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Abstract. A highly accurate algorithm for the direct numerical simulation (DNS) of spatially 
evolving high-speed boundary-layer flows is described in detail and is carefully validated. To 
represent the evolution of instability waves faithfully, the fully explicit scheme relies on non- 
dissipative high-order compact-difference and spectral collocation methods. Several physical, 
mathematical, and practical issues relevant to the simulation of high-speed transitional flows are 
discussed. In particular, careful attention is paid to the implementation of inflow, outflow, and 
far-field boundary conditions. Four validation cases are presented, in which comparisons are 
made between DNS results and results obtained from either compressible linear stability theory or 
from the parabolized stability equation (PSE) method, the latter of which is valid for nonparallel 
flows and moderately nonlinear disturbance amplitudes. The first three test cases consider the 
propagation of two-dimensional second-mode disturbances in Mach 4.5 fiat-plate boundary-layer 
flows. The final test case considers the evolution of a pair of oblique second-mode disturbances in 
a Mach 6.8 flow along a sharp cone. The agreement between the fund~tmentally different PSE and 
DNS approaches is remarkable for the test cases presented. 

1. Introduction 

A worthy "grand challenge" for the computat ional  boundary-layer-transition community is the accu- 
rate direct numerical simulation (DNS) of the complete laminar-turbulent transition process in a 
spatially evolving high-speed boundary-layer flow. Even for such simple geometries as the flat plate or 
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sharp cone, this remains a daunting goal. It was only in the late 1980s that the corresponding 
challenge for temporally evolving incompressible flow was met by Gilbert and Kleiser (1990) for the 
relatively simple problem of channel-flow transition. For spatially evolving compressible boundary- 
layer flows, the recent landmark simulations of Rai and Moin (1991) and Thumm (1991) have come 
closest to the realization of this goal. In the former simulation a fully turbulent state was attained 
from an initially laminar state subject to high-amplitude random forcing imposed in the free stream. 
However, although the algorithm was designed for compressible flow, the low subsonic Mach number 
(Mach 0.1) of the numerical experiment guaranteed that the flow was essentially incompressible in 
behavior. The latter computation of Thumm (1991) considered a relatively low-speed supersonic flow 
(Mach 1.6), and, while simulating highly nonlinear stages of transition, it did not proceed into a 
fully turbulent regime. (For a thorough background of DNS for transitional incompressible and 
compressible wall-bounded flows, including a discussion of the temporal and spatial problems, see 
Kleiser and Zang (1991).) 

The first tentative steps were taken in the use of DNS to investigate transition to turbulence in 
supersonic, wall-bounded flows in the mid to late 1980s. Bayliss et al. (1985) presented the first DNS 
results for supersonic boundary-layer flow along a flat plate. These results were for spatially evolving, 
but two-dimensional, flow. The first three-dimensional DNS of a perturbed high-speed (Mach 4.5) 
flat-plate boundary-layer flow was accomplished by Erlebacher and Hussaini (1990). This numerical 
experiment used temporal DNS to examine boundary-layer stability, but stopped far short of 
attaining a transitional state. 

Recently, due partly to increased supercomputer capacity, there have been many noteworthy 
three-dimensional simulations of compressible wall-bounded flows. Among these are temporal simula- 
tions by Normand and Lesieur (1992), Pruett and Zang (1992), Dinavahi and Pruett (1993), and 
Adams and Kleiser (1993); and spatial simulations by Thumm et al. (1990), Maestrello et al. (1991), 
Thumm (1991), Normand and Lesieur (1992), Eissler and Bestek (1993), Ng and Zang (1993), and 
Pruett and Chang (1993). Among these, the temporal simulation of Dinavahi and Pruett (1993) is 
unique in attaining a well-resolved fully turbulent state without recourse to modeling. 

To date, with the exception of Rai and Moin (1991), virtually all of the numerical experiments cited 
have simulated controlled rather than natural instability processes. In a controlled experiment, 
instability waves of a particular wavelength (temporal) or frequency (spatial) are excited by imposed 
forcing. In contrast, in natural transition the input is random, and the flow itself selects the preferred 
instability modes. A few of the cited simulations are hybrid in the sense that the primary instability 
wave is imposed, whereas secondary instability is triggered by low-level noise. A distinguishing feature 
of high-speed boundary-layer flows is that multiple primary instability modes can coexist (Mack, 
1984). The viscous first-mode instability, the counterpart of the Tollmien-Schlichting (TS) wave in 
incompressible flow, predominates in low-speed compressible flows. In hypersonic boundary-layer 
flows second-mode instabilities arise, which are acoustic in nature, and which eventually predominate 
as the Mach number increases. Thus far, all simulations of instability and transition in compressible 
flows have focused on first- and second-mode instabilities and their associated secondary instabilities, 
rather than on crossflow or Goertler modes. 

Several observations gleaned from temporal DNS are worthy of note. Normand and Lesieur (1992) 
performed both DNS of a low-speed (Mach 0.5) compressible fiat-plate flow and large-eddy simula- 
tion of a high-speed (Math 5) flow. They observed transition to occur by means of fundamental 
secondary instability in the former case and subharmonic secondary instability in the latter case. Their 
findings are consistent with those of Pruett and Zang (1992), Dinavahi and Pruett (1993), and Adams 
and Kleiser (1993). Pruett and Zang (1992) and Dinavahi and Pruett (1993) considered the case or 
Mach 4.5 flow along a hollow cylinder (the axisymmetric analog of a fiat-plate boundary layer) and 
observed subharmonic secondary instability triggered by second-mode primary instability to lead to 
transition. Adams and Kleiser (1993) performed a similar computation for a Mach 4.5 fat plate using 
random noise to trigger secondary instability from a base state perturbed by a second-mode distur- 
bance. The secondary instabilities they observe are of subharmonic type and agree in growth rate and 
structure with the predictions of temporal secondary instability theory (Ng and Erlebacher, 1992). 
Moreover, despite the difference in geometry, their results are in qualitative agreement with those of 
Pruett and Zang (1992). A potential weakness of each of these simulations, however, is the failure to 
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Figure 1. Amplitudes of components of oblique second-mode 

disturbance of F = 2.094 x 10 -4 and ReL = 1013 in Mach 

6.8 boundary layer on 7 ° sharp cone. 
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account for growth of the boundary layer, a somewhat ambiguous task in the context of temporal 
theory. Recent experimental results (Stetson and Kimmel, 1993) and numerical results obtained 
from the parabolized-stability-equation (PSE) method (Chang, 1993) suggest that subharmonic sec- 
ondary instability may not be the preferred path to transition in a growing high-speed boundary 
layer. The issue can probably only be resolved by spatial DNS, which incorporates the evolution of 
the boundary layer. 

The temporal simulations cited above required upward of 106 grid points and consumed hundreds 
of Cray Y-MP CPU hours. There are several reasons for the great expense of computations of 
high-speed compressible flow relative to simulations of incompressible or subsonic flows: 

1. The time discretizations in the compressible cases were fully explicit. In many instances the 
allowable time step was limited by the viscous stability condition rather than by the advection 
condition. For incompressible simulations the viscous stability limit is usually absent due to the 
conventional implicit treatment of the viscous terms. 

2. The second-mode disturbances associated with high-speed transitional flows have a double- 
peaked structure (Figure 1) with amplitude peaks occurring both near the wall and the critical 
layer (z ,~ 1 in Figure 1). In contrast to low-speed flows, at high speeds the critical layer lies far 
(approximately one displacement thickness) from the wall, necessitating concentrations of grid 
points in both regions of strong gradients. 

3. At high speeds the growth rates of both the primary and secondary instabilities are much slower 
than for low-speed flows. This requires much longer time integrations. 

4. In contrast to DNS of incompressible flow, flow-field oscillations due to inadequate resolution 
are potentially fatal in the compressible case since spurious negative densities, pressures, and/or 
temperatures can arise. 

Relative to temporal DNS, spatial DNS is yet more computationally demanding, primarily because 
of the greater length of the computational domain. Nonetheless, the computational boundary-layer 
transition community has recently produced several spatial simulations of particular importance. The 
simulations of Thumm et al. (1990) examine the very early stages of secondary instabilities of both 
fundamental and subharmonic type in Mach 1.6 boundary-layer flows along a flat plate. Subse- 
quently, Thumm (1991) turned his attention to investigating a new "oblique-mode" transition mecha- 
nism, again for Mach 1.6 fiat-plate flow. Conventionally, transition is triggered by secondary instabil- 
ity Originating from a finite-amplitude two-dimensional primary disturbance and a pair (or array) of 
low-amplitude oblique secondary disturbances. For Mach 1.6 boundary-layer flow, however, the most 
amplified linear instability turns out to be oblique and not two-dimensional, in contrast to the case 
for either incompressible flow or flow at very high Mach numbers. This suggests the possibility of 
triggering transition simply by the nonlinear interactions of a pair of symmetric unstable primary 
modes. Thumm (1991) presented an extensive set of results, comparing fundamental-, subharmonic-, 
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and oblique-breakdown scenarios. The simulations, which were carried into the early nonlinear stages 
of laminar breakdown, have recently been summarized by Fasel et al. (1993). Maestrello et al. 
(1991) performed three-dimensional spatial simulations of Mach 4.5 flows excited simultaneously by a 
two-dimensional second-mode disturbance and a single oblique disturbance of the same frequency. 
They computed to the early nonlinear stages of transition and demonstrated significant interactions 
between the forced modes, which then generated other rapidly growing instability modes. Eissler and 
Bestek (1993) performed several simulations at Mach 4.8 using periodic suction and blowing at the 
wall to excite instability waves. In addition to the excitation of the expected oblique second mode, 
their results showed excitation of an additional "viscous" mode of the same frequency but of different 
wavelength. The evolution of these modes was tracked from the first-mode region into the second- 
mode region. 

Of these simulations, the typical spatial accuracy was fourth-order, occasionally with a spectrally 
accurate Fourier collocation method in the (periodic) spanwise direction. In most of these spatial 
simulations the spanwise resolution was modest, in some cases admitting just a single oblique mode. 
Although Thumm (1991) used up to 17 grid points in the spanwise direction, and Maestrello 
et al. (1991) used up to 32 spanwise grid points, such resolution is believed to be insufficient for the 
later stages of transition, in which there is typically an explosive broadening in wave space of the 
energy spectrum in the spanwise direction. The simulations at the higher Mach numbers call attention 
to the difficulties (and impracticality) of simulating the entire laminar-turbulent transition process 
when the dominant second-mode instabilities are of high frequency but slow growth. To begin from a 
linearly perturbed laminar state, the computational domain must be extremely long in streamwise 
extent (relative to the disturbance wavelength). Alternately, the forcing amplitudes must be quite 
large, in which case nonlinear interactions are significant at the inflow boundary and consistent inflow 
conditions are difficult to obtain. 

This work focuses on the development of an algorithm and additional procedures for which spatial 
DNS of such challenging high-speed transition problems is feasible. With regard to the algorithm, its 
origins can be found in Ng and Zang (1993), who compared spatial DNS with secondary instability 
predictions for Mach 1.6 and Mach 6.8 flows in artificial, quasi-parallel boundary-layer flows. 
Their work validated both the basic spatial DNS code and the spatial secondary instability code, but 
it was not an investigation into the physics of transition. Their work, however, formed the starting 
point for the algorithm developed by Pruett and Chang (1993) for the spatial DNS computations and 
the results reported in this paper. Pruett and Chang (1993) made detailed comparisons of spatial DNS 
and PSE for two-dimensional linear and nonlinear second-mode disturbances in Math 4.5 fiat-plate 
boundary layers. They achieved remarkable agreement between the methods for these cases; however, 
they found that the numerical methods utilized in the DNS had to be extremely refined in order to 
obtain accurate results. Careful attention was given to many details often overlooked. Among the 
issues addressed were: obtaining self-consistent inflow conditions for nonparallel flows, the necessity of 
filtering to suppress spurious high-frequency modes and boundary reflections, obtaining reliable 
estimates for the numerical stability limits on the time step as a function of the precise spatial 
discretization, and the imposition of nonreflecting far-field and outflow boundary conditions. 

Our present position is that the "grand challenge" of simulating transition in high-speed boundary- 
layer flows is best met by a combination of numerical tools. The PSE method is much more efficient 
than DNS for computing the early linear and weakly nonlinear stages of the transition process. Thus, 
we advocate the use of PSE to furnish accurate and consistent inflow conditions to a DNS that 
commences near the highly nonlinear laminar-breakdown stage. The primary objective of this paper is 
to provide thorough validation and documentation of the DNS algorithm. In the cross-validation of 
DNS with PSE, however, we demonstrate convincingly the fidelity of the PSE method within the 
appropriate flow regimes. 

An alternative, but still developing approach, is that of large-eddy simulation (LES). In this method 
large-scale structures are resolved, but a model is employed for the subgrid-scale fluctuations. The 
LES approach is fairly well developed for incompressible flows (see Kleiser and Zang, 1991), but only 
a few results are available for supersonic flows (see Normand and Lesieur, 1992; Zang et al., 
1992; EI-Hady et al., 1993). Because the cost of PSE increases much faster than that of DNS as the 
number of spanwise modes is increased, PSE is limited in practice to investigations of narrow-band 
forcing. At present, LES appears to be the only hope for complete simulations of natural (broad-band) 
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transition. In the same way that the spatial DNS described herein has served to validate PSE, it is 
hoped that it will also be useful in validating LES approaches. 

This paper consists of a reprise of the Pruett and Chang (1993) results, with an emphasis on the 
subtle numerical issues that are essential for accurate spatial DNS of high-speed boundary-layer flows. 
Their previous work is also extended to the simulation of three-dimensional second-mode distur- 
bances propagating in the boundary layer of a sharp cone immersed in a Math 8 flow. The 
motivation for this example is the stability experiment by Stetson et al. (1983), in which the 
second-mode disturbance was observed as the dominant instability in such a flow. The ultimate 
objective of this work, and the subject of the sequel to this paper, is the combined PSE/DNS 
investigation of the complete laminar-turbulent transition process in a hypersonic boundary-layer flow 
along a cone. 

In the next section the three-dimensional compressible Navier-Stokes equations are presented for 
flow along a two-dimensional or an axisymmetric body. The fully explicit numerical method, which 
combines high-order compact-difference and spectral collocation methods, is presented in detail in 
Section 3. Algorithm details are discussed in Section 4. In Section 5 compressible linear stability 
theory (LST) and the PSE method are discussed very briefly, and the DNS code is thoroughly 
validated against these yardsticks. Three of the four validation cases examine the evolution of 
two-dimensional second-mode instability waves in a Math 4.5 fiat-plate boundary-layer flow. Both 
linear and nonlinear disturbance amplitudes are considered. The fourth case examines the evolution of 
a pair of oblique second-mode disturbances on a sharp 7 ° half-angle cone in a Mach 6.8 (free-stream 
Mach 8) flow. Conclusions which relate both to the numerical method and to transition physics are 
presented in the final section. 

2. Governing Equations 

Consider the body-fitted orthogonal coordinate system x = [x, 0, z] x on an axisymmetric body as 
shown in Figure 2, where x is the arc length along the body, 0 is the azimuthal angle, and z is the 
coordinate normal to the body. Associated with x is the fundamental metric tensor gmn, which has the 
nonzero components 

g l l  = S2' g22 = r2, g33 = 1, (1) 
where 

r(x,  z) = R + z cos tp, (2) 

dip 
s ( x ,  z )  = 1 - z ~ x ,  

and where R ( x )  and ~p(x) are the body radius and the angle of the surface tangent in the plane of 
symmetry, respectively. For convenience, we define the following partial differential operators, which 
incorporate the metric quantities r and s: 

1 gu 1 ~u au 1 ~(ru) 1 0 ( r s u )  
D ° u  = D ° u  = D ° u  = D~u = - -  D~u =-- (3) 

s ~ x '  r aO' tgz' rs t~x ' rs Oz 

Figure 2. Body-fitted coordinate system on axisymmetric 
body. 

_ P ( x , e , z )  _ _  

z.  

X' 
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In the coordinate system of Figure 2 and in the terminology of (3), the dimensionless compressible 
Navier-Stokes equations assume the following conservative form: 

0 Q  
0--~- + O~ E + D°F + O~ x G + H = 0, (4) 

where Q = [p, pu,  pv,  pw ,  Et] T is the fluid state vector of conserved quantities; p is the density; 
u, v, and w are velocities in the ex, ee, and ez directions, respectively; and E t is the total energy. For 
later use, we also define the vector of primitive variables U = [p, u, v, w, piT, and, for state and flux 
vectors in general, Q = [Qo, Q1, Q2, Q3, Q4] T, etc. Vectors E, F, G, and H are defined as follows: 

E = 

F = 

G = 

H = 

p u  

p u u  --  zxx --  p 

p U V  - -  1712 

p U W  - -  1713 

(E, + p)u  --  u z l l  - -  v1712 --  w17xa --  h i  

p o u  -- 1721 

p V V  -- 1722 -- P 

p V W  - -  1723 

(E t + p)v - u1721 - VT22 - -  W T 2 3  - -  h 2 

] pwu -- 1731 

p w v  -- 1732 

p W W - -  1733 - -  P 

( E  t + p )w  - UT31  - -  V1732 - -  W1733 - -  ha 

0 

s i n  q~F2 _ (DOq~)E3 
r 

sin q~F1 + cos q~F3 , 
r r 

_cos ~OF2 + (D~o)E~ 
r 

0 

(5) 

where p is thermodynamic pressure, 

_ x 2 DOT, 
hi (7 - 1)M~ R e  

- p e r ,  
h2 ( ~ -  l )Mr~e  (6) 

_ x 2 D O T  h3 (7-  1)M;Re 

are the heat flux components, T is the temperature, x is the thermal conductivity, 

2# 2 ~ # r i j  d (7) 

is the stress tensor, p is the dynamic viscosity, 6 o is the Kronecker delta, d = D ~u  + D ° v  + D ~ w  is the 
divergence of the velocity (dilatation), and aq is the symmetric rate-of-deformation tensor with 
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components 
f i l l  = DOn -- wD°q ), 

u sin q~ 
0-22 = D°/3 + 

r 

0"33 = DOw~ 

0"12 ~-" 0"21 = 

0"13 = 0"31 

0"23 = 0"32 ~-- 

w cos ~p 
- [ - - - ,  

/ V si_n ~ '~ 
½~D°y + D°/3 

r J '  

½(D ° w + D °u -- uO ° ~o), 

). ~ Dow+D°~/3 /3 cosq~ 
r 

(8) 

With the exception of (1), which refers to a covariant tensor, all other equations refer to physical 
vector or tensor components. Thus, for convenience and brevity, we adopt a loose notation of 
referencing physical components by subscripts. 

The components of vector (4) define, respectively, conservation of mass, conservation of momentum 
in the three dimensions, and conservation of energy. The governing system is closed by the equation 
of state. For this work, we assume that the fluid is air and behaves as a perfect gas, whereby 

yM2p = pT, (9) 

E t - P + 2 ( u  2 "-[-/32 "~ w2), (10) 
1 

and x = #/Pr. 
Four dimensionless parameters emerge from nondimensionalization: Mach number, Reynolds num- 

ber, Prandtl number, and the ratio of specific heats, defined, respectively, as follows: 

_ u* p*U*r6* * * 
M, x / ~ , T ~  , ,  R e -  - - , # ,  Pr - Cp#'xr, ' Y _ C~C~,, (11) 

where R*, C*, and (7* are the ideal gas constant and the specific heats at constant pressure and 
constant volume, respectively. Throughout this work, dimensional quantities are denoted by asterisk, 
reference values are denoted by a subscript "r", Pr = 0.7, and y = 1.4. In the nondimensionalization 
from Which (4) arises, the reference values for density, velocities, and temperature, p*, u*, and T,*, 
respectively, are arbitrary. Pressure is scaled by p*u .2. Viscosity is normalized by the viscosity at the 
reference temperature and is assumed to vary according to Suthefland's law. In dimensionless form 

110.3 K T3/2(1 + C) C - - -  (12) 
/~ -  T +  C ' T** 

Throughout this paper, a subscript "e" denotes a value at the boundary-layer edge, and lengths are 
scaled by the boundary-layer displacement thickness at the inflow boundary 6~, where, in general 
(White, 1974), 

( f o  ( *u* {0, two-dimensional, 
6" l + ~ j  = \ R * J  1 -  = po ue / 1, axisymmetric. 

For comparison with results obtained from spatial LST and the PSE method, we define the bound- 
ary-layer length scale as 

L* =- /#';x" (14) 
~ / p ' u * '  

and we denote the Reynolds number based on edge conditions and L* as ReL. For comparisons with 
experiments, it is also useful to define Rex, the Reynolds number based on x*, whereby Rex = (ReL) 2. 

With proper interpretation, (4) is valid for either two-dimensional or axisymmetric bodies. The 
two-dimensional case is recovered as r ~ 1 in (3) and 1/r ~ 0 in H (5). 
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A nonconservative, but computationally useful, alternative form of the energy equation is 

Q4 = p, E ,  = pu, F ,  = pv, G, = pw, 

//4 = • - (y - 1)pV.u, (D - o0z~i , (15) 

V ' u =  D2u + D°v  + D~w, 

where repeated indices imply summation. In subsequent discussions we refer to (15) as the "pressure 
equation" as distinguished from the "energy equation." 

Mathematically, DNS is the numerical solution of an Initial-Boundary-Value Problem (IBVP). For 
spatial DNS, inflow and outflow boundary conditions are required. The imposition of initial and 
boundary conditions is discussed more fully in the next section. 

3. N u m e r i c a l  M e t h o d  

Navier-Stokes codes fall roughly into two classes depending upon the application: aerodynamic 
codes, in which body geometry is usually complicated, but from which one typically wants to extract 
only mean quantities such as surface pressure, lift, and drag; and DNS codes, in which body geometry 
is simple, but from which one wants to compute fine details of the flow field, ideally, to the 
smallest scales. Usually, aerodynamic codes are of relatively low-order accuracy, and, to capture 
shocks, they impose significant artificial dissipation through some form of upwinding. Often the 
boundary layer is severely underresolved, a deficiency partially atoned for by the use of transition or 
turbulence models. In contrast, in DNS, for which the boundary layer is the primary focus, dissipation 
and dispersion errors must be minimized if the growth rates and phase speeds of instability waves are 
to be computed accurately. 

In this section, we present a fully explicit method designed specifically for the DNS of instability 
and transition in high-speed boundary-layer flows. The flow region of interest is downstream of the 
bow shock, and it is an implicit assumption that there are no shocks in the domain. To minimize 
dissipation and dispersion errors, we rely on a combination of spectral methods and high-order 
central compact-difference approximations for spatial derivatives. In the development of the algo- 
rithm, accuracy, efficiency, and simplicity, in that order, have been our guiding criteria. 

We consider the physical domain and 

Xin 

Spatial Discret izat ions  

grid points defined by 

< xi < xout, i = 0 . . . . .  Nx, 

2n 
0 <Oj < - - ,  j 0 , . . . ,  No, (16) 

n 

0 <_ Zk <-- Z . . . .  k = 0 . . . . .  N~. 

Let Uok be the discrete approximation of u ( x ,  Oj, Zk), etc., and, for the moment, assume that grid points 
are equally spaced in terms of their respective coordinates. For DNS of axisymmetric (two-dimen- 
sional) boundary layers, it is conventional and physically reasonable to assume that the flow is 
periodic in the azimuthal (spanwise) direction. This periodicity permits the exploitation of spectral 
collocation methods (e.g., Canute et al., 1988) based on finite series expansions of the flow quantities 
in terms of Fourier basis functions, as, for example, 

u(x, t) = s~z ~(x,z, t) .exp{tjnO}, (17) 
j= -Nd2 

where l= ~I. Collectively, the Fourier coefficients ~j provide the Fourier spectrum, an intrinsic 
measure of the adequacy of resolution. The integer n, which appears in (16) and (17), is a parameter of 
the flow that defines the period in the azimuthal direction and is related to the azimuthal wave 
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number fl through the relation 

n = fir = foRo, R 0 ~- R(xin ). (18) 

(For bodies on which the radius changes, such as a cone, (18) implies that the wave number of oblique 
(helical) waves evolves with x.) We implement the collocation method in the conventional pseudo- 
spectral manner. That is, derivatives with respect to 0 of the truncated series in (17) are evaluated 
exactly in Fourier space, whereas nonlinear terms of the governing equations are evaluated in physical 
space. Vectorized fast Fourier transforms (FFTs) are used to shuttle efficiently between the transform 
and physical spaces. If desired, aliasing errors are controlled by spectral truncation. For computa- 
tional efficiency, an option exists in the code to enforce symmetry about the plane 0 = 0, in which 
case odd (e.g., v) and even (e.g., u) functions are expanded in sine and cosine series, respectively, rather 
than in complex exponential series. As expected, there is roughly a factor of 2 reduction in computa- 
tional effort with symmetry enforced. 

The proper spectral expansion for a two-dimensional, rather than an axisymmetric, body is 
recovered from (17) by defining the azimuthal arc length y = rO and by using (18). 

For spatial DNS, both the streamwise and wall-normal directions are aperiodic, which precludes 
the use of Fourier spectral methods. In the aperiodic directions our DNS code allows a variety of 
differentiation options. Among these are a Chebyshev spectral-collocation scheme and several mem- 
bers from a class of fourth-order and sixth-order central compact-difference schemes (Lele, 1990; 
Carpenter et al., (1991)). For explicit time advancement, the Chebyshev spectral method is subject to 
an extremely severe restriction on the time step of the form At ~ 1/N~, which renders the method 
impractical for long-time integrations. Nevertheless, the method is useful for diagnostic purposes. In 
particular, it permits us to compute the Chebyshev spectrum as an indicator of the adequacy 
of resolution. 

In the context of fully explicit time advancement, derivatives are computed by means of compact- 
difference techniques as follows: 

Muz = Eu, (19) 

where M is a tridiagonal matrix, E is a banded matrix, and the vector uz, for example, contains the 
discrete approximation of Ou/Bz. Matrices M and E are referred to as the implicit and explicit 
operators, respectively. For the fourth-order Pade method, E is tridiagonal. For sixth-order methods, 
it is usually pentadiagonal. Compact-difference operators are thus of the form C = M - i E  and are 
global (dense matrices). 

An area of active research concerns stable boundary closures for compact-difference methods. In 
general, stencils are modified in the vicinity of boundaries, which results in some loss of formal 
accuracy. It is well known (Gustafsson, 1975) that, for a hyperbolic system of equations, a scheme of 
hth order closure can retain global formal accuracy of order h + 1 at best. In distinguishing between 
various schemes, we adopt the nomenclature of Carpenter et al. (1991). For example, 3,4-6-4,3 refers 
to a scheme that is of sixth-order accuracy at interior node points, fourth-order accuracy at nodes 1 
and N~-  1, and third-order accuracy at nodes 0 and Nz. Recently, Carpenter et al. (1991) have 
developed a 5,5-6-5,5 scheme which retains global sixth-order accuracy. It evaluates derivatives at 
the boundary points and at immediately adjacent points by fully explicit eight-point stencils. Among 
the schemes which we have tried and for which options exist in the DNS code are the 3-4-3 (Pade), 
3,4-6-4,3 (Lele), and 5,5-6-5,5 (Carpenter et al.) schemes. The reader is referred to Lele (1990) and 
Carpenter et al. (1991) for details, including the coefficients of matrices M and E. These options exist 
for differentiation in both the streamwise and wall-normal directions. To date we have been unable to 
maintain numerical stability whenever fifth-order boundary closure is implemented in both the x and 
the z directions. Our most accurate results exploit the method of Carpenter et al. in the streamwise 
direction and the 3,4-6-4,3 method of Lele in the wall-normal direction. 

All differentiation operators assume that grid points are equally spaced in computational space. 
Analytic functions, described in detail later, are used to map from computational space onto physical 
space, where the grid may be highly stretched. Metrics of the transformation are incorporated directly 
into the differentiation operators. 
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T i m e  A d v a n c e m e n t  

To be practical, an explicit DNS algorithm must provide long-time temporal accuracy while requiring 
modest temporary storage. Unless excruciatingly well resolved in time, we believe that second-order 
schemes lack sufficient accuracy for DNS. Attempts to gain higher-order accuracy through multistep 
methods violate the latter practical constraint. An elegant compromise is afforded by the use of one of 
the family of third-order low-storage Runge-Kutta methods proposed by Williamson (1980). To 
implement the Runge-Kutta scheme, we cast the governing equations in the following form: 

~Q 
J V, 

0t 
(20) 

V ~ - D~ E - D ° F  - D~ G - H. 
Time advancement of the discrete version of (20) is accomplished in physical space. Such schemes are 
now in wide use, and so we omit details. 

An important peripheral issue for DNS concerns the determination of a limit on the time step At, 
for which the time-advancement scheme remains stable, but which is not unnecessarily restrictive. For 
parameter values typical of high-speed boundary-layer flows, advection and viscous constraints on the 
time step are of the same order of magnitude. Moreover, if the flow is transitional, determination of 
an appropriate time step is complicated by localized large-scale velocity and temperature fluctuations. 
Consequently, we have chosen to estimate the stability limit dynamically so as to maintain the time 
step continually near its maximum allowable size. Specifically, we require 

max(lira1, lim2). At < sf, 

liml = (lima 2 + lim~) m, (21) 

lim 2 _- (lima 2 q- lim2) 1/2, 

where 0 < s f  < 1 is the stability limit safety factor (typically s f - - 0 . 9 5 ) ,  and where lim a, lira u, and 
lim~ are limiting values obtained by independent consideration of the stability of model linear 
advection, viscous diffusion, and thermal diffusion equations, respectively. For example, to evaluate 
the advection limit, we consider the linear transport equation 

at + (lul + c)qx + (Ivl + c)q r + (Iwl + c)qz = 0. (22) 

The coefficients u, v, and w are obtained from the instantaneously "frozen" velocity fields of the true 
problem. Similarly, the speed of sound c = x / ~  is computed from the "frozen" density and pressure 
of the true problem. The integration of (22) is stable provided 

At.lim a < 1, 
(23) 

l i m a = m a x ~ ( l u l + c ) i j k  ( Iv l+c) i j k  (I w_~l __+ c),j~] 
ijk L cf lxAxi  + cflyAyj + cfl~Az t _]' 

where Ax~ - x~ - x , ,  etc. The Courant-Friedrichs-Levy (CFL) limits cfl~, cfly, and cfl~ depend upon 
both the method of temporal advancement and the eigenvalue spectrum of the discrete spatial 
operator exploited in the x, y, and z dimensions, respectively. Table 1 presents the stability limits of 
a variety of spatial operators for the one-dimensional linear advection (wave) equation integrated in 
time by a third-order Runge-Kutta (RK3) scheme. Some of these limits have been derived by rigorous 

Table 1. Courant-Friedrichs-Levy (CFL) limit la(At/Ax)l < cfl for 
the scalar linear advection equation q~ + aqx = O. 

Spatial operator Stability limit cfl Method of derivation 

Compact fourth order 1.0 Empirical 
Compact sixth order x/3/2 Analytical 
Fourier spectral x/~/~ Analytical 
Chebyshev spectral 5 (x/~/rr) Empirical 
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Table 2. Viscous stability limit Iv(At/Ax2)l < vl for the scalar diffu- 
sion equation qt = vq~. 

Spatial operator Stability limit vl Method of derivation 

Compact fourth order 2.51/3 Empirical 
Compact sixth order 2.51/4 Empirical 
Fourier spectral 2.51/n 2 Analytical 
Chebyshev spectral 2(2.51/n 2) Empirical 
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eigenvalue analyses and are so noted. Others have been established empirically by numerical experi- 
mentation with the time step, in which cases the scheme "blows up" whenever the time step exceeds 
the value given. For the Fourier spectral and finite-difference schemes, the stability limits are sharp. 
For the Chebyshev spectral scheme, the limit was harder to evaluate empirically because of the less 
explosive nature of the numerical instability; hence, we urge some caution in the use of the value 
presented. 

Similarly, lim~ and limK are defined by considering model diffusion equations of the form 

qt = Ree V q, v e , (24) 

with the help of Table 2. The domain of absolute stability for third-order Runge-Kutta  methods can 
be found in many references including Canuto e t  al. (1988). The factors of 2.51 and x/~ which arise in 
Tables 2 and 1, respectively, pertain to the intercepts of the RK3 stability boundary with the real and 
imaginary axes, respectively. The stability of a diffusion problem is limited by the value -2.51 
of the real-axis intercept, whereas the stability of an advection problem is limited by the values ___ x//3 
of the imaginary-axis intercepts. We conjecture that solutions of problems of mixed advection- 
diffusion type remain stable provided, say, the point (-2.51.1im~,x/~.lima) lies within the RK3 
domain of absolute stability. Equation (21) is a convenient approximation to this criterion based on 
the fact that a half-ellipse through the real and imaginary intercepts lies entirely within this region. 

The numerical stability of semidiscrete and fully discrete compact-difference schemes is subtle and, 
as mentioned previously, is currently an area of active research (Carpenter e t  al., 1991). In general, 
what is true for scalar equations is not necessarily true for systems. Our method of estimating stability 
limits is somewhat heuristic, but it has proved a useful guideline in practical applications for a wide 
variety of numerical methods and over a wide range of parameter values. For the range of parameter 
values of the test cases in Section 5, approximately 1000 time steps per disturbance period suffice to 
maintain numerical stability. 

Initial Condition 

We obtain the initial ("basic") flow state QO, which is assumed to be two-dimensional or ax- 
isymmetric, from the spectrally accurate boundary-layer (BL) code described in Pruett and Streett 
(1991) and Pruett (1993). Velocity and temperature profiles provided by this code are smooth nearly 
to machine precision. Either isothermal or adiabatic wall cases can be computed by the BL code. The 
present results assume that the wall is adiabatic. Because the boundary-layer equations neglect terms 
of order 1 / R e L  and higher, a small residual remains when the boundary-layer solution is injected into 
the steady Navier-Stokes equations. Without special treatment, this numerical error introduces 
transients into the domain that may contaminate the Fourier analysis of the flow field. There are two 
philosophies for treating the initial residual. The governing equations can be integrated in time 
(relaxed) from the initial guess until the residual becomes arbitrarily small (in practice, on the order of 
machine zero). Unfortunately, for an explicit code, the computation of a clean steady state may 
require a greater computational effort than the computation of the perturbed flow of interest, since 
numerical errors may mimic slowly traveling physical waves. Alternately, small source terms can 
be subtracted from the governing equations to cancel the initial residual exactly (Erlebacher and 
Hussaini, 1990). To conserve computational resources, we adopt the latter method. For the parameter 
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subtracted from Navier-Stokes equations to cancel steady- 
z state residual of base flow. 

values of Cases 2 and 3 of Section 5, Figure 3 compares the magnitude of the components of the 
source term f that are subtracted from the continuity, u and w momentum, and pressure equations 
at the inflow station. The source term is small, but most significant, in the wall-normal momentum 
equation, where the slight transverse pressure gradient is neglected by the boundary-layer equations. 
An advantage of this approach is that it facilitates direct comparisons with LST and PSE analyses, 
both of which assume inherently that the base state is steady and simultaneously satisfies the 
governing equations. 

For the presentation of results, it is often useful to display only the disturbance fields, which we 
denote by primes. That is, Q' = Q - QO and similarly for individual components. 

Boundary Conditions 

As any practitioner of spatial DNS will acknowledge, the specification of boundary conditions for 
inflow-outflow problems is a delicate matter. The reader is referred to Nordstrom (1989) and Poinsot 
and Lele (1992) for detailed discussions of the issues involved. For Navier-Stokes calculations, all 
flow quantities can be specified at the inflow boundary. The prescription of the inflow condition 
depends upon the method by which disturbances are introduced into the flow. To date, spatial DNS 
calculations have introduced forcing either through a time-periodic inflow condition (e.g., originated, 
we believe, by DeSanto and Keller, (1962)) or through a time-periodic wall boundary condition (e.g., 
Kral, 1988; Thumm, 1991). For stability calculations, the difficulty with the latter method is that it is 
never known precisely what disturbances are generated. Indeed, in high-speed boundary-layer flows, it 
appears that multiple modes at the same frequency can he generated by periodic suction and blowing 
at the wall (Eissler and Bestek, 1993). Therefore, we favor the former approach. At the inflow 
boundary x = xi., the flow is specified as the superposition of the steady two-dimensional or 
axisymmetric base flow and a temporally periodic fluctuation of frequency 09, amplitude e, streamwise 
wave number ct, and spanwise (azimuthal) wave number fl as follows: 

Q(xi,, y, z, t) = Q°(xi,, z) + 8 exp[t(tXxin +/~y) -- ogt]qJ(Z) 4- C.C. (25) 

To minimize temporal transients, e is ramped smoothly to its maximum value over an interval of time 
(typically one disturbance period). The disturbance structure, which is contained in the complex vector 
q~, is obtained either from spatial LST (Ng and Zang, 1993) or from PSE theory as in Chang et al. 
(1991). In either case the disturbance is normalized so that the maximum amplitude of the tempera- 
ture fluctuation is unity. For high-speed flows, the disturbances derived from the parallel (LST) and 
nonparallel (PSE) theories are significantly different, as shown in Figure 4, and the disparity tends to 
increase with x and with Mach number. For developing (nonparallel) high-speed boundary-layer 
flows, the use of LST-derived forcing results in a significant inconsistency at the inflow boundary, 
which manifests itself in undesirable streamwise transients downstream of the inflow boundary. 
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Figure 5. Transients downstream of inflow boundary for Case 
4 of Section 5. 

Moreover, if the amplitude of the disturbance is large enough, a weak Mach wave can be seen 
emanating from the inflow boundary near the critical layer. It is therefore important that nonparallel 
effects be considered. We have found PSE-derived forcing functions virtually to eliminate inflow 
inconsistencies, as shown in Figure 5, which presents the evolution of the temperature maximum in 
the region near the inflow boundary for Case 4 in Section 5. In contrast, the wandering of the tem- 
perature maximum away from the nearly constant-slope DNS/PSE curve for the DNS/LST case is symp- 
tomatic of the inconsistency between the parallel LST theory and the nonparallel DNS calculation. 

For reference, the amplitudes of each of the five components ~F of an oblique second-mode 
disturbance in a Mach 6.8 boundary-layer flow on a cone are shown in Figure 1, having been 
obtained from the nonparallel PSE method for parameter values which correspond to Case 4 in 
Section 5. Note the domination of the temperature and density components of the disturbance. 

In the vicinity of the outflow boundary, we have found a buffer domain, proposed by Streett and 
Macaraeg (1989/90), to be effective in passing large-amplitude fluctuations with minimal reflection and 
upstream influence. Within the buffer region, the governing system of equations is gradually modified 
as follows: 

1. Streamwise viscous terms are smoothly attenuated to zero to parabolize the governing system. 
2. The base streamwise velocity profile is smoothly brought to that of a uniform flow at the 

velocity of the free stream to ensure that all characteristics lead out of the domain. 
3. The source term f discussed previously is modified significantly in the buffer region to balance 

the changes to the basic flow. 

With these changes, flow quantities along the outflow boundary can be extrapolated from the interior. 
At the wall, the usual no-slip conditions are imposed on the velocities (except within the buffer 

region). Temperature is assumed to be fixed at its adiabatic value. (The rationale for the hybridization 
of the adiabatic and Dirichlet wall condition on temperature is addressed in an article by Pruett and 
Zang (1992) in a previous issue of this journal.) No condition is imposed on density; its value 
is determined directly from the governing equations at the wall. Pressure at the wall is derived from 
density and temperature via the equation of state. 

At the far-field boundary (z = Zm,x), we adapt the nonreflecting boundary conditions proposed by 
Thompson (1987), which are based in inviscid characteristic theory. Here, these are applied only to the 
disturbance field U ' =  U -  U ° in the following way. Adding and subtracting formally identical 
quantities from the right-hand side of (20), we obtain 

OQ aG' ~'~G' 
Ot - V - ~ + c~-~-' (26) 
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where 

Recognizing that 

OG' a G a U '  
Oz - aU az 

(27) 

OQ OQ o u  
Ot aU at 

and exploiting the notation A = aQ/aU and B = aG/OU, we temporarily recast (26) in terms of U as 
follows: 

aU ~ aU' 
at  - A - i v  - ( s  - s )  U z '  (28) 

where S = A-XB, and g has yet to be defined. Matrix S is then diagonalized by the similarity 
transformation S = PAP -x, where A is the diagonal matrix with eigenvalues 2,. ~ { w -  c, w, w, w, 
w + c} in the order shown. Positive and negative eigenvalues correspond to outbound and inbound 
characteristics, respectively. Now let g = PTtP -1, where .~ is the diagonal matrix with eigenvalues 
).,, = max(2,., 0). Writing (28) once again in terms of Q, we obtain our working form 

aQ [ (29) at - V - A P [ A - ~ ] P - X  aU dU o ] ~-_I 

Note that if U = U °, or if all eigenvalues of A are nonnegative, then there is no change to the 
right-hand side vector V. If, however, there are disturbances traveling inbound at the far-field 
boundary, their time derivatives are set to zero on the boundary. 

Mappings 

As shown in Figure 1, the eigenfunction of a second-mode disturbance in a high-speed boundary-layer 
flow has a double structure in which the temperature component is sharply peaked near the wall and 
the critical layer. Consequently, accuracy and resolution considerations necessitate that grid points be 
clustered in both regions of sharp gradients. For this purpose, we use a highly tuned mapping 
from the computational space to the physical space. The mapping is adapted from Erlebacher and 
Hussaini (1990) and combines gradual exponential stretching away from the wall with clustering in 
the vicinity of the critical layer. In computational space, for k = 0, 1 . . . .  , Nz, 

- 1 + ~ ,  compact difference, 

(30) 

cos ~ , Chebyshev spectral. 

For the compact-difference schemes, note that grid points are equally spaced in computational space. 
There are five parameters for the mapping: zmal, zm, zo, Az, and z. The following transcendental 
equation maps the interval [ -  1, + 1] in computational space onto itself and performs a Clustering of 
grid points of strength z and width Az about the point zo: 

( + z  t a n h [ ~ £ 1 _  ~A-~O, - 1  < ~ <  + 1 . _  _ (3i) 

The subsequent exponential transformation below maps the computational interval [ - 1 ,  + 1] onto 
the physical interval [0, ZmaI"]: 

[-a ~+x) - 1-] 
z(O = Z~a~L ?~_ ] j ,  -1___ ~___ +1, 

(32) 
z.,ax + x / Z L x  - 4Zx/~(~m~ --  ZX/2) a = 

2zl/2 
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Figure 6. Wall-normal (a) mapping and (b) associated metric. 

The four remaining unknown quantities in (31) are determined by requiring 

d( 
Z((o) = Zo, A( = ~ ' A z ,  ~(-1)  = - 1 ,  ( (+1)  = +1. (33) 

If t = 0, there is no clustering about Zo, in which case exactly half of the grid points lie between the 
wall and zv2. We find (32) to be superior to the bilinear fractional transformation used originally by 
Erlebacher and Hussaini (1990), which stretches too fast in the far field. Figure 6 shows the grid-point 
distribution and metric for the parameter values of Mach 4.5 in Cases 2 and 3 in Section 5. In 
practice, we tune the number of grid points and mapping parameters b y  use of the temporal DNS 
code of Pruett and Zang (1992). More specifically, we adjust the resolution and mapping parameters 
until we are able to recover local (global) disturbance growth rates from the DNS that are in four 
(six) place agreement with eigenvalues obtained from temporal LST. 

Similarly, a streamwise mapping can be used to concentrate points downstream where nonlinear 
interactions lead to a broadening of the spectrum in wave space. For this paper, however, all results 
were obtained with grid points equally spaced in x. 

In spatial DNS the boundary layer thickens as x increases. Eventually, the mapping described 
above will become detuned, and the far-field boundary at Zma x will pinch the flow unless the physical 
domain grows in wall-normal extent approximately as fast as the boundary layer. Motivated by 
boundary-layer theory, we define z = r/f (x) where f (x )  is a smooth function which grows like the 
boundary layer. For laminar flow, an appropriate choice is f (x )  = x~/~o .  An option is provided in 
the DNS code to fix the far-field extent of either z or ~/. In the latter case the physical grid is 
nonorthogonal and streamwise and wall-normal derivatives are modified via the chain rule as follows: 

d O f ' ( x )  c~ 

~-~ ~ O~ - rl f (x)  O~l' (34) 

O 1 c~ 

Oz f (x)  ar l" 

With the exception of the first case in Section 5, the results presented below were obtained with the 
growing-domain option. 

Filtering 

From the work of Trefethen (1982), Vichnevetsky (1986), and Poinsot and Lele (1992), it is clear 
that all finite-difference schemes reflect some energy at outflow boundaries. Typically the reflection co- 
efficient (i.e., the ratio of incident to reflected energy) behaves like (~tAx) h, where h is the order of 
the scheme and ~ is the disturbance wave number. Moreover, numerical reflections arise even if the 
physical boundary conditions imposed are perfectly nonreflecting. Regardless of the order of the 
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Figure 7. Two-point oscillations and spurious physical waves in disturbance pressure p' in absence of filtering. Two-dimen- 
sional Mach 4.5 fiat-plate boundary-layer flow with parameter values similar to Case 2 of Section 5. Streamwise extent limited 
to nine disturbance wavelengths. Wall-normal extent 0 < ~/< 7.5. Upper and lower photographs, respectively, show instants in 
time before and after exit of leading wavefront from computational domain. 

scheme, energy at the "sawtooth" wavelength (~Ax = n) is usually totally reflected. As shown by 
Trefethen (1982) and Vichnevetsky (1986), reflected energy travels upstream as a wave packet at the 
group velocity Vg, which depends on the spatial discretization scheme. As mentioned by Poinsot and 
Lele (1992), for the one-dimensional Euler equation, the group velocities of the fourth-order and 
sixth-order central compact-difference schemes are 3(lul + c) and 14(lul + c)/3, respectively. Once 
the wave packet encounters the Dirichlet inflow condition, which is numerically reflecting to all 
wavelengths, it reforms and travels downstream as a spurious physical disturbance. For the sixth- 
order compact-difference scheme, this entire phenomenon masquerades as an apparent coupling 
between the outflow and inflow boundaries, whereby spurious physical oscillations emanate from the 
inflow boundary shortly following the exit of the leading wavefront from the outflow boundary, as 
shown by the flow-visualization sequence in Figure 7. The photograph shows the instantaneous 
disturbance pressure p' at two different times in a simulation of a two-dimensional Mach 4.5 fiat-plate 
boundary-layer flow. The parameter values are similar to those of Case 2 of Section 5. However, the 
corrective filtering described below has not been implemented, and, for clarity, the domain is 
foreshortened to a length of nine disturbance wavelengths in streamwise extent. The upper photo- 
graph shows p' prior to the arrival of the leading wavefront at the outflow plane. Two-point 
oscillations, predominantly in the wall-normal direction, are clearly visible just outside the boundary 
layer. The lower photograph, with precisely the same color scale, shows p' several periods after the 
exit of the leading wavefront from the domain. Note the appearance of spurious physical waves along 
the upper boundary, the ultimate result of a numerical double reflection off the outflow and inflow 
boundaries. 

One of several possible solutions, including upwind biasing, is through filtering, which we prefer for 
its simplicity and efficiency. Outside the boundary layer, the physical viscosity has a vanishingly small 
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effect; without some added numerical dissipation, the central-difference approximations result in 
odd-even decoupling that introduces energy at the troublesome "sawtooth" wavelength. The trick is 
to keep energy at this wavelength from crossing the outflow boundary. Here, minimal damping is 
imposed by periodically applying a low-pass sixth-order compact-difference filter (Lele, 1990) to the 
solution. Typically we apply the filter every few time steps, in which case the additional computational 
effort is insignificant when amortized over, say, nine Runge-Kutta stages. Moreover, we find it 
necessary to apply the filter only in the wall-normal direction. 

Lele's sixth-order filter has two free parameters. For the values we have chosen, the formal 
truncation error for filtering a function f (x )  is ~o(Ax)6f (6), and the transfer function is shown in 
Figure 8. Two-point oscillations (shown by the vertical dotted line) are completely eliminated by the 
filter, whereas oscillations of twice that wavelength (shown by the vertical dashed-dotted line) and 
longer are virtually undamped. In practice, the filter incorporates third-order boundary closure (Lele, 
1990), which reduces the global accuracy to fourth order, as does the boundary closure of the 
3,4-6-4,3 compact-difference scheme. The filter parameters and frequencies in current use are in no 
sense optimal, and it may well be possible to reduce the modest computational effort still further by 
less frequent filtering. 

An additional subtlety arises when implementing the filter in the context of a total variable 
formulation of the governing equations (rather than a disturbance variable formulation). Over many 
applications, filtering effects gradual evolution of the base state. For example, for a simulation similar 
to that of Case 4 in Section 5, but with a foreshortened domain (one-sixth the streamwise extent of 
Case 4) and no imposed disturbance (e = 0.0), the base density changes approximately 0.01% in 1.4 
flow-through times when filtering is applied every third time step. This presents two problems. First, 
because of the extreme sensitivity of the stability of the flow to changes in the base stn'te, unintended 
evolution of the base state may affect hydrodynamic stability. Second, when the basic state is 
subtracted from the total-flow variables for purposes of flow visualization, the disturbance fields, 
whose velocity components may be, say, of order 10 -6 , are contaminated. The difficulty is corrected 
by incorporating an additional steady source term f~, to be defined shortly, into the right-hand side of 
the governing equations. For simplicity, in the context of a first-order (forward Euler) time-integration 
scheme, the filtering algorithm can be summarized as follows: 

For 1 = 0, 1, 2 . . . .  

I q,+l = qz + At-I-v(q') - f -  f l ]  (35) 

] ~l+1 = Fql+l 

where q and v denote the discrete representations of Q and V, respectively, a tilde denotes a filtered 
quantity, F is the discrete filter operator, and I is the time-level index. In practice, P4 ~ = Hq ~, where P 
and H are pentadiagonal and heptadiagonal matrices, respectively, whereby F = p - I H .  Recognizing 
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Figure 9. Instantaneous disturbance pressure p' at time of 53 periods of oscillation of fundamental for Case 4 of Section 5. For 
clarity, computational domain truncated in streamwise extent to 1436 < ReL < 1536. (Buffer domain shown.) Wall-normal 
extent 0 < r/< 7.5. Results shown in "peak" plane 0 = 0. Colors depict contour levels between -3  × 10 -6 and 3 x 10 -6. 

that (by definition) v(~ °) - f = 0 identically, the reader can readily show from (35) that if l = 0 and 
fl = [(F - I)/At]q °, then ql = qO. That  is, formally the base state is preserved over the first and all 
subsequent time steps in the absence of forced disturbances. In practice, the additional source term t"1 
is "turned on" only immediately prior to filtering operations, in which case the filtered basic state 
remains constant over time nearly to machine precision. 

Figure 9 is presented to illustrate the beneficial effects on the solution of the filtering algorithm 
described above, including the adjustment to prevent unintentional evolution of the base state. It 
portrays the instantaneous disturbance pressure p' obtained from Case 4 of Section 5. For  clarity, 
however, only the final ten disturbance wavelengths of the computational domain (including the buffer 
domain) are shown. The time corresponds to 53 periods of oscillation of the disturbance. We note 
that the maximum amplitude of p' is quite small, in our normalization, more than two orders of 
magnitude below that of T', whose amplitude at the inflow boundary is ~ = 0.001. In contrast to 
Figure 7, two-point oscillations have been completely damped, thereby eliminating detectable bound- 
ary reflections and spurious physical waves, without detriment to the evolution of the instability wave. 

4. Algorithm Details 

In algorithm design there is frequently a tradeoff between computational effort and storage require- 
ments, as is the case here. For  a fully explicit scheme, storage requirements are modest, and the 
overriding consideration is to minimize the computational work per time step. We discuss very briefly 
several considerations which contribute to the efficiency and simplicity of the algorithm. 

For  the three-dimensional compressible Navier-Stokes equations, the minimum number of partial 
derivative computations required by an explicit algorithm to evaluate V is 2 7 : 9  for the rate-of- 
deformation tensor, 3 for the heat flux components, and the remaining 15 for the components of the 
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flUX vectors E, F, and G. Both our conservative (energy equation) and nonconservative (pressure 
equation) formulations require only the minimum number of 27 partial derivative evaluations. Specifi- 
cally, partial derivative evaluations are implemented through calls to a subroutine PARTIAL whose 
arguments specify: 

1. The direction of the derivative. 
2. Whether or not to include certain terms which arise from nonzero Christoffel symbols as in the 

distinction between D°u and D~u in (3). 
3. If spanwise (azimuthal) symmetry is enforced, whether or not the function is even or odd. 

Parameters passed to PARTIAL also specify the difference schemes for each coordinate direction. By 
this construction we have a wide range of possible options without complicating the core subroutine 
that evaluates the right-hand side vector V. The present algorithm uses (we believe) the minimum 
storage possible given the minimum work constraint previously discussed. The conservative (energy) 
formulation of the governing equations requires 18 storage arrays of approximate size N~ x No x Nz: 
6 for the primitive variables U and the viscosity, 5 for storing components of the right-hand side 
vector V, 6 for temporary use in the evaluation of V, and 1 for partial derivative evaluations. A 
significant advantage of the nonconservative (pressure) formulation is that only 16 storage arrays are 
required. Since the energy equation and pressure equation formulations yield essentially identical 
results, we favor the pressure formulation for computational efficiency. For both formulations, one 
additional array is required if the growing-domain option is invoked. 

Finally, for computational efficiency, innermost loops typically range over all (N x + 1) x (N o + 1) 
grid points in a surface of constant k, ensuring nearly optimal speed-up on vector processors. For 
directionally dependent calculations such as FFT evaluations and the solution of tridiagonal systems, 
the inner computational loop ranges over the number of independent transforms or right-hand sides. 
On single processors of the Cray Y-MP and the Cray C90, the present algorithm performs at greater 
than 150 megaflops and 415 megaflops, respectively. In recent calculations on the C90, the algorithm 
has been assessed at 5.6 x 10 -6 seconds per gridpoint per (full) time step. 

5. Validation 

For comparisons with DNS results, we rely on compressible LST (Mack, 1984; Ng and Zang, 1993) 
and on results obtained by the compressible PSE method of Chang et al. (1991). The reader is referred 
to these authors for details. Briefly, in classical LST, an eigenvalue problem results from certain 
assumptions about the basic flow and the wave-like nature of the disturbances. Because of the 
assumptions, the results of LST are strictly valid only for low-amplitude (linear) disturbances in 
parallel base flows. Our LST results were obtained from the spectrally accurate spatial linear stability 
code of Ng and Zang (1993). 

The PSE approach uses a traveling wave ansatz similar to LST, except that the disturbance shape 
function (q~ in (25)) is allowed to vary in both the wall-normal and the streamwise directions. Rapid 
oscillation of the wave is incorporated into the exponential part of the wave ansatz, whereby the 
shape function evolves in x on a scale much longer than a wavelength. The governing equations 
thereby reduce to a set of PDEs for the shape function only. The PSE method becomes approximate, 
rather than exact, when these PDEs are parabolized to facilitate a marching solution. Provided the 
instabilities are of convective nature, as they are for most high-speed boundary-layer flows, the 
parabolization approximation is quite reasonable. For nonlinear problems, the disturbances are 
expressed as Fourier series in the frequency domain. The equations for each Fourier mode are 
independent except through inhomogeneous terms which arise due to nonlinear mode interactions. 
Therefore, the PSE method can treat both nonparallel and moderately nonlinear effects. 

The comparison of DNS results with those obtained by LST and PSE requires the Fourier 
decomposition of the DNS data in time and in the azimuthal (spanwise) dimension. The resulting 
modes are identified with ordered pairs (mo,, ma), where the integers too, and mp label the harmonics in 
Fourier space with respect to the temporal frequency a~ and the azimuthal wave number fl, respec- 
tively. For example, the fundamental mode is labeled (1, 0) if two-dimensional or (1, 1) if oblique. 
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Figure 10. First- and second-mode unstable regions for Mach 
4.5 flat-plate boundary layer (after Mack, 1984). 

We present four validation cases. The first three consider two-dimensional second-model distur- 
bances in Mach 4.5 flow along a flat plat. Of these three, the first two examine the evolution of 
low-amplitude disturbances in parallel and nonparallel boundary-layer flows, respectively. In the third 
test case, forcing is of large amplitude and harmonics generated by nonlinear interactions attain 
significant amplitudes. The final test case considers the evolution of a pair of symmetric oblique 
(helical) second-mode disturbances in a Mach 6.8 boundary-layer flow along a cone. 

As a point of reference for the fiat-plate cases, we include Figure 10 (adapted from Mack, 1984), 
which shows distinct regions of instability for first- and second-mode disturbances in a Mach 4.5 
planar boundary-layer flow. However, we caution against attempts at exact comparisons for these 
reasons: Mack's diagram is derived from temporal, rather than spatial, LST; LST inherently assumes 
locally parallel flow; and Mack uses a slightly different formula for viscosity. 

Case 1: Flat Plate, Mach 4.5 Parallel Flow, Two-Dimensional Linear Disturbance. Our primary purpose 
here is to evaluate the resolution required in the streamwise direction to capture accurately the 
evolution of a monochromatic disturbance. Figure 11 compares the computed (DNS) and theoretical 
(LST) maximum amplitude of the temperature fluctuation for a disturbance of dimensionless fre- 
quency F = oo*L*/(u*ReL) = 2.29 x 10 -4, ReL = 955.67, and amplitude e << 1 in flat-plate adiabatic- 
wall flow with Me = 4.5 and T* = 61.11 K. These parameter values define a slightly damped second- 
mode disturbance that corresponds to a point just beyond the upper branch neutral curve in Figure 
10. For the DNS, the computational domain spans eight wavelengths in streamwise extent (based on 
parallel, linear theory). The amplitude maxima versus x are determined by Fourier time-series analysis 
over the interval from 13 to 14 periods of oscillation of the disturbance, after the leading wavefront 
has exited the domain. DNS results are shown for the 5,5-6-5,5 scheme at streamwise resolutions of 
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8, 12, and 16 grid points per disturbance, wavelength and for the 3-4-3  scheme with 16 grid points 
per wavelength. (In the legend for Figure 11, the first and second integers refer to the number of grid 
points per wavelength and the order of the scheme, respectively.) In all cases, wall-normal differencing 
is accomplished by the 3,4-6-4,3 compact-difference scheme with Nz = 144. For direct comparison 
with LST, the base flow is parallel (i.e., u = u(z), T = T(z), and w = 0), in which case the forcing terms 
analogous to Figure 3 are considerably larger than in the developing (nonparallel) flow case. For the 
fourth-order scheme and for the sixth-order scheme with fewer than 12 points per wavelength, 
significant oscillations are seen in the maxima. For the sixth-order scheme, the eigenvalue extracted 
from the DNS is correct to about three and four places for 12- and 16-point resolutions, respectively, 
except in the immediate vicinity of the inflow boundary where there is a very slight streamwise 
transient. The resolution needed for accurate results is about twice the six to eight points per 
wavelength we would have naively anticipated. For nonlinear problems, these results suggest that it is 
desirable to resolve the shortest wavelengths (highest harmonics) with at least 12 points per wave- 
length. 

Figure 11 also offers reasonable validation of the buffer-domain outflow condition; no appreciable 
influence is evident on the decay rate of the instability wave upstream of the edge of the buffer 
domain (shown by the vertical line). 

Case 2: Flat Plate, Mach 4.5 Nonparallel Flow, Two-Dimensional Linear Disturbance. Case 2 corre- 
sponds approximately to the ray that extends through points 1 and 2 in Figure 10 (Mack, 1984). In 
this case an evolving (nonparallel) Mach 4.5 fiat-plate boundary-layer flow with the same flow 
parameters as before is forced at a dimensionless frequency F = 2.2 x 10 -4. We note that, for Cases 
1-3, the ratio 6*/L* is constant along the plate with the value 10.46. For the DNS, the inflow 
and outflow boundaries correspond to Re~ = 0.49 x 106 (ReL = 700) and Re x = 1.404 x 106 (Re,. = 
1185.3), respectively. Over this range of Reynolds numbers, the selected frequency excites a second- 
mode disturbance. Relative to Figure 10, the computational domain is 36 wavelengths long (based on 
linear, nonparallel theory at xin) and spans roughly from point 1 (just prior to the lower branch 
neutral point) to point 2 (somewhat beyond the upper branch neutral point). For the DNS, N~ = 144 
and Zmax = 7.5. Grid-point clustering and stretching is such that 75% of all points fall in the region 
bounded by the wall and z = 1.4. The buffer region spans the last 5% of the domain in x (i.e., the last 
1.8 wavelengths). For comparison with LST, a small amplitude of e = 0.001 is used for the DNS 
calculation to render insignificant the nonlinear terms of second order or higher in 5. The present 
results were obtained for N~ = 576, with points equally spaced in x, and can be considered very well 
resolved at 16 grid points per wavelength. 

The PSE and DNS calculations both proceed from identical disturbance states. However, their 
respective base states were derived independently, that of the PSE calculation being obtained by 
finite-difference techniques. The amplitude distributions of the disturbance components imposed at the 
inflow station can be found in Figure 2 of Pruett and Chang (1993). Because the PSE calculation is 
linear, amplitude is arbitrary. For the comparison, the amplitudes of the PSE and DNS density 
fluctuations are equated at the inflow station, and all other disturbance quantities are scaled propor- 
tionately. Since the PSE computation is performed in Fourier space, the solution provides the 
contents of individual modes by default. To extract the temporal Fourier harmonics from the DNS 
data, we perform a time-series analysis analogous to hot-wire anemometry in physical experiments. 
The flow field is sampled over time at selected grid points (usually a substantial subset of the 
computational grid) and is subsequently Fourier analyzed for its harmonic content. Figure 12 presents 
the amplitude envelope of the density component of the fundamental mode versus r/, obtained from 32 
samples that span the one-period interval between periods 42 and 43. Because the phase velocity of 
the second-mode disturbance is about 90% of the edge velocity, by period 42 the leading wavefront 
has exited the outflow boundary and the flow has settled into a quasi-steady periodic state. Individual 
profiles in Figure 12(a) correspond to different streamwise locat!ons, equally spaced between the 
inflow boundary and a point 32 wavelengths downstream (ahead of the beginning of the buffer 
region). For clarity, these profiles are each staggered by a factor of 2 on the logarithmic plot; hence, 
their maxima are relative, not absolute. Figure 12(b) graphs the density maxima obtained from Figure 
12(a) versus the streamwise coordinate x. In Figure 13 the density maxima and the maxima of other 
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Figure 12. Case 2: Density fluctuation (a) amplitude distribution and (b) amplitude maxima for DNS. 

flow quantities obtained in analogous fashion are plotted versus ReL (rather than versus x) and are 
compared with the PSE results. For clarity, only every eighth DNS value is plotted. As shown in 
Figure 13, the agreement between the PSE and DNS results is excellent. The rapid divergence of the 
DNS and PSE results near the outflow boundary is attributed to the nonphysical damping of the 
instability wave as it traverses the buffer region and should be disregarded. From Figure 13, it can be 
observed that, in a nonparallel flow, maxima (or minima) of the various components of the distur- 
bance do not necessarily occur at the same streamwise locations. Hence, neutral points and growth 
rates are nonuniquely defined. Based on the temperature component of the disturbance, the lower and 
upper branch neutral points occur at approximately ReL = 740 and ReL = 1050, respectively, in 
surprisingly good agreement with Figure 10. 

Although Figure 13 shows good agreement at maxima, it provides no information about the 
disturbance structure. In Figure 14 we compare the velocity and density profiles of the PSE and DNS 
calculations at the station ReL = 1046 near the location of the global maximum of the temperature 
fluctuation. For comparison of the disturbance structure, we scale the DNS and PSE results so that 
their respective density maxima are unity. Before rescaling, the respective maxima differ by less than 
0.5%. For clarity, only every third DNS value (denoted by symbols) is shown in the figure. Despite the 
complex nature of the disturbance structure, the agreement is excellent. Moreover, this agreement 
confirms that the rapid change in the disturbance structure at the three stations that are farthest 
downstream in Figure 12(a) is a physical change and not the result of a computational anomaly. 
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Case 3: Flat Plate, Mach 4.5 Nonparallel Flow, Two-Dimensional Nonlinear Disturbance. With regard 
to parameter values, this case is identical to the case above, except that the forcing amplitude is quite 
large at e = 0.1. At this level of forcing, temperature fluctuations will grow in amplitude to a value 
that is 25% of the edge temperature of the base flow. For the DNS calculation, wall-normal 
resolution remains as before; however, 32 grid points per primary disturbance wavelength are used for 
a total of 1153 points in x. Based on the resolution criterion established for the linear case, the 
fundamental and its first harmonic are well resolved. The second harmonic, however, is somewhat 
underresolved. Higher harmonics, which contain very little energy, are unresolved. 

• Figure 15 compares the PSE and DNS results with regard to the streamwise evolution of the 
maxima of the temperature component of the fundamental and its first two harmonics. For the DNS, 
the Fourier analysis is performed on 32 time samples that span the interval between periods 48 and 
49. The methods agree well qualitatively and quantitatively; however, greater disagreement occurs 
as the index of the harmonic increases. At the streamwise location of maximum disturbance ampli- 
tude, the PSE and DNS results differ by 0.15%, 6%, and 12%, respectively, for the fundamental (1, 0), 
the first harmonic (2, 0), and the second harmonic (3, 0). (Recall that, because the present calculation is 
two-dimensional, m~ = 0.) 

A further comparison is shown in Figure 16, in which the PSE and DNS predictions of the 
structure of the temperature component of the fundamental and its first two harmonics are compared. 
In contrast to the (linear-amplitude) results presented in Figure 14, the present (nonlinear-amplitude) 
results have not been rescaled and are presented on a logarithmic scale so that all three modes 
can be shown with clarity. Between the wall and the critical layer, both methods produce similar 
amplitude distributions. Outside the boundary layer, there is divergence between the PSE and DNS 
results in the asymptotic rate of decay of the second harmonic. There are any number of possible 
physical and/or numerical reasons for this discrepancy. Among these are the differences between 
PSE and DNS in the imposition of far-field boundary conditions. In the PSE approach Dirichlet 
conditions are imposed on the disturbance in Fourier space at very large ~/(typically ~/,~ 50). Details 
of the imposition of boundary conditions for the PSE method can be found in Chang et al. (1991). In 
the DNS, inviscid characteristic conditions (described previously) are imposed in physical space along 
the far-field boundary ~/= 7.5. However, we remind the reader that the logarithmic scale of Figure 16 
exaggerates these differences, which are of order 10 -6 relative to the base state, and it is beyond our 
current intentions to ferret out the sources of errors of this magnitude or to state categorically which 
method is "correct." Within the boundary layer, the region of principal interest, the methods agree 
remarkably well. 

Finally, a major effect of the strong nonlinearity is a mean (0, 0) component that distorts the base 
flow. Figure 17 shows that the PSE and DNS calculations both predict large (5~o) distortions of the 
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base temperature distribution near the critical layer. Disagreement between the methods is roughly 
6% at the points of maximum distortion. The reason for the disparity is presently unknown. 

Case 4: Sharp Cone, Mach 6.8 Nonparallel Flow, Three-Dimensional Linear Disturbance. In this final 
validation case we consider the high-speed boundary-layer flow along an axisymmetric sharp cone, 
which is forced to excite two symmetric oblique (helical) second-mode disturbances. The geometry and 
the flow parameters given below are chosen to correspond approximately to the stability experiment 
of Stetson et al. (1983) in a hypersonic wind tunnel with a free-stream Mach number of 8: 

~p = 7 ° (constant), M e = 6.8, T~* = 71 K. (36) 

We assume that the boundary-layer edge conditions remain constant, a reasonable approximation 
except near the tip of the cone, a region excluded in the present simulations. The PSE calculation 
spans from 700 < Re,. < 1800. To limit the size of the DNS computation, we consider only the region 
corresponding to 1013 < ReL < 1536. At the DNS inflow boundary, the disturbance parameters 
are 

F = 2.094 x 10 -4, 

n = 13 (% = 1.1736, R o = 11.077), (37) 

e = 0.001, 

and 5 * / L * =  11.17. Whereas the geometry and flow parameters correspond to the experiment of 
Stetson et al. (1983), the disturbance parameters were selected somewhat arbitrarily. The dimensionless 
frequency given in (37) corresponds to a physical frequency of 180 kHz, considerably higher than the 
dominant 102 kHz frequency observed in the experiment. The higher frequency was selected for this 
validation case because its entire instability region, including the lower and upper branch neutral 
points, is contained within a fairly short streamwise region, one of (almost) reasonable size for a DNS 
calculation of modest computational effort. There is nothing sacred about the particular choice of 
n = 13, except that it yields an unstable mode of a sizeable obliqueness angle (24.66 ° at the DNS 
inflow boundary) for the given frequency. 

Figure 18 presents the evolution of the amplitudes of each of the live components of the fundamen- 
tal (1, 1) mode for 700 < Re L < 1500. In this case the buffer region for the DNS calculation is not 
shown. As in Case 2, the PSE calculation is performed in the linear mode, in which case amplitude is 
arbitrary. For the comparisons below, the maximum densities of the PSE and DNS calculations 
are equated at the DNS inflow plane, and all other quantities are scaled accordingly. The agreement 
between the DNS and PSE results is, in general, quite good. The kinks in the u' maxima curve at 
Re L = 1120 and the w' maxima curve at Re L = 1280 are due to the double-humped structure of the 
disturbance shown in Figure 19. Remarkably, the DNS and PSE results predict the shift of the global 
maximum from one hump to the other at precisely the same values of ReL. There is some discrepancy 
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Figure 18. Case 4: PSE and DNS disturbance amplitude maxima versus ReL for cone case: (a) T' and p' and (b) u', v', and w'. 
Two distinct PSE results differ only in the method by which wall-normal derivatives of the base flow are computed• 

in the DNS and PSE maxima, which is most significant in the temperature, and which increases with 
streamwise distance• To eliminate one potential source of disagreement for this comparison, the 
laminar base flow QO along the cone was obtained for both the PSE and DNS calculations from the 
spectrally accurate BL code of Pruett and Streett (1991) and Pruett (1993). The remaining sources of 
disagreement may be either physical or numerical or a combination. We remind the reader that the 
governing equations, the far-field boundary conditions, and the discretions of the two methods differ, 
to mention but a few of many subtle differences whose effects may be cumulative. Because the flow is 
sensitive to seemingly imperceptible changes, it is somewhat pointless to try to isolate the sources of 
disagreement. Perhaps it is more instructive to demonstrate this flow-field sensitivity• In Figure 18 two 
sets of PSE results are shown. The two sets differ only in the method by which derivatives of the base 
state were obtained. In the first set all derivatives were computed internally in the PSE code to 
fourth-order accuracy. In the second set the derivatives u=, u=, T~, and T:= were computed to 
spectral accuracy in the BL code and were subsequently passed to the PSE code. Figure 20 compares 
the first and second derivatives of the temperature as computed by the BL and PSE codes. At worst, 
the temperature derivatives computed by the two methods differ by less than 0.001, and, in the 
graphical format, they are indistinguishable. Moreover, velocity derivatives obtained by the two 
methods agree everywhere to more than four significant digits. Nevertheless, the cumulative effect of 
these seemingly insignificant differences between derivative profiles is discernible in Figure 18. This 
inconsistency did not arise for the flat-plate test cases studied previously, for which the base flow is 

-1 

¢I 

E aJ 

101 

10 ° L! 

10-1 - 

10 -2 

10-3 - 

10 -4 

0.0 

' 

I i n e - - - P S E  

_ 

[] T' [ ]  o 
, I ~ I , I , 

0.5 1.0 1.5 2.0 

10-1 

_~ 10 -2 
-I 

E 
m 10-3 

10 .4 
0.0 

' I ' I 

, I , I 

0.5 1.0 

° I ' 

iwl 
Z~ V ~ 

o 
I I J 

1.5 2.0 

~7 ~7 

Figure 19. Case 4: Structure at Re L = 1291 of(a) T' and p' and (b) u', v', and w'. 



74 C.D. Pruett, T.A. Zang, Chau-Lyan Chang, and M.H. Carpenter 

0.5 

0.0 

-0.5 

-I .0 

0.0 2.0 

' I ' I ' I ' 

0.5 I .0 I .5 

~7 
F i g u r e  2 0 .  Case 4: Wall-normal derivatives of base tempera- 
ture. 

obtained from a similarity solution whose derivatives can be obtained semianalytically. These results 
reveal the extreme sensitivity of the stability of high-speed wall-bounded flows to changes in the base 
state and underscore the necessity of numerical methods of the highest accuracy for such problems. 

Before concluding, we offer a few comments on the computational resources required by the 
present algorithm. DNS is, in general, an expensive research tool. Cases 3 and 4 of this section 
consumed approximately 40 and 150 hours, respectively, on a single processor of a Cay Y-MP. It is 
estimated that spatial DNS of the complete laminar-breakd0wn process for a high-speed boundary- 
layer flow will require at least 2000 Cray-2 hours and at least 256 megawords of memory. Needless to 
say, such a tool is not for routine use at the present time. Nevertheless, spatial DNS is invaluable as a 
means of lvalidating less-expensive approximate methods (e.g., PSE and LES) and for building 
high-fidelity data bases of transitioning flows, from which transition modelers can construct simplified 
models. With continued algorithm refinements, supercomputer advancements, and massively parallel 
impelementations, we believe spatial DNS of transition to turbulence will be practical and routine 
well within a decade. 

6. Conclusions 

A highly accurate algorithm has been developed for the direct numerical simulation (DNS) of forced, 
spatially evolving instability waves in high-speed wall-bounded flows. To minimize dissipation and 
dispersion errors, the fully explicit algorithm exploits both spectral collocation and high-order central 
compact-difference techniques. In its present form the algorithm allows for three-dimensional flow 
along two-dimensional or axisymmetric bodies. Of particular interest in this work are the fiat-plate 
and the sharp-cone geometries. 

Part 1 of this paper deals primarily with thorough validation of the DNS scheme by comparisons 
with results obtained from classical linear stability theory (LST) and from the parabolized stability 
equation (PSE) method. Test cases examine forced two-dimensional second-mode instability waves in 
Mach 4.5 fiat-plate boundary-layer flows and three-dimensional second-mode waves in a Mach 6.8 
flow along a sharp cone. From these validation studies, several insights emerge that pertain both to 
the numerical methods and to the physical problems addressed. First, for the Mach numbers of the 
test cases, the streamwise resolution needed to obtain good agreement with theoretical results 
was higher than anticipated. With sixth-order streamwise accuracy, approximately 12 and 16 grid 
points per wavelength were required in order to extract the growth rate of a monochromatic 
disturbance to three and four place accuracy, respectively. Second, for nonparallel flows, consistent 
inflow conditions for the DNS can be obtained from the PSE method, whereas inflow conditions 
derived from LST are fundamentally inconsistent due to the parallel-flow approximation of LST. 
Third, at these high Mach numbers, the stability of the boundary layers was found to be sensitive to 
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the slightest (almost imperceptible) change in the base state. Fourth, for low-amplitude (linear) 
disturbances the agreement between the PSE method and the DNS results was near perfect in terms 
of both the amplitude and the structure of the disturbances. Fifth, for large-amplitude (nonlinear) 
disturbances, agreement between the two methods was near-perfect for the fundamental and good for 
engineering purposes for the higher harmonics, with the tendency towards greater disagreement the 
higher the harmonic. Finally, the generally close agreement between DNS and PSE results convinc- 
ingly demonstrates the potential of the PSE method as a reliable new tool for analysis of hydro- 
dynamic stability in high-speed wall-bounded flows. 

At present there is a great need for experimental studies of stability and transition in high-speed 
boundary-layer flows. Until such experiments are accomplished, the only available source of detailed 
flow-field information for high-speed transitional flows is DNS. The development and validation of 
the present DNS algorithm thus fills a void in the national capability in the area of transition 
research. Using this new tool, Part 2 of this work will examine in detail the laminar breakdown of a 
perturbed high-speed boundary-layer flow along a cone. 
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