on K-e  equations deduced under the conditions of 
spectral equilibrium, but subsequent work (Clark, 1991; Clark and Zemach, 1991) showed that these terms 
in question are needed to explain wind-tunnel experiments in which the turbulence has not reached spectral 
equilibrium. 

3. Self-Similar Regimes: Homogeneous Isotropic Turbulence 

In this section we summarize results for homogeneous isotropic turbulence. Details can be found in 
Besnard et al. (1990). 

A. The Parameters c 1 and c2 

We consider evolution of the turbulent energy distribution E(k, t) from an initial space-independent 
distribution E(k, 0), when the mean-flow gradients vanish. The E equation reduces to a homogeneous 
partial differential equation (homogeneous isotropic PDE), 

~ E  2 ~ 5'2 3'2 ~ f 72  1~2 t~E'~ & -  2vk E - c l ~ ( k  / E / ) + c 2 - ~ k  / E / ~ ) ,  (3.1) 

uncoupled to the other tensor components. 
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If (3.1) is not supplemented by an input energy term, it describes homogeneous isotropic decay. The 
equation of energy balance is 

,;o fo d t  E ( k ,  t) d k  = - 2 v  k 2 E  d k  - [ F ] k ~  0o, (3.2) 

where F(k,. t), the flux of E, is given by 

F = c a kS/2E 3/2 - c2kT/2E 1/2~E 
Ok" 

If there is an inertial range in the k-spectrum where E ~ Eo~(t)k-5/3, then in that range 

F ~ - o o  \~1 + • (3.3) 

Compare with the Kolmogorov (1941) equation for three-dimensional turbulence, E = CK e2/3 k - 5/3 where 
the dissipation rate e is identified with F and the Kolmogorov constant C K is known experimentally to be 
near 1.5. This constrains the physical values of c~, c 2 for three-dimensional turbulence: 

5c 2 
C1 ~- T ~- C K  3/2 ~ 0 .54 .  (3.4) 

The advection term of (3.1) describes energy transfer toward higher k if c I > 0 and towards lower k if 
c~ < 0. The constant c 2 multiplies a diffusion term and may not be negative. For  physically reasonable 
spectra, c 2 should not be zero, either, as diffusion is needed to provide energy transfer in both k directions. (If 
c 2 = 0, (3.1) becomes the model of Kovasznay (1948). It is solvable by the method of characteristics, and 
defines characteristic curves k = k(t) that diverge to k = ov at finite t.) 

The shape of the E-spectrum becomes time independent at large t, while its normalization and motion on 
the k-axis follow power laws in time. This self-similar spectrum depends on the ratio c = q / c  2 and, broadly 
speaking, three regimes are found. For  c />-~- ,  there is a k -5/3 inertial range as is appropriate for 
three-dimensional turbulence. Figure 1 shows an example of such a spectrum. The shape itself is 
independent of Cl and c2, or weakly dependent, for k of the order of, or exceeding, the dominant-eddy wave 
numbers. Fitting c to experimental data on homogeneous turbulence would then depend on the spectrum 
shape for smaller k, on viscosity effects, on the rate of convergence to a self-similar state, and on other 
time-dependent phenomena. For  c < - 3 ,  there is a k-3 inertial range (which becomes k -3 l o g Z k  for 
c = -- 3). For  the intermediate range - 3  < c < - ~ ,  the range-k behaviour (for v = 0) is like U. 

To consider enstrophy conservation, we re-express (3.1) as 

O ( k 2 E )  
- 2 v k ~ E - ~ - ~ ,  Fe, s + 2(c~ + 3c2)kT/EE 3/2, & OK 

'CD. 

~ "  - 

'cD 

'cD 

'c23. 

-6 

c1=1 ,  c 2 = 1 ,  v = O  t - 0  
E(k,O) - exp( - 0.5(z/0.1) 2 ) ~ , . . . . ~ . 1  

'fS-'t ll t \  

-5 -4 -3  -2  -~. 0 2 

Log k 

E 
I.IJ 
A 

IJ.l 

d 
-2 . . . .  -I1 

c 1 = 1 ,  e 2 = 1 ,  v = O  
E(k,0) ~ exp( - 0.5(z/0.1 )2 ) 

1 2 4 5 
Log k / k max (t) 

(a) (b) 

Figure 1. Evolution plot and shape plot of the decay of the homogeneous isotropic turbulent energy distribution evolving from 
a narrow initial distribution (with z = log k), for c = cl /c  2 = 1. 
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g: 
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• 0 - -_8  

-3 -2 -1 0 1 2 

Log k 
Figure 2. Increase and transport  of energy driven by a constant  
energy source concentrated at k = 1 for c = - 3 .  

where the flux of enstrophy is given by 

 ens = (C, + )kgJ2 3/2 C kl'/2 lJ2  2 & .  

Thus the homogeneous isotropic PDE conserves enstrophy, apart from viscous dissipation, provided that 
c = - 3. This was the choice of Leith (1968) for two-dimensional turbulence. Figure 2 shows evolution of the 
spectrum from E(k, 0) = 0 for such a case. 

Previous studies (Leith, 1968; Heisenberg, 1948; Kolmogorov, 1941; Kraichnan, 1967) have suggested 
a k - 3  inertial range for two-dimensional turbulence in various modes or perhaps k-a(log k) -*/a, as 
obtained by Kraichnan (1971). For this reason, and because of enstrophy conservation in appropriate 
two-dimensional limits of the Navier-Stokes equation, it is tempting to regard the spectral transport model 
with cl /c  2 = - 3  as a candidate model in a two-dimensional limit. However, we are not ready to claim 
applicability to two-dimensional flows. Other studies and simulations (Basdevant et al. 1981; Herring and 
McWilliams, 1985; Gilbert, 1988; Brachet et al., 1988) indicate behavior varying betweek k-3 and k -4, 
depending on input conditions and the stage of turbulent development. Because the mechanisms for 
three-dimensional cascade and two-dimensional inverse cascade differ, the applicability of our approach in 
one context would not necessarily imply applicability in the other. 

If a modification of isotropic turbulence dynamics in which a finite energy-containing region of k-space is 
adiabatically isolated is considered, then the equilibrium energy is equipartitioned, that is, E(k) ~ k 2. The 
same modification of the model dynamics leads to E(k) ~ k c for the three-dimensional regime, c > -~ .  This 
lead Leith, in his 1967 paper, to set (in our notation) c = 2. Together with C K = 1.5, this implies c 1 = 0.297, 
c 2 = 0.148. 

The self-similar spectrum shape depends qualitatively on E(k, 0). If E(k, 0) goes like a power of k near the 
k-origin, this power behavior may persist in the steady state. Consider a spectrum following a power law at 
the origin, 

E(k, O) ~ k"e-"(k/k*)~/2. (3.5) 

Figures 3(a) and (b) are evolution plots for n = 2 and n = 4, respectively. Figures 3(c) and (d) show the 
corresponding shape-plots. Except for k << k . . . .  these curves have much the same character as in Figure 1. 
There is, however, a persistence of k" behavior for small k, reflecting the k-dependence enforced by 
dimensional analysis (the effective diffusion coefficient has a factor of k'//2). If E(k, 0) is sharply localized 
about a positive k-value, E(k, t) may diffuse toward k = 0 as a "front," and, for all t, there may be a finite 
interval about the k-origin in which E vanishes. 

In Section 3.D below, we encounter spectra that cut off on the right, essentially vanishing above the 
dissipation range, when v > 0. These cut-off behaviors are unsurprising in a nonlinear transport model; see, 
for example, studies for the porous media equation by Gilding and Peletier (1977) and Gilding (1980). 
Cut-offs are unlikely to occur in nature because of the nonlocal interactions among eddies. Thus, our model 
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Figure 3. Decays for distributions that initially follow power laws E ~ k 2 and E ~ k 4, respectively, for small k. 
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may be comparatively less realistic in the extreme limits k --, 0 and k ~ oo, though errors in these limits may 
be unimportant. 

B. Self-Similar Form for E(k, t) 

The time independence of spectrum shape for sufficiently large t suggests that stable solutions to (3. l) exist 
in the self-similar form 

E(k, t) = K(t)L(t)  f (kL(t) ). (3.6) 
Equation (3.6) is equivalent to the assumption of KfirmAn and Howarth (1938), expressed in wave-number 
space. 

L(t) appears as a length for k. Set ~ = kL(t), ~max = kmax(t)L(t) for the value of ~ that gives f its maximum 
fm,x' The scales for the three factors in (3.6) can be set by the normalizations 

~max = 1, ~) d~ = 1. (3.7) 

Hence, we have 

~ fo L(t) = ~ = K(t)  = E(k, t) dk, (3.8) 
kmax(t)' kmax(t)' 

so that K(t) is the total turbulent kinetic energy. 
Substituting the self-similar form (3.6) into (3.1), with v = 0, we get 

,~ 3 , ~ , ~ +  K- ' ,  ~ ~(~>: - C l ~ , j ~ , > + c  , ~ .  ,"--~,~,~<,,~j. ~.9> 
There are two ways to reconcile the t- and ~-dependence of this equation. 
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First, we may have 

and 

d 
- ~ ( ~ f ) =  p f  

1 '2 dL K -  3/2L -'1- K -  / - -  ~z, 
d tp  = 

where p, (r are constants. Then f(~) ~ ~P- 1. The left- and right-hand sides of (3.9) go, respectively, like 4 °-  1 
and ~3~/2. This implies p = - 2 and f(~) ,,~ ~-3 for all ~. We reject this as a physically unreasonable shape 
for the (entire) energy spectrum, although the homogeneous isotropic PDE would be satisfied. In parti- 
cular, neither part of (3.7) can be satisfied. 

Second, we may have 

K -  3 / 2 @ L  • -- a, (3.10a) 

K -  1/2dL = ft. (3.10b) 

Then we obtain an ordinary differential equation, which we call the homogeneous isotropic ODE: 

d [- 7"2 ll2df_~ f i { f l  (3.11) 

where a, fl ate constants. This is the alternative that is realized for large t in the numerical solutions shown 
above. 

Equations (3.10) can be combined to give d(K-ll2L)/dt  = ½a +/7, whence 

K -  ll2(t)L(t) = (½c~ + fi)(t + to), (3.12a) 
and then 

L(t)= L o (  1 t _ ~/((1/2)~ +/~) 
+7o ) , (3.12b) 

K(t)= Ko(1 + L ~  -~/((1/2)l+17)t0j . (3.12C) 

The integration constants L o, K o, t o are related by 

K o 1/2L o = (½c¢ + fi)t o. (3.12d) 

Positive fl corresponds to L(t) increasing in time, and km,x(t) decreasing in time. Positive a corresponds to 
K(t) decreasing in time. Integrating (3.11) over { yields 

For  a spectrum of self-similar form that goes like k-  s/3 for k + o% we must then have 

f (~ )~ fo~{  -s/a as ~+o o ,  f~o = constant, (3.14) 
and 

0~ 3 /2 (p  

However, if E(k, t) ~ 0 faster than k- 5/3 as k ~ o% then K(t) is constant in time, and, either by (3.12b) or 
(3.13), a = 0. This implies L( t )~  (t + to) and kmax(t ) ~ (t + to) -1. Equation (3.11) is a second-order ODE 
depending on three parameters, which may be taken as the ratios c = Cl/C2, a = a/fl, and fi/c2. We regard 
c and a as initially specified parameters, and fi/c2 to be determined concurrently with the solution so as to 
satisfy the first scale convention of (3.7). The time dependences of K(t), L(t), and hence kmax(t ) depend only on 
the a-ratio, not on a or/7 separately. Note, also, that if f(~) is assumed to have a power-law dependence as 

~ 0, then the behavior of (3.11) in this limit shows it must be f(~) ~ ~"- 1. Then E(k, t) ~ k "-  1 as k + 0. 



Spectral Transport Model for Turbulence 13 

The relations between the power-law at k = 0, if the self-similar state obeys one, and the time 
dependences of its total energy and length scale are the same as those in the similarity solutions of KfirmAn 
and Howarth (1938) and of all later authors and follow from scale invariance. When E(k, 0) goes like k" near 
k = 0, the numerical experiments indicate the following evolution: the region of maximum E(k, t) and the 
inertial range on the right converge to a self-similar mode on about the same time scale as for an initial 
narrow Gaussian distribution. If n + 1 < ½(3c + 5), the distribution as a whole relaxes, on a slower time 
scale, to a self-similar state with a -- n + 1, which governs the time dependence of K(0 and L(t), and E ~ k" 
for k -+0. Ifn + 1 > ½(3c + 5), the large time value of a is ½(3c + 5), and E converges to the cut-offspectrum. 
Equation (3.12c) implies 

-~a 
K(t) = 1 + 2 (t + to). (3.16) 

dK/dt  a 

The solution of (3.16) for the same parameters as Figure 1 has a vertical asymptote at t* = 0.32, and t* is 
the "catastrophe time" of Brissaud et al. (1973). For t < t*, the decay conserves energy and dK/dt  = 0; 
afterward, energy is lost at k = c~, if it is not dissipated at large k by a residual nonzero viscosity, and the 
enstrophy integral diverges. 

C. Exact Spectra for the Self-Similar Stage 

Computations show that many solutions of (3.1) share certain simple characteristics. We could reproduce 
and extend these results utilizing invariance under scale transformations (for details see Besnard et al., 
1990). The underlying ideas are well explained by Bluman and Cole (1974). We now summarize the main 
results that we obtained. 

1. Case c > -~ .  When the homogeneous isotropic PDE is initialized with a narrow spectrum shape, the 
self-similar state that emerges is characterized by a = ½(3c + 5). We have 

10 1 2 3  f(~) : ~_.~g(~ / ~)2, (~)3/2 < ~. (3.17) 

This spectrum shape is a universal function independent of c~ and c2, provided only that c + ~ > 0. 
The corresponding energy density is determined by two parameters, which can be taken as the cut-off 

wave number ko at t = 0 and the "waiting time" to of(3.12). Adapting (3.6) and (3.12) to this case, and writing 
E s for this solution to the homogeneous isotropic PDE, we have, at t = 0, 

Es(k, 0; ko, to) = (ci + 3c2)2t 2 k3 L\%) - 1 ko _< g, 

= 0, k < ko. (3.18) 

F r o m  (3.26), we get E~(k, t; k o, to) by the replacements 
l~ ~ -  1/3(c+ 3) 

ko-~k  o 1 + ~ )  , t o ~ t  o + t .  (3.19) 

Figure 4 shows shape plots computed from (3.11) for a range of a-values at fixed c, and for a range of 
c-values at fixed a. Except for the variation from power-law to cut-off behavior on the left, the plots are 
insensitive to the parameters a and c. A fairly accurate explicit formula for the similarity shape for any a and 
c can be found without computer aid by matching the explicit cut-off solution (3.17) to ~a- 1 behavior at 
small ~ (see Besnard et al., 1990). 

2. Case c < -~.  The normalized spectrum is 

1] 2 

f({) = 0, 0 < { < {o, 

7 = g ( c + 3 ) ,  ~o= 1 - - - -  . 

~o -< ~, 

(3.20) 
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Figure 4. Sensitivity of the homogeneous lsotropic spectrum shape in the present model to variations of a and c. 

We also have 

and the self-similar distribution is 

= 8(1 - 7)(2 - 7)402 

Es(k, 0; k o, to) = (c 1 + 3c2)2t ~ k3 - 1 , k o _< k. (3.21) 

If - 3 < c < - ~, then 7 > 0 and f ~ ff for ~ --* oo. If  c < - 3, then 7 < 0 and f ~ ~-  3 as ~ -+ oo. 
Fo r  c = - 3, take 7 --,0 in (3.21) to get 

f ( ~ ) =  4 ~ - 3 1 o g 2 ( ~ ) ,  ~o_<~, with ~ o = e  -2/3, (3.22) 
\ ~ v /  

and 

E~(k,O;ko, to)=(2C2to)-2k-31og2(ff~o), ko <~ k. (3.23) 

For  t > 0, Es(k, t; ko, to) is inferred from (3.21) (note a = 0) by the replacements 

- 1  

ko--+k o 1 +  , to--+to + t. 

D, Nonzero Viscosity 

1. Self-Similar Regimes Including Viscosity. When  v > 0, as we now assume, the viscosity term of the 
homogeneous  isotropic P D E  dominates  for k ~ ~ .  A self-similar regime including an inertial range may  
persist up to some wave number  ha(t) to be identified with the K o l m o g o r o v  (1941) wave number.  The 
condit ion is that  o-(t), 

Vkmax(t) o'(t) = ~ ,  (3.24) 

which represents a t ime-dependent inverse turbulent  Reynolds number,  be sufficiently small. By Kol-  
mogorov ' s  theory, we should have 

ha(t) (Reynolds number)  3/4 ,-~ [a(t)] - 3/4. (3.25) 
~d  - -  k m a x ( t  ) 

As will be seen, the propor t ional i ty  constant  in (3.25) for the spectral t ranspor t  model  is determined by 
solving an O D E  and a qualitative estimate is obtainable wi thout  computer  aid. Fo r  c > - ~ ,  spectrum 
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shape proportional to (3.17) will be a good fit in the range kma x < k < kd for the self-similar regime, regardless 
of the choice of  E(k, 0). For an inertial range to exist, a(t) must be small enough to allow ka/km~ ~ >> 1. 

Inclusion of the viscous term in the similarity analysis leads to (3.12) as before, but (3.11) is replaced 
by 

d F 7/2 1/2df fi~fl + ~ f -  2a(t)~2f= (3.26) o, 

where, for a = 2, 
V k m a x ( t  ) Y 

G(t) -- K(t)l/2 = Kto/2L ° = constant. 

Note  that the existence of viscosity-included self-similar regimes was recognized earlier (Batchelor, 1953). 
Examples of  such self-similar solutions to the P D E  can be contrived in two ways. First, we can take 

E(k, 0) as a narrowly peaked function leading to a low-k cut-offself-similar distribution. Then a c-value must 
For large v, the be chosen to force a = 2. In the limit v ~ 0 ,  we have a~½(3c  + 5), implying c ~ - 5 .  

appropriate c is found by trial from the ODE.  Figures 5(a) and (b) are shape plots for v -- a = 10 -4  and 0.1, 
respectively, made essentially self-similar by setting c = - ½  and c = -0 .52 ,  respectively. An inertial region 
exists for v = 10 -4  but not for v = 0.1. 

Second, we can choose c more or less arbitrarily, but force a = 2 by choosing E(k, 0) proportional to 
k( = k a- ~) near k = 0. See Figure 5(c) which, with v = a = 0.01, shows an inertial range of modest size. 

2. Overlapping Self-Similar Forms. We now analyze the character of E(k, t) in the dissipation range for 
large times by a method that applies to arbitrary c and a. We do assume c > - ~ so that "inertial range" 
refers to a k-dependence of E(k, t) approximating k-5/3. A similar method would apply for c < -~-. 

'C3 

'C3 

E 
I L l  ~ : 

-2 -1 o t 2 3 ~ 5 s 7 a 
Log k / k max (t) 

(a) 

- >  cl °1, o2=1, o0,Ol 

,.o 1 \XX 

~ - 0.2 

-2 -I 0 2 3 4 5 6 7 

Loc k / k max (t) 
(c) 

Y ~ / / ~  cl =-0.52, c2= 1, v=  0.1 
'~  ~, ~/ f / \ ~  E(k,O) ~ exp( - 0.5(z/0.1)2 ) 
, _-= 
I C 3 -  

~ =_- 

-.~ CD= t - 0  

~ ,  ~ o.1 

O 5  

~ -  , , , , i  p , i . . . .  i . . . .  i . . . .  
- 2  - 1  0 1 2 3 4 5 6 7 

Log k / k max (t) 
(b) 

/~/~-'-~ cl = 1, C2 = 1, v = 10 "'t ~! , - . x p , - o . 5 ( z / o . 1 ,  ~ ° 

, - o  

UJ Z I 0.1 

%- 

IC2~- , , , , j  

-2 -I 0 i 2 4 5 6 7 

Log k /  max(t) 
(d) 

Figure 5. Decays with nonzero viscosity in both self-similar and partially self-similar regimes. 
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Equation (3.26) is not exact when aa(t) is time dependent because f was prescribed as a function of ~ only. If 
f were generalized to include an additional t dependence, a t-derivative of the new f would have to be 
included in (3.26). 

However, if o-(t) is small enough to permit an inertial range, then (3.26) with the o.-term dropped, is still 
accurate over a portion of the spectrum, including the very-large-eddy range (k << kmax) , the dominant-eddy 
range (k ~ kmax), and the inertial range (k~,,x < k < ka). Equation (3.6) remains valid over this part of the 
spectrum. 

Now, begin again with a new self-similar hypothesis, 

E(k, t) -= K(t)L(t)f(~), ~ = kL(t), (3.27) 

intended to describe the inertial range and the dissipation range, k > k a. A form like (3.9) is again 
encountered, with an additional term on the right, that is, -2v~2f/(K~/2L). To reconcile the time 
dependence of this term with time independence of ~ we assume 

v 

/~1/2~ = 4 = constant. (3.28) 

This would imply that the a- and fi-type terms are time dependent, but they are dominated by the transport 
and viscosity terms in the range of current interest and may be dropped. We are left with 

d _[- ~7/2-el,adfj,_d_(_ cl{S/zf3/2] 2'~{2f= (3.29) 
- o 

Thus, after some relaxation time, E(k, t) is to be described concurrently by two different self-similar forms. 
The two apply to different, but overlapping, portions of the spectrum. We have not proven that this double 
self-similarity will evolve from an initial E(k, 0), but our numerical experiments validate it. 

Because the disregarded e and fi terms originated from the ~E/& term, (3.29) has an additional 
interpretation. If a steady state is established by, for example, injecting a constant energy source in 
a localized region of k-space, then (3.29) also describes the equilibrium state outside of that region. 
Kovasznay (1948) using c 2 = 0 and Leith (1967) using c~/c 2 = 2, among others, have applied the equation in 
that context. 

For present purposes we do not need to prescribe normalizations such as (3.7) and (3.8) to make the 
separation of E in (3.29) into three factors unique. Integration of (3.29) yields 

f ( ~ ) ~  f ~  1 -  as ~ -~c .  (3.30) 

Numerical integration of (3.29) will establish a relation between the two boundary conditions. 
There is one qualification to the above picture. The assumption that the e and fi terms are ignorable 

relative to the retained terms in (3.29) does not apply for ~ _> ~c. In a precise calculation of the time evolution 
with nonzero viscosity, it is found that the behavior predicted by (3.30) is followed until the fall-offfrom the 
spectrum maximum is, say, about four or five decades, after which there is a small, exponentially decreasing 
tail for ~ ~ oo. 

3. Joining the Self-Similar Solutions. We have shown that, from (3.27) and (3.29), we can extract a solution 
and a constant C = C(c) such that,~in the inertial range, 

E(k, t) = K(t)L(t)( ~ ) 2 C(kcL(t) )s/3(kI-,(t) ) - 5/3 

Here, k c = kc(t ) is the cut-offwave number at the right end of the dissipation range, and the dependences on 
K, L have canceled. From (3.6) and (3.11), however, we have, in the inertial range, 

1 
E(k, t) = K(t)L(t)(kL(t))- 5/3foo, L(t) - -  kmax(t ). 
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Equating the two, we obtain a condition determining the dissipation cutoffin the double self-similar regime: 

~ J  = \a--~] \ C - J "  (3.31) 

This still depends on a(t) being sufficiently small. The time dependence of k~(t) follows from the dependences 
of km~ x and a, which are known when a is known, and f~ ,  C are constants depending on a and c and 
determined from integrations of ODEs. 

Figure 5(d) shows a shape plot for Cl = c2 = 1, v = 10 -4, and E(k, 0) is a narrow Gaussian, normalized to 
~E(k, O) dk = 1. The inertial range, established by t = 0.7, shrinks slowly as a function of time. 

At t = 0, let E(k, t) be expressed as 

E. Convergence to Self-Similarity 

E = E s + AE, 

where E S is the self-similar solution to the homogeneous isotropic PDE to which E converges in time. 
Assume AE/E s is "not too large," and make the approximation 

3 ]~'l/2A r7 E3/2--+ E3s/2 4--~s ~ "  (3.32) 

For example, the relative error of (3.32) is less than 15% if -0.39 < AE/Es < 1. This leads to a linear 
equation for AE: 

= 2vkZAE _ 3 r, L (/r 5/2 b- 1/2A b- ~ ~ 7/'2 ~ 1/'2 ~ AE - 2~13k  t'~ ~s ~ J  4- c 2 ~ k  ~ ( E ,  AE). (3.33) 

We solve (3.33) for c > -35, v = 0, and choose (3.18) and (3.19) to represent E S. 
Some lengthy algebra (Besnard et aI., 1990) shows that 

E(k'O):Es(k'O;k°'t°)4-k-3x-2(1-x)~CnPn(X)'n:2 x : ( ~ )  2/3' 

where the P,'s are Jacobi polynomials. For t > 0, put 2, = 2 + n + 4n(n - 1)/9(c + 3); then 

~ ( ~0)-z° ( _ ~ ) 2 / 3 .  (3.34) E(k,t)=E~(k,t;ko, t o ) + k - 3 x - 2 ( 1 - x )  C, 1+ P,(x), x =  
n=2 

The condition determining k o reduces to 

SE(k,O)k-~(ko/k) 2/3 dk p + 1 9c + 15 
with p -  (3.35) 

~E(k, O)k-~ dk p + 4' 4 

Let kmi n be the smallest wave number for which E(k, 0) # 0. We as sume  kmi n > 0, and ask whether 

~E(k, O)k-a(kmin/k)2/3 dig p 4- 1 
SE(k, O)k -~ dk >- p4-4'  (3.36) 

If (3.36) is valid, (3.55) will place k o in the interval 0 < k o _< km~ ~. 
Equation (3.34) describes the convergence of a cut-off distribution E to a cut-off self-similar distribution 

Es and is approximately valid provided that E, Es, and the residual AE = E - E ~  do not violate the 
approximation (3.32) grossly. Equation (3.36) is a necessary part of this condition. (The analysis for low-k 
power-law distributions is much harder.) 

For t >> t o and for fixed ratio k/ko(t), k3E~ decreases like t -2. When the approximating condition is 
adequately satisfied, (3.34) shows that the residual terms decrease like t -z°, with n _> 2. The residual as 
a whole decreases faster than t-4. 

F. A Comparison with EDQNM 

From a fundamental standpoint, energy transport in k-space is nonlocal; OE(k)/& is determined by values 
of E(k') not only for k' in the immediate neighborhood of k, but in some larger range. It may be asked to 
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Figure 6. An EDQNM calculation by Lesieur and Schertzer (1978) of a homogeneous isotropic turbulent decay. (b) A calculation in 
the present model with the same initial conditions and viscosity, and with parameters chosen to match the data of Figure 6(a) at large 
times• 

what extent a phenomenological theory like the present one, which describes k-transport in local terms, can 
simulate nonlocal phenomena. A simple expedient is to compare it with an explicitly nonlocal theory. 

Lesieur and Schertzer (1978) have made a detailed study of the predictions of the (nonlocal) E D Q N M  
model for the decay of homogeneous isotropic turbulence. Figure 6(a) is an evolution plot from Eesieur and 
Schertzer (1978) copied with permission from the Journal de M~canique, with an initial distribution 
E(k, O)~ k2e [-k/km~x(°)]2 and an initial turbulent Reynolds number 

Re = [~E(k, O) dk] 1/2 _ 32800. 
vkmax(0) 

Figure 6(b) is the plot for the same initial data and the present model. For  this plot, we chose c 1 = 0.12, 
c 2 = 0.05 to optimize agreement with the Lesieur-Schertzer curves for t _ 10. Because the objective here is 
merely to show that local theory can match results of nonlocal theory, there is no implication that these 
values of c 1, c2, or of the resultant ratio c = 2.4 are optimal for comparison to experiment. Agreement in the 
approach to self-similarity is not to be expected; in E D Q N M  t = 0 is a time at which triple correlations are 
assumed to vanish, and relaxation to self-similarity is not a time-translation invariant process. However, for 
the curves at t = 10, 50, 100, 200, the two methods give remarkably similar results. 

Lesieur and Schertzer identity a k 4 driving term in the evolution equation for k -* 0. Neither the presence 
of this term in E D Q N M  nor its absence in (3.1) has a visible effect in Figures 6(a) and (b) because the initial 
k 2 behavior dominates. 

Each curve in Figure 6(b) must cut off at the high-k end with a behavior ~ (k c - k) *, as we found earlier. 
Presumably, nonlocality precludes abrupt behavior in EDQNM; but we note that the curves in the 
dissipation region in the two examples are quite similar even though a range of two to three decades of 
E values is displayed in that region. 

Lesieur and Schertzer also report that if the turbulence has, as an initial condition, a low wave-number 
spectral behavior of the form E,,(k, to) ~ k ", 1 _< n < 4, then the low wave-number spectrum is preserved, 
and the turbulent kinetic energy decays in time as t -  ~, there 7 = (2n + 2)/(n + 3). If n --- 4, corresponding to 
the Loitsianski integral invariance case, Lesieur and Schertzer indicate that the E D Q N M  model yields 
7 = 1.37, which disagrees with the analyses of Kolmogorov (1941) and of Comte-Bellot and Corrsin (1966). 
The value of 7 = 1.33 arrived at by Yakhot and Orszag (1986) using the RN G  approach, corresponds well 
with the E D Q N M  prediction for a value of n = 3. 

If n is initially greater than 4, Lesieur and Schertzer note that nonlocal interactions in k-space tend to 
drive the low wave-number spectrum power law to a value of n = 4. Our model shows that the low 
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wave-number power law persists provided than n + 1 < ½(3c + 5). At large times, the energy decay like t -  ~, 
7 = (2n + 2)/(n + 3), is in agreement with the E D Q N M  model for 1 _< n < 4. 

If the low wave-number cut-off is attained, i.e., if n + 1 > ½(3c + 5), then 7 = (2c + 10/3)/(¢ + 3). Note that 
if c > I, then the decay rates observed by Lesieur and Schertzer are also given by our model for 1 < n < 4. 
This agreement is perhaps due to the fact that if the turbulent field possesses a low wave-number power law 
with n < 4, then the contributions to small wave numbers due to triad interactions (which contribute energy 
at small wave numbers in a manner proportional to k 4) become vanishingly small compared with the energy 
already present in the region near k = 0. It is worthwhile noting that the decay law exponent 7 = 1.3, as 
determined by Mohamed and LaRue (1990), corresponds to a power-law exponent of approximately n = 3 
in the model of Leith (1967), our model, and the E D Q N M  model. This implies that the effect of energy 
transfer to large scales due to triad interactions is a small effect in grid-generated turbulence and perhaps 
also in other real turbulent fields. 

Note that, for n = 4, our model disagrees with the E D Q N M  model, but agrees with Kolmogorov (1941) 
and Comte-Bellot and Corrsin (1966). For  n > 4, the threshold between persistence of a power law and 
appearance of a cut-off spectrum depends on the value of e. 

In summary, we note that the relations of self-similarity as set forth in Lesieur and Schertzer coincide 
with the corresponding relations of our model in the limit t >> to, i.e., for relaxation times large compared 
with K-1/2 /k  . . . .  which represents the cycle time of the dominant eddies. These comparisons support the 
view that the homogeneous isotropic PDE of our model can simulate turbulence effectively despite its 
purely local character. 

G. Comparison with a Model of Bell and Nelkin 

Bell and Nelkin (1978) studied a "cascade model" whose dynamical variables depend on aggregate 
turbulent kinetic energies in discrete wave-number shells. The nth shell is centered at k, = 2"ko, or, more 
generally, at k, = h"k o. This paper, which we call BN, was based on earlier work by Bell and Nelkin (1977) 
and generalizes the model of Desniansky and Novikov (1974a, 1974b). Their model equation is 

__du, = ek,(u2_ l - -  h u n U n +  l )  - ek,h-1/aC(u,_ lu, - hu2) - vk, 
dt 

where 

I 
hl/2kn 

~U n l  2 ~ %u2(k2 \ . ,  t )=  E(k,t)dk. 
J h -1 /2kn  

To draw comparisons, we first remark that, for purposes of numerical computation, we utilized variables 
E(k, t) = kE(k, t) and z = log k, so that E dk = E dz. Our PDE takes the form 

~ 2 ~ 2 E  ~ --(cl  +c2)kE3/2 + c2kE1/2dz j .  (3.37) & 

Computations were done by finite differences on a z-mesh with constant mesh spacing Az. 
The BN equation can be re-expressed as 

d l 2 2vk 2 1 2 2 1 - ~ ( ~ u , ) = -  , ( ~ u , ) - A { e k , u , u , _  -c~Ck,  u2u, 1}, (3.38) 

where we apply the finite difference notation AF,  = F,+ ~ - F,,  and make the correspondence h = e az. It is 
clear that (3.38) is a finite-difference approximation to (3.37) in z-space. In our numerics, most data were 
about two-figure accurate with mesh spacing of Az = 0.1 to 0.2. Because BN focused on Az -- log 2 -- 0.69, 
their results should be qualitatively, but not precisely, equivalent to ours. 

Following the appendix of BN, we set C = h :-/2 and compute the limit of(3.38) as Az ~ 0. To leading order 
in Az, the result is (3.37) with 

c 2 = lim x/2(Az)-S/2c~, 
Az -* 0 

C 1 _ _5_~ 
3 

C2 
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A key result of BN is that E goes like k-  s/3 or k-  5.3 - ;  in the inertial range, according to whether ~ is negative 
or positive. This matches exactly our result, which depended on the sign of c + 5. 

Lastly, BN noted that Leith's shape functions had a range of power-law behaviors as k --+ 0 and a range of 
time-decay laws, and suggested that Leith's equation may have another type of solution with a sharp low-k 
cut-off, because the BN solutions had a similar character. We have confirmed this and given the cut-off 
solution explicitly in Section 3.C. In return we can suggest that the BN model also has a range of self-similar 
power-law solutions; BN could have found them as the long-time limit of a calculation starting from 
a power law at t = 0. 

4. Free Shear Flow 

A. Differential Equations 

Consider the flow (Kelvin-Helmholtz instability) of a three-dimensional, incompressible fluid with mean 
flow along x and mean-flow gradient along y. Assume u a ( y , t ) ~ u ~ = c o n s t a n t  as y ~ o e ,  
U x ( - y , t ) = - u t ( y , t ) ,  and Ul(0,t)=0. Also, ul (y , t )>O for y > 0  and u ~ > 0 .  At t = 0 ,  we take ]ul] 
substantially equal to u~ for all y, except for a smooth transition from -Uo~ to u~, confined to a narrow 
interval about y = 0. 

We write Ou~(y, t)/Oy = ut2(y, t). This is the only nonzero component of mean-flow gradient. The mean 
pressure p(y, t) is symmetric in y and approaches a constant Poo as y ~ _+ oe. 

This system is studied here for rather limited purposes: to give a comparatively simple example of 
a calculation for an inhomogeneous flow yielding physically sensible results, to illustrate certain scaling and 
self-similarity properties that may occur in inhomogeneous flows, and thereby to provide motivation for 
certain assumptions in the K-e  derivation of the next section. 

A more complete analysis, including experimental comparison, will appear in forthcoming papers with 
Timothy Clark and with Robert Gore. 

The evolution equations for E~j couple four linear combinations of the tensor components; these 
codetermine one another and must be solved for concurrently. These are conveniently taken as E(y, k, t), 
E11(Y, k, t), E22(Y, k, t), and E12(Y, k, t)( =/~12)- The operators V and T of (2.19) become 

where 

V = v ( -  2k2 + ~ d-~2 ) , 

0 0 0 2 0 3 (~ T = CD-~yl~T~y -- Cl ~ k  N / ~  -'}- C2 ~ 1£ N/-~-'~, 

co dk 

- t) : fo 

It follows from (2.20) that 

0E VEE] + TEE] 0(k/72~2) 0~- = - -2u12E12 -1- 3CF2U12 - ~  ' 

0/~ VE/~ 1] + T[ /~  ~2 - 7 ( 1  2 ~ 2 0(k/~12) Ot 1 -- 4 __CB)U12E12__~CBlU12E12 ~_~CFU12 ~ 

0/222 _ V I - P = ]  + TIE22]  + 2(1 - cB)u12Ex2 + ~c.~u~2Ex2 + gcFu~2 -~  & 

(4.1a) 

cMkx/~ff, l~, (4.1b) 

cMkx//~ff ,  z2 , (4.1c) 

0ff~12 -- V[/~12-1 -I- TEff212 ] --fi55 u12 E q- cmu12Ell  - (1 --  cB)u12E22 -1- cfu12~(kE11 -t- ]¢/~22) 
0t 

1 ~(kE) cMk,jk2P12, (4.1d) 
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In this formulation, u 1 (y) is antisymmetric in y, and ua 2, E,/~l l, ff~22, E12 are symmetric in y. The Eij and ul 2 
vanish at y--+ _+ oe. The x-component of the mean-flow equation, (2.6), differentiated with respect to y, 
yields 

~2 ©2 (*co 
= V~y2U12-- 2~yz_]a E12(y,k , t )dk .  (4.2) ?Su,  

Equations (4.1) and (4.2) are now a complete set of coupled equations that determine the evolution of E,/~1,, 
/~22,/~12, and u12 for t > 0 from their initial values. 

Integration of (2.6) over y yields the mean pressure: j'co 
P(Y) - Pco 2 E22(y,k, t) dk. (4.3) 

P P o 

The remaining components, E23 and E31, couple only to each other. For present purposes, we assume 
E2a = E3~ = 0 for t = 0, and hence for all t > 0. 

B. Some Similarities 

Turbulence in free shear flow contains at least as many regularities as were displayed above for 
homogeneous isotropic turbulence. We do not attempt a complete treatment here, but take a first step. We 
take v = 0 and look for solutions depending on y and k through the dimensionless combinations t /and {: 

Y = ku~( t  + to). (4.4) 
II = uco(t + to)' 

Assume that the tensor functions can be expressed in terms of dimensionless functions of q and ~: 

E(y, k, t) = /~(t/, ~), (4.5a) 

/,/2 ^ 
Eij(Y, k, t) = -~']Eij(rl, ~). (4.5b) 

K /  

For the mean flow, set ul(y, t) -- uco~(t/). In terms of 

R12( ) = uL 2 e lg(y,  k, t ) &  = 

the mean-flow equation becomes 

Hence, 

c3fi 2c~/~12 (4.6) ,N=- • 

1 aft 2 6~R12 
u12(y, t) - t + t~o &l tl(t + to) &l (4.7) 

It is now straightforward to verify that the equations for /~(t/,~), /~11(t/,{), /~2z(q, ff), and /~12(t/,~) 
constitute a closed system whose solutions, if they exist, represent a self-similar regime. In order to test 
computations for convergence to, and consistency with, this self-similar regime, we consider some of its 
implications. 

Let km,x(y , t) be the wave number at which E(y, k, t) reaches its maximum, Emax(Y , t), for fixed y, t. Let 
kmax(t ) ~ kmax(0 , t), Emax(t ) ~ Emax(0 , t). 

Next, assume the forms (4.5) are valid, and let ~m~x(t/) be the ~ value for which/~(~, ~)/~ is a maximum. By 
(4.4), we have 

~max(t/) = Uco(t + to)kmax(Y , t), (4.8a) 

and, in particular, 

~max(0) = b/co(t -~- to)kmax(t ). (4.8b) 
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Then 1/km,~(t ) is a linear function of t in the self-similar regime, and its t-intercept identifies t o. Further, 
1~kraal(y, t), as a function of t for a fixed value of ~ = y/u oo (to + t), is linear in t. The definitions (4.4) can now be 
rewritten: 

Ykmax(t) 
r / -  ~m.~(0), (4.9a) 

= ~max(0). (4.9b) 

Thus, up to a constant, t/and ( can be inferred from computed data at time t without prior knowledge of to, 
which requires data at a range of times. It follows that 

k 
E(y, k, 0 /~(t/, ~)/~ = function only of ykma,(t ) and km,.(t ). (4.10) 
Emax(t ) max;(E/~) 

C. Numerical Results 

Our numerical calculations are surveyed here in graphical form, including some checks on the scaled 
relations of the previous subsection. Some additional features of similarity, not specifically implied by the 
previous similarity equations, are also noted. They lead us to approximate self-similarity statement for the 
general Reynolds tensor in (x, k)-space, which is the point of departure in the next section for a derivation of 
the K - e  model. 

We present data on the numerical solution of (4.1) and (4.2) with c 2 = 0.148, c 1 = 2c2, c M = 26c2/9 , 
~6 cB = ~r, co = 0.05, and v = 0. All five of the dimensionless parameters enter into this calculation. The values 
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Figure 7. Dependence of mean-flow gradient and Reynolds stress-tensor components on distance from the shear plane and time, in an 
evolution of free shear flow. 
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of c 1 , c z are consistent with the considerations of Section 3.A including CK = 1.5, and the values of c B and c M 
are consistent with estimates of Clark and Zemach (1991) matching experiments on homogeneous flows. 
The c D value was set to make the diffusion rate in y-space of the E u comparable with the diffusion rate of ul z- 
No  claim is made at the present time that these illustrative values are best fits to experiment. Initial 
conditions are chosen that concentrate the k-spectrum about k = 1, and concentrate the y-dependence of 
the functions about y = 0. Also, we set uoo = 1 and SE dy dk = 1 at t = 0. 

Figure 7 shows the dependence on the distance y from the shear plane of the mean-velocity gradient 
u~2(y,t), the turbulent energy density K ( y , t ) =  SE(k,y, t)dk,  and the anisotropic densities /~u(Y, 0 = 
~Eu(k,y , t )dk and shows how they diffuse in time. Note  that /£11, /£22, and /~la are negative. (The 
components of the K tensor are half the components of the Reynolds stress tensor.) 

The one feature of regularity, which is critical for the argument of Section 5, is that after a certain 
relaxation time (in this example, for t > 64) spectral shapes may become substantially independent ofx. This 
is shown by the shape plots of Figure 8. The apparently single curve in each plot is a superposition of seven 
curves for seven distances y from the shear plane in the range 0 _< y _< 16, spanning about eight decades of 
values for K(y, t). ( /~  1 and/~12 are negative•/~22 is mostly negative, but slightly positive at low k; hence, the 
E22 scale is in linear, rather than logarithmic units.) 

Figure 8 also shows the spectra go like powers for k, for large k. The k - 5/3 behavior for E follows from the 
form of TIE], i.e., it is a consequence of energy balance and dimensional analysis, as in the homogeneous 
isotropic case• Suppose that E~2 ~ k p in the self-similar state for large k. Then 

TEE!2]--CMkxfk-EEt2"~[p2 +(~--c)p--(sc +CM~k p+2/3 c2/J k--*oo. (4 .11 )  
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Figure 8. Spectra of energy-tensor components for the flow treated in the text, for t = 64, and for seven distances y from the shear 
plane. The fall-off of turbulent energy density K(y, t) in this range is about eight decades. The seven curves in each pt0t are nearly 
coincident, and remain so for t > 64. 
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If El2 were some arbitrary distribution in k-space, which was decaying in the absence of any mean-flow 
coupling, then the vanishing of the coefficient ofk p + 2/3 in (4.11) defines an indicial equation in p. Its solution 
Po fixes the leading term k p° (i.e., the term with least negative exponent) that E12 has for large k. We find 

1 5 I 52 po ~(e- 3)-  ¼(c + 7) + c~ 1/2. 
CzJ 

The negative sign of the square root is taken so that Po is negative, and close to - ~  if c~ is close to zero. 
For the present case, however, the term in (4.11) may balance off against the u12E term, which implies 

that p = -7- If this is the physically realistic case in an experimental situation, as some believe, the 
implication for our model is that cM/c 2 be set large enough to make Po < _7, and this was done above. 

Because the mean-flow coupling in the dEa2/dt equation is to EI2 , but not to E, the same argument gives 
E11 and/~22 ~ k-  9/3 in this model. These predictions are consistent with our example for t > 64. 

The data indicate the following paradigm for late times is approximately valid: 

each tensor component = (function of y, t) x function of (k x function of y, t). 

This can be understood as follows. The anisotropic part/~; of the E-tensor is produced by the mean-flow 
gradient terms and dissipated by the c~t terms. Over time, an equilibrium may be established in, for example, 
(4.1c) such that 

if the other terms of (4. l c) are relatively unimportant, e.g., for large k. Then the mean-flow term of (4.1 a) is 
like (u12)2k - 3/2E1/2. With error of second order in u12 , E(y, k, t) can relax to a y-dependent self-similar form 
E,,~KLf(~), ~=Lk.  This implies EI2~K12L?(~) , with f(~),,~-3/2fx/2(~), at least for large k, and 
IK12/K[ ~ ] K - 1 2 L u 1 2 ]  ~ to/t M. 

Here, t M is the inverse mean-strain rate and is a characteristic time for change of the mean velocity 
distribution. Assuming that ½c~ + fi in (3.12c) is of the order of unity, t o represents both the dominant-eddy 
cycle time and the waiting time necessary for convergence of a k-distribution to a self-similar form (as in 
Section 3.F). A condition for approximate self-similarity is then I KI2/K [ << 1, or t o << t~, i.e., deformations of 
the mean-flow configuration must be slow compared with the periods of the dominant turbulent eddies. The 
parameters of this numerical example meet these conditions. Other parameters may produce other 
phenomena; this is a matter for further study. 

It is tempting to extrapolate from this example and propose an approximate self-similar form to which 
a set of general turbulence distributions will converge in time, and which follows the above paradigm. This 
leads, in the next section, to one-point equations in x-space, after some averages over k-space, substantially 
equivalent to the K-e  equations. 

Referring to the complete model equations, (2.22), we expect that E ~ k-  s/3 for large k in the self-similar 
state (up to the dissipation region), if such a state is reached, and that /~j  ~ k-  7/3, provided that the E-term 
in the OE~j/Ot equation that is proportional to ~u~/Ox~ + Ouj/Ox~ does not vanish, and that cM/c 2 is not too 
small. 

5. Reduction to "One-Point" Equations 

We have seen by example and some argument that the late-time solutions of the spectral transport model 
may be self-similar. This supports the idea that simple transport models, such as " K - C  may be able to 
describe adequately a large number of different circumstances. 

We integrate the evolution equations for E and Eij over dk to get evolution equations for K = ~E dk and 
~2ij = ~Eijdk in terms of K ,  /£ij, 3u~/~xj, and a length scale L. L may be considered the inverse of the 
dominant wave number kma x in the E-spectrum. The dissipation rate e = e(x, t) will be identified from the 
OK~& equation as proportional to K3/2/L. 

By integrating the ~E/& equation over k m dk for suitable m, we get an equation relating OK~& and OL/Ot, 
allowing elimination of L in favor of e. The Boussinesq approximation is then invoked to express/~ij in 
terms of the other data. This, together with the mean-flow equation, closes the system, and yields the desired 
reduction to a one-point model similar to a K-e  model. 
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The result depends on constants related to the five parameters of the spectral transport model, and to 
moments of the form factors of the E and/~ij distributions. As a rough guide to estimating them, we might 
assume that the form factor for E obeys the homogeneous isotropic ODE, (3.11), which fixed f(~) in terms of 
parameters c and a. 

The K-e model is not a perfect match to experience and neither are our self-similar forms. Our purpose is 
not to prove the K-e model, but to clarify the basis for its approximate validity, and to suggest that the 
spectral transport model can provide improvements. 

A. Organizing Assumptions 

1. The Self-Similar Forms. The turbulent system is assumed to have relaxed to 

E(x, t) = K(x, t)L(x, t)f(kL(x, t)), (5.1a) 

/~o-(x, t) =/~ij(x, t)L(x, t)f(kL(x, t)). (5. lb) 

A more general hypothesis is/~ij = KLfij with the shape functions carrying the indices. This would not 
lead to the usual form of the K-e model, and we do not pursue it here. The form factors are normalized 
to 

ff(~)d~= ff(~)d~= 1, ~ m a x = k m a x ( X , t ) g ( x , t )  : 1, 

where ~ = ~max maximizes f(~). Their asymptotic behaviors (see the end of last section) are 

f(~) = f ~  ~- 5/3 + O(4- v/3), f(~) = O(~- 7/3) or, at least, f(~) = o(~- 5/3). (5.2) 

We utilize the flux Fs(~) for f(~) as defined in Section 3.D.2. Iff(~) obeys the homogeneous isotropic ODE, 
then, taking (3.15) into account, 

l i m f s ( ~ ) =  c l +  3 f ~  = e" (5.3) 
£~oo 

For present purposes, we take this as the definition of e, regardless of whether f(~) obeys the ODE. The 
corresponding flux limit for/~ij is 

lim [ cl~5/3fl/2f - c2~7/2ft/2d~f l = o. 
~ool 

If there are particular components OUa/OXb + OUb/OXo of the strain rate that vanish, two qualifications 
are needed. First, it might be inappropriate to model/~,b with the same form factor f(~) as the other 
ffX~j, because their large-k behaviors are different, as noted in the previous section. In modeling the evolu- 
tion of the full Reynolds tensor, a large family of form factors might be necessary. However, second, 
such E,b do not contribute to the mean flow coupling ( ~  ~blm/~)CnEmn ) in the OE/& equation, and hence 
do not affect the derivation of K-e  that merely substitutes a Boussinesq approximation of/~,,, in this 
coupling. 

2. Moments. 

and 

We encounter several types of moments over the f and f distributions. First, 

Im=f~°'f(¢)d~, J~=f#~Fs(#)d~ 

(- 
d~. 

If f(~) and f(~) ..~ 4"- 1, ~ ~ 0, and f(~) ~ ~- 5/3 ~ ~ oe, these moments are well defined for 

--a<m< 2. 

(5.4) 

(5.5) 
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(There is no lower limit on m if f(~) and f(~) are cut-off distributions.) When f(~) approximates the solution 
of the homogeneous isotropic ODE, we can take moments of the ODE and estimate that 

Jm m 
= 1 +- - .  (5.6) 

Im~ a 

Next, the turbulent diffusion terms in the spectral transport equations simplify as follows: 

a ~ 1/2 
VX.k vx, / vx , \  ox, / 

where 

MD = f ~  - 3/2fl/2(~) d~. (5.7) 

Finally, the k integral of the tensor-mixing term is 

f CMkx/-~ff~ijdk = ~ MMK1/2~2ij, 

where 

MM = f~3/2fl/2(~)f(~) d~. (5.8) 

A (crude) estimate is obtained by assuming that in the self-similar limit, the c~ term and the mean-flow terms 
containing E, (i.e., the Cij terms) dominate in (2.22b). This leads to 

~-  3/2fl/2 /I 
f(~) ~ " J , N = j ¢ -  3/2fl/2(~) de, 

N 

for the normalized ~ whence 

MM~ff(~-~ d~-IMD. (5.9) 

This expression for f in terms of f(~) is not reliable for ~ ~ 0 where the CM term would be dominated by 
transport terms, and we do not use it to estimate ]',,. Equation (5.9) is to be considered no better than an 
order-of-magnitude estimate. 

3. Inertial Range and Viscosity. The postulated forms for E, E~j can only be valid for k up to some 
Kolmogorov wave number ke(x, t) after which viscous dissipation takes over. The viscosity is now assumed 
small enough, and the inertial range is assumed broad enough, that the moment integrations, which should 
only be carried out up to ~ = ~d = kdL, are adequately approximated by taking the limit ~d ~ oQ. In a more 
precise analysis, or one in which v is not "small enough," ~a becomes another parameter of the modeling, and 
one might have to contend with x- and t-dependence of ~a. We ignore this complication. Within the broad, 
but finite, range of k-space in which the k-integrals are done, viscous dissipation is ignored, and viscous 
diffusion is ignored relative to turbulent diffusion. 

B. The Moment Equations 

The forms (5.1) will not, in general, satisfy the evolution equations exactly for any choice of K, L, /~j .  We 
seek a best-fit approximation to K, L, /~j by substituting (5.1) into (2.22), and requiring that certain 
equalities obtained from averages over k be satisfied. We also drop the viscosity terms at this point. First, 
integrate over dk to get, with D/Dt = ~/~3t + u t O/~3xz, 

DK Ou~ ~ o~K 3/2 3 / 1'2 ~ K \  
= - 2 : - K ~ , - - - - = - + c o M D T - - I K  / L v - ] ,  (5.10a) 

Dt ax. L OX. k ox , /  
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DKij 2 /~?ui ~uJ~ K /~u i ~ Ouj ~ 26ijOu, g "~ 
D t -  15~,-~xj+~x~) -(l-%)~-~x,K"J+~x~K~" 3 Ox 1 "~) 

+cm~x~K"J+~xjKi" 3 ~xtK"l)+C°Mvc~x,\ Ox,/  CMMM----L-KiJ" (5.10b) 

Second, choosing m in the interval (5.5), integrating (2.22a) over k" dk, and dividing by I m, we have 

1 2  
~ = c~xl Im Lm 1,,15+1 t-CDMDT-[K / L ~ -  . (5.10c) OXn \ OXn 

The choice of m is discussed below. 
From the first of these equations, we infer, for the energy dissipation rate e(x, t), 

o~K312 
- (5.11) 

L 

To get a De/Dr equation independent of DL/Dt, set 

/ K \1/,, ~.=o~K(3m-2)/2m~) 

and take the logarithmic derivative: 

D e - e - F 3 m - - 2 D K  1LmD[K'~q--I--I! 
~-m 

(5.12) 

Substituting (5.10a) and (5.10c) into (5.12), eliminating L in the result and in (5.10a) by means of (5.11), we get 
K-e  equations in their first form: 

DKDt 2 ~Hl-~ln--13-}-gD-~nXn~T ~nXn) n (5.13a) 

D r -  2~xn-'Kgel ln--ge22-}-~JD~nXn~T-~nXn)-- 3 [ e a \ c x , )  + ( 2 - 3 m ) K  2c~x,] ~X n 

The new constants 9~1, g~2, 9o are 

(5.13b) 

3 1 d 
+ - -  (5.14b) ge,2 -- 2 m (maim)' 

f l "  "~3/2 
= c M t "  ~ |  (5.14c) g o = c ~ M o ~  i, O \ c i , )  " 

The derivation of the 90 terms in (5.13b) is outlined in Appendix B; the rest of the algebra is straightforward. 
Note the alternative form for the go terms in (B.3) of Appendix B. 

If the self-similar representations were exact, these equations would be independent of m. Their 
sensitivity to the choice of m is a measure of the imperfection of the K-c model, as deduced from the spectral 
transport model. The ratio of mean-flow coupling coefficients in the two equations is 3/2 plus a correction 
due to the relative differene in the ruth moments of f(~) and f(~). This traces back to a derivative of 
g (= o~K3/Z/L) with respect to K in the derivation, 

Whatever the errors in the DK/Dt and D(K/Lm)/Dt terms may be, their contributions to the error in De/Dt 
are seen to be strongly magnified when m is close to zero. On the other hand, a strongly negative m-value 
may overemphasize the k ~ 0 part of the spectrum. Perhaps, it is reasonable to look for variations in the 
predictions of this analysis for m-values in the neighborhood of the interval ( -  2, - 1). 

3 Iz(1 -- 3mcF2/2) - I m 
g~l = ~ + (mlz) , (5.14a) 
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If we apply (5.6), the decay-term coefficient in the e-equation becomes 

3 1 
g~2 = ~ + - .  (5.15) a 

One of the 9D terms in (5.13b) is of the familiar diffusion type, while the others are negative definite, 
augmenting the decay. 

C. The Boussinesq Approximation 

The c M terms of (5.10b) would return the K-tensor to isotropy, that is, drive the/(~i components to zero, if 
there were no coupling to mean-flow gradients to sustain them. At late times, assume the evolution reaches 
an equilibrium with respect to this competition. For such an equilibrium, we have D K i j D t  .~ 0 in (5.10b). 
Suppose, in addition, that the diffusion term and the mean-flow coupling to Kij in (5.10b) are small 
compared with the mean-flow coupling to K. (Conditions for this are noted below.) Then the equilibrium is 
expressed as 

Hence 

where 

2 / 8 u i  8us~ K cMMM e ~ 

K 2 f  gu i 8u j \  
(5.16) 

9M - ~ - ~(f~°/CK)3/2 (5.17) 
cMMM cMMM 

The second form of our K-e  equations is obtained by substituting (5.16) into (5.13a) and (5.13b): 

w au, l'au, au2, a / K  2 

3 [ e 2 \ SXnJ  + (2 -- 3m) 8X, . 2 8 x , ]  J' (5.18b) 

The equations are now closed. 
The selection of terms in (5.10b) leading to Boussinesq (5.16) rested on the two inequalities 

] Cq 1'2 cGKijl 
- - K / L  - I/(,jI<<K and 8x, 8x. <<KlVnl. (5.19) 

The definitions of the length and time scales discussed earlier can be adapted to the present context: 

LM ~ length scale for variation in x-space of K(x, t), L(x, t), and u(x, t). 

L r ~ [L(x, t) l ~ length scale for turbulent fluctuations. 

t M ~ I Vu(x, t) l - 1 ,,~ time scale for change in the mean flow configuration. 

t o ~ K -  1/2L~ cycle time (turnover time) for the dominant turbulent eddies, and 

time for establishment of spectral equilibrium. 

Equation (5.16) implies that I I~ij/K I ,~ to/tM. The conditions for the inequalities (5.19) become 

--<<1 and <<1. 
tM \LM] 

In summary, there are three basic physical conditions that brought us from the Navier-Stokes equations 
to a K-e  model: that the turbulent length scale be less than the mean length scale, that changes in the 
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mean-flow configuration be slow compared with the turnover time of dominant turbulent eddies (to 
establish both spectral equilibrium and the Boussinesq relation), and that turbulent Reynolds numbers be 
large enough to permit a significant inertial range. Our spectral transport model rests on the first of these 
conditions, but not on the second or third. In addition, our model, at least in its simplest form, makes 
choices based on criteria of simplicity, including averaging over directions in k-space; the errors incurred by 
these choices remain to be clarified. 

D. Survey of Parameters in the K - e  Models 

The spectral transport model was formulated in terms of five parameters: CB, CD, CM, Ca, and c 2. For 
comparison with other work, we regard c K = ( q  + 5c2/3) -2/3 and c = c l / c 2  as parameters, and the 
Kolmogorov constant cK is given its experimental value. 

In addition, the homogeneous isotropic self-similar state had a parameter a, related to the initial energy 
distribution relaxing to that state. For  stability, the maximum a-value was am, X = ½(3c + 5), corresponding 
to the cut-offdistribution given by (3.25). For  a < a . . . .  f(~) behaved like ~a- 1, and E behaved like k a- 1 near 
the wave-number origin. For  large t, the turbulent energy of a homogeneous isotropic decaying state goes 
like t - ~ ,  7K = a/(1 + ½a). Letting c range from, say, 0 to 10, and letting a range from am, x down to, say, 
a = 2.5 we find by integration of the homogeneous isotropic ODE that 

f ~  ranges from ~q~ l . l l  up to 1.3, 

fmax ranges from ~ ~ 0.22 down to 0.17, and 

MD ranges from @3/2 ~ 0.85 up to 3.0. 

The reduction to K - e  equations reduces the number of parameters to four: 9~1, 9~2, 9D, and 9M. In 
addition, m may be given a specific value for a best fit. 

In Section 2 invariance arguments applied to the pressure-velocity correlation led to mean-flow 
coupling characterized by coefficients cB, cm,  Cv, and Cv2 in (2.22). This structure parallels that of Model 1 in 
the (one-point) modeling of Launder et al. (1975). For  simplicity, Model 2 of this reference might be followed 
which amounts to setting c m = cB2 = 0 in (2.20). The only consequence for this section is that in the 
definition ofgM, (5.17), the factor ~ is replaced by 2(1 - cB). The best estimate for Model 2 gives c B = 0.6, so 
that the factor retains the value ~ .  Thus, both alternatives have the same effect on the reduction to 
one-point equations. (There are also additional terms in (5.10b) depending on the/~ tensor as in Model 1, 
but which, in the Boussinesq approximation, cause no change to the K - e  equations.) 

The only effect of M F '  terms on the reduction to one-point equations is the appearance of the 
factor (1 - 3mcr2/2 ) multiplying 7 M in (5.10c). Proceeding again from the data in Launder et al. (1975) 3@2/2 
is less than 0.01, and may be zero within the uncertainties of the parameter fitting; we ignore this correction 
here. 

In preparation for further estimates, we suppose, for the sake of a rough estimate, that f obeys the 
homogeneous ODE with an a-value characteristic of the small-k power law in the decay of homogeneous 
turbulence. It would be interesting to check this in inhomogeneous flows that fit the K - e  model. Warhaft 
and Lumley (1978), and Warhaft (1980) obtained VK = 1.34 and 7K = 1.33, respectively. Comte-Bellot and 
Corrsin (1966) had previously found 7K = 1.26. The renormalization group evaluation of Yakhot and 
Orszag (1986) gave 7K = 1.33. Somewhat arbitrarily, we choose a = 4 so that ~K = 4, and choose Cl/C z = 2.0 
and Kolmogorov constant cK = 1.5; (foo/cK) 3/2 = 0.66, M D = 1.23 and, accepting (5.9), M M = 0.82. 

A correspondence is given in Table 1 between the coefficients of the standard K - e  model (see, for 
example, Bradshaw et al., 1981 and our derivation. The main result is that the overall form of our equations 
tracks well with the standard model. 

We do have additional gradient product terms in the second line of (5.13b) augmenting e-decay, such 
terms would not have been foreseen in the K - e  phenomenological derivations. Because of this augmenta- 
tion, it is reasonable that our e-decay coefficient 9~2 be somewhat less than the coefficient c~2 of K-e.  Our 
model implies that the turbulent diffusion coefficients for the K and e equations are both equal to a single 
parameter 9D, while the existing theory has differences, corresponding to a k = 1, o-, = 1.3. It would be 
interesting to see how inclusion of the grad K and grad e terms would affect optimization of the parameter fit 
to experiments. 
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Table 1. C o m p a r i s o n  o f  K e coefficients.  

S t a n d a r d  m o d e l  P r e sen t  de r i va t i on  

Dif fus ion  of  K c, /a k = 0.09 go = c , M  D(f  ~/eK) 3/2 
Dif fus ion  of  e c, /a,  = 0.07 gD 

M e a n  f low c o u p l i n g  to  K c u = 0.09 9~ = -~(f~/cK)3/2/(CMMM) 
M e a n  f low c o u p l i n g  to  e c~lc u g~lg~, 

c~1 = 1.45 3 ~ g~ = ~ + (I,, - I,,)/(mI,,) 

D e c a y  of  e c~2 = 1.9 g~2 = 1.75 

Taking g, equal to the average of c,/a k and au/a~, we get cl) = 0.10. From c, = gM, we find c M = 2.4. The 
value of g~2, with the assumption of (5.6) that f(~) approximates its homogeneous isotropic value, and with 
a = 4, is estimated from (5.15) at 1.75. This is to be compared with the more established value of c~2 = 1.9. 
The agreement orgy1 with % is good because g~l = 1.5 plus a small correction depending on the fractional 
difference of Ira and I,,. That this correction should amount to c~1 - 1.5 = -0.05 is not unreasonable. These 
estimates are crude, of course, but with the exception of the CM estimate, are not too out of line with the (also 
tentative) parameter values cited in Section 5 and obtained by Clark and Zemach (1991) by another 
procedure. They need to be refined by more precise matching of the spectral transport model to data, 
including data not in spectral equilibrium for which the one-point models are inappropriate. 

6. Summary of the Model and Possible Extensions 

A set of partial differential equations for the evolution of incompressible turbulent flows in interaction with 
time- and space-dependent mean velocity fields has been constructed. The dependent variables are the 
components of the turbulent energy density tensor Eij(x, k, t). These are defined as Fourier transforms, with 
respect to the relative variables xt-x2, of half the two-point velocity-fluctuation correlations (u'i(xl)u)(x2)), 
which are then shell-averaged over directions of the Fourier transform variable, i.e., the wave vector k. 
Modeling of turbulent spectra varying with wave number k = Ikl permits specification of turbulent 
interactions at all length scales, at rates which are functionally dependent on these length scales. 

Proceeding from the Navier-Stokes equations, we treat the two-point correlations analytically and 
model the three-point correlations in terms of their expected physical effects. The qualitative notion that 
mean length scales generally exceed turbulent length scales--excepting, perhaps, in the very-large-eddy 
region of the spectra where turbulent interactions are especially weak--is exploited to express turbulence 
production in terms of mean-velocity gradients, but no higher derivatives of mean velocity appear. 
Additional assumptions express turbulent diffusion in physical space, cascade in k space, and "return to 
isotropy" by a rather straightforward extension of ideas embodied in earlier one-point modelings of 
inhomogeneous turbulence and in earlier spectral modeling of homogeneous isotropic turbulence. 

The resulting equations depend on five dimensionless parameters. Preliminary values for them, based on 
more recent work not reported here, are given in Section 4. The calculations and comparisons of this paper 
encourage us to believe that the model is soundly based, but much testing and validation remains to be 
done. 

In addition, we can point to three modeling steps arising from the need for some control on the model's 
complexity in the first stages of exploration, rather than from a physical inference, which are early 
candidates for improvement. First, the expression of k-cascade by local interactions in k-space could be 
generalized to, for example, 

J L('d2g()O[-k3/2x/-E~E(2k) 1[k\3/2 / - - -~ \  -] 

This reduces to the local form when the distribution function g(2) is sharply peaked around 2 = 1. Whereas 
the local form expresses the idea that the aggregate effect of the wave-number triads generated by the 
Navier-Stokes equations can be represented by nearly equilateral triads, the above form extends the 
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representation to isosceles triads, which recent numerical simulations suggest would be an important step 
toward reality. Second, the form assumed for turbulent diffusion was only the simplest among a number of 
plausible alternatives. Assessment of these alternatives can perhaps best be done by comparison with 
accurate numerical simulations of the sort now becoming possible, e.g., of the decay of initially in- 
homogeneous distributions of E~j in the absence of mean-flow gradients. Third, if k-shell averaging is not 
done, then, at the price of promoting the equations from one-dimensional (real) to three-dimensional 
(complex) in k-space and opening up additional options for the modeling of k-cascade, the important 
capability to describe anisotropy in k-space is acquired, and introduction of the %-class of coefficients is 
avoided. 
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Appendix A. Fourier Transforms and Operator Expansions 

From representations of the two-point functions in (xl, x2)-space, or equivalently (x, r)-space, we pass by 
Fourier transform to representations in (x, k)-space, where the wave number k is the transform variable 
conjugate to r. The use of Fourier transforms here presupposes that the domain of the r-variable, and hence 
of space-coordinate variables generally, is the whole of physical space. If the fluid were confined, say, to 
a half-plane, or between walls, the definition of the spectral functions would have to be adjusted, at least for 
x-values within L r of the boundaries. Thus, we write 

~e- ik'rR iX Rij(x,  k) = j i j, 1, x2) dr 

fe-ik.r(u,i(X 1 ' 1 = + ~r)u~(x - ~r) ) dr. (A.1) 

The other terms in (2.2) can be similarly transformed to yield Aij(x,  k), Hi(x, k), Ti,j(x, k), etc. Note that the 
same symbol is used for the function in its xl, x a and x, k representations; this limits the proliferation of 
notation and should not lead to confusion. 

The Rij(x,  k) are not necessarily real numbers. The Reynolds tensor symmetry in (xl, x2)-space, 

RU(Xl, x2) = Rji (x  2, xO, 

translates into 

Rij(x, k) = Rji(x, - k) = R*(x, k), (A.2) 

in which * denotes complex conjugate. 
We consider how the Fourier transforms of terms in (2.2) can be expressed compactly. The operations of 

gradient and multiplication by coordinate transform as follows: 

0 0 
~ikj, rj--*iOk j. (A.3) 

Orj 

Thus, 

and 

~? 1 0  0 1 0  
= - - -  + - -  - ~ -  - -  + ikj (A.4a) 

Oxlj  2 ~xj Orj 2 c3xj 

0 1 0  0 l t ?  
Ox2j = 2 Oxj Orj ~ 2 Oxj ikj. (A.4b) 
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For example, the transformed incompressibility conditions, 2.4, are 

1 8  
(~f-~i+iki)R,j(x,k)=(~-~xj-ikj)R~j(x,k) =0. 

To transform Un(X1)Rij(Xl, Xe) , we first utilize Taylor's theorem in operator form to write 

1 1 8 un(xl) = un(x + ~r) = exp(-~r,~xl)Un(X). 

Thus, 
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(A.5) 

e -  2ik.(x-x') 

G ( x -  x',k) = n [ x - x ' l  " (A.8) 

The transform of the Poisson equation for the pressure-velocity correlation, (2.2d), is to be derived with 
the transformed Green's function G(x - x', k). We define, as an abbreviation, 

1 8 
V,,(x, k) = ~ ~ + ik., (A.9) 

so that V.(x, k) and V*(x, k) are the operator transforms of 8/8xl. and 8/8x2.. 
We have then, in (x, k)-space, an integral operator with kernel G(x - x', k) and two differential operators 

Z(x, k) and V.(x, k). E(x, k) acts only on products of type u~(x)Rb~(x, k). The integral operator commutes with 
* commutes with 8/Sxlj and 8/SX2j in (xl, x2)-space. The transform of V.(x, k) and with V. (x, k) because V 2 

(2.7) takes the form 

IIj(x, k) = Vn(x, k)Vm(x, k) fG(x - x', k) dx'[2E(x', k)u.(x')Rmj(X' , k) + T.n,,j(x', k)]. (A. 10) 

The mean flow equation, (2.6), is unchanged by the transformation to (x, k)-space except that, for the 

and 

fe ik'ru.(xl)Rij(Xl,X2) = E(x,k)u.(x)Rij(x,k), (A.6) dr 

where X(x, k) denotes a differential operator in both x- and k-space: 

/ i  8("' 8 
Z(x' k) = e x p , 5  ~xl 8~, )" 

The superscript (u) on the x-gradient specifies that this gradient operates on u,(x), but not on 
R~j(x, k) in (A.6). One approach to evaluation of the right-hand side of (A.6) is to expand Z(x,k) in 
series 

E(x ,k)= ~ (iS(u) 8"tin 1 
m=o 28x~ 8kz) m! (A.7) 

and apply the multiple derivatives to u,R~j. 
We see that, under the Fourier transform, 

/ 1  8 \2 
- e ( -~Vx)e . - - 2 , x . k  1 2 

Therefore, for Green's function of Section 2, (2.8), we have the transformed equation 

( 1 8  )2 
- ~ Ux~ + ik~ ~ ( x  - x',  k)  = ~ (x  - x'), 
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Reynolds stress term, we can use 
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c~ (Ri,(x, k) dk 
(ui(x)u'(x))'" = c~x,J (2re) 3 " (A.11) 

Following the rules given above, we find that the transform of (2.2) can be written as 

~Rij(x, k) = Aij(x, k) - [Bij(x, k) + C/j(x, k) + 2Dij(x, k) + Fij(x, k) + Hij(x, k)] s, (A. 12a) 

where S indicates symmetrization by adding terms with i+-+j, k+-+ - k ,  and 

6 2 

Aii(x, k) = - 2vkZRij(x, k) + lv~x~Rij(x, k), (A. 12b) 

Bij(x, k) = V,(x, k)Y(x, k)u,Rij(x, k), (A. 12c) 

Cij(x, k) = V,(x, k)X(x, k)u~(x)R,j(x, k), (A.12d) 

Dij(x, k) = V/(x, k)V,(x, k)V,,(x, k) fG(x - x', k) dx'X(x', k)u,(x')Rmj(x', k), (A.12e) 

F i j ( x  , k) = V,(x, k)Tinj(X , k), (a. 12f) 

Hij(X , k) = Vi(x, k)V,(x, k)Vm(X , k) fG(x - x', k) dx' Tmnj(x' , k). (A. 12g) 

The equation is still exact. Each term on the right includes a different physical mechanism for changing 
R~j in time, as described after (2.12). When r~(a/c~xl) acts on a function of r and x, characterized by length 
scales L r and LM, it reduces the function's order of magnitude by LT/L M. The Fourier transform, acted on 
by (c~/Oxl) (O/Okz), is likewise reduced by (Lr/LM). Thus, the effect of Z(x, k) defined in (A.7) on such functions 
might be simulated by only a few powers of (O/axl)(a/&l) if Lr/L M < 1. Of course, this is not a proof, but 
a guideline. If the important range of k-values in R~j(x, k) is (Lr)- 1 < k, then the same interpretation might 
be applied to an operator such as 

k 2 \ axj/" 

It follows that the terms of (A.12) containing G(x - x', k) might be approximated by simpler ones containing 
a limited number of x-derivatives. Let (A.10) be recast as a formal operator expression: 

I I j (x ,k)= - ikt+~-~x,} V,V~(2Zu,Rmj+ T,,,j). (A.13) 

Set 

[_(tkl+_~_~xl) l 1 1 i 0 1 1-1 (A.14) 

and expand in powers of x-derivatives. Suppose now that both Z(x, k) and G(x - x', k) are expanded in the 
indicated manner and only those terms of (A.12c-g) are retained that have no more than first-order 
x-derivatives. The result, after a little algebra, is utilized in (2.12). 

Appendix B. Reduction of the Turbulent Diffusion Terms 

The contribution to De/Dt arising from the turbulent diffusion of E is obtained by substituting the diffusion 
terms of the dK/dt and d(K/L")/dt equations, respectively (5.10a) and (5.10c), into (5.12). Using L =  ~K3/2/~ 
and gD = CDID~, we have, for the turbulent diffusion (TD) part, 

(~---~)WD= eF3m--2 ~- (K2-~x,) +lLm ~3 (K2 0 (B.1) 
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Similarly, replacing D/Dt by 8/8x. in (5.12), 

0x. K L 2m Ox, m 8---x.\L-'~)J" 

Solving (B.2) for 8(KL-m)/Ox. and inserting into (B.1), 

De eF3m--2 8 f K 2 8 K  3m-2Lm 8 ( 1  K 2 K 2 8 e ~  
D-t TD=aDKL -2m 8x.\--Z~x. 2m 8----x.\/~ -m ~ ~xx +Lm L m e -~ 8x]J" 

Let the terms in the brackets above be X1, Xz, X3. Then 

X i + X 2 =  (3m-  Z) K z OK_KL,. 0__8_ 1 _ 3 m -  Z K3 81ogK elogL 
2m e 8x. 8x. L" - 2 e 8x. 8x. 

and 

K 8 [ K  2 8e'~ K 3 810geelog(K/e) K ~ 810geOlogL 

Using K 3/z = eL/e to eliminate log K in favor of log e and log L in X 1 + X a and X3, we get 

De e 

1 
from which the go terms of (5.13b) follow directly. 

(B.2) 

(B.3) 
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