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Abstract. An asymptotic theory is developed for the hydrodynamic stability of an incompressible fluid 
flowing in a channel in which one wall is rigid and the other is compliant. We exploit the multideck 
structure of the flow to investigate theoretically the development of disturbances to the flow in the limit 
of large Reynolds numbers. A simple spring-plate model is used to describe the motion of the compliant 
wall, and this study considers the effect of the various wall parameters, such as tension, inertia, and 
damping, on the stability properties. An amplitude equation for a modulated wavetrain is derived and 
the properties of this equation are studied for a number of cases including linear and nonlinear theory. 
It is shown that in general the effect of viscoelastic damping is destabilizing. In particular, for large 
damping, the analysis points to a fast travelling wave, short-scale instability, which may be related to 
a flutter instability observed in some experiments. This work also demonstrates that the conclusions 
obtained by previous investigators in which the effect of tension, inertia, and other parameters is 
neglected, may be misleading. Finally it is shown that a set of compliant-wall parameters exists for 
which the Haberman type of critical layer analysis leads to stable equilibrium amplitudes, in contrast to 
many other stability problems where such equilibrium amplitudes are unstable. 

1. Introduction 

The first major  theoretical investigation into the effects of a flexible boundary on the hydrodynamic 
stability of a boundary-layer flow was made by Benjamin (1960). His analysis, based on linear stability 
theory, showed inter alia that for flow over flexible surfaces three modes of instability could be excited. The 
first of these is similar to Tollmien-Schlichting instability but now modified by the effects of the flexible 
wall. These Class A waves are stabilized by a nondissipative flexible wall while internal damping has 
a destabilizing effect on this type of instability. The second type of unstable waves, or Class B waves, can 
exist with an inviscid fluid flow and depend solely on surface flexibility. The third form of instability, or 
Class C waves, are exited when the flexibility of the wall is large and are of the Kelvin-Helmhol tz  type. In 
a later study, Benjamin (1963) gave a more precise classification of the instabilities which, for inviscid flow 
over a compliant surface, were described by means of a generalized Lagrangian method. Further studies 
were made by Landahl (1962) who also confirmed Benjamin's findings about  the destabilizing nature of 
internal damping on Class A instabilities. 

1 P.S, is grateful to the University of Zimbabwe for financial support. J.S.B.G. is grateful to the E.P.S.R.C. for the computing 
resources acquired under Grants GR/H58568-C88 and GR/H 83683 used in this research. 
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Building on the work of Landahl, Gyorgyfalvy (1967) carried out an extensive analytical study of the 
stability and transition of boundary layers over flexible surfaces. He found that a flexible surface can 
significantly reduce the amplification rates of Class A instabilities leading to a delay in the onset of 
transition to turbulence. In an earlier study of parallel shear flow over a general compliant surface, Landahl 
and Kaplan (1965) had also shown that a careful choice of the compliant surface properties can lead to 
a significant reduction of the spatial amplification rates. It was also generally accepted that to achieve any 
appreciable delay in transition it would be necessary to use a light and highly flexible membrane. Recent 
work by Carpenter and Garrad (1985) has cast doubt on these conclusions for "Kramer-type" compliant 
surfaces. 

The model investigated by Carpenter and Garrad (1986) is a "Kramer-type" compliant surface. Their 
approach admits both approximate theory and a numerical scheme to solve the Orr-Sommerfeld equation. 
Following Landahl (1962), the objective was to determine the effects of any change in the mechanical 
properties of the compliant coating on the hydrodynamic stability of the flow. Their study concentrated 
on Class A waves, the Tollmien-Schlichting instability (TSI). Class B waves, also called flow-induced surface 
in stabilities (FISI) were considered in a later study, see Carpenter and Garrad (1986). The main conclu- 
sion, later confirmed by Willis (1986) is that any effects which stabilize the TSI will inevitably destabilize 
the FISI. 

A review of some of the earlier experimental and theoretical work involving compliant surfaces is given in 
Bushnell et al. (1977). More recent research on compliant flows is extensively reviewed in the articles by 
Riley et al. (1988) and Carpenter (1990). 

In this paper we are particularly interested in determining the effects of a flexible boundary on the 
hydrodynamic stability of plane Poiseuille flow. Extensive studies of plane channel flow with rigid walls 
have been made by, among others, Reid (1965), Smith (1979), and Gajjar and Smith (1985). Early 
investigations of the flow in a channel with compliant boundaries were made by Hains and Price (1962). In 
their numerical studies both channel surfaces were assumed to be stretched flexible membranes. The neutral 
stability curves obtained for this problem were compared with the rigid-wall model and the main effect of 
the flexibility was to form a closed stability curve reducing the region of instability to between known upper 
and lower critical Reynolds numbers. 

More recent work has been reported by Rotenberry (1992). He also assumed that both walls were 
compliant and used a streamfunction formulation to calculate the travelling-wave solutions that bifurcate 
from plane Poiseuille flow along a neutral stability curve in the Reynolds number, wave number plane. 
Despite suggestions that transition is modified in flow over compliant boundaries, see Rotenberry and 
Saffman (1990), he concluded that for finite amplitude disturbances, transition for the flow over compliant 
walls is qualitatively similar to that for rigid boundaries. In a recent study, Ehrenstein and Rossi (1993) 
considered the problem of channel flow with one compliant surface. They used a streamfunction-vorticity 
formulation to compute nonlinear neutral travelling-wave solutions. 

The problem of a channel flow with flexible walls is of considerable interest in certain medical 
applications, particularly in relation to the phenomenon of wheezing for people suffering from lung or 
bronchial disorders. In this respect Grotberg and Reiss (1984) and Grotberg and Shee (1985) have 
investigated the stability of uniform plug flow in a channel with two flexible boundaries. See also Grotberg 
and Davies (1980), and the more general review on lung and cardiovascular flows by Grotberg (1994). In 
Grotberg and Shee (1985) and Grotberg and Reiss (1984) the viscous terms are approximated by a simpler 
model involving a friction factor multiplying the velocity, and both papers concentrate solely on the inviscid 
linear and nonlinear stability of the travelling-wave flutter mode. Some comparisons with experimental 
data (Gavriely et al., 1984, 1989) show encouraging trends in certain areas. 

It should be noted that the multiplicity of modes and the complex nature of the compliant material often 
means that a detailed mathematical analysis of compliant flows is impracticable. In the numerical studies 
the profusion of parameters makes a complete analysis rather difficult and to make the problem 
mathematically tractable a judicious choice of parameters and numerous simplifications have to be made. 
Despite these limitations, useful solutions can still be obtained from these studies. 

In this study we consider the stability of channel flow with one compliant wall. This work has several 
objectives. One of the aims is to obtain quantitative as well as qualitative information, from a rational 
analytical viewpoint, of the effect on flow stability of the different wall parameters. For instance a question 
which is of some interest is how the TSI is modified by wall compliance and what set of parameters causes 
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the major departure from the rigid-wall solutions. Another objective is to study the nonlinear stability of the 
flow over compliant surfaces and to obtain an analytical description of the equilibrium surfaces which have 
been computed numerically by others. The analysis presented here enables a more systematic evaluation of 
the variation of the nonlinear neutral stability properties with different wall parameters. Whilst the major 
assumption used in the work below is that the Reynolds number is large, nevertheless as many other studies 
of this type have demonstrated, useful information can be obtained concerning the important scales and 
thin regions which govern the overall stability properties. This can give an invaluable guide for finite 
Reynolds number computations of such flows. 

We exploit the multideck structure of the flow regime in the limit of large Reynolds number to make an 
asymptotic analysis of the perturbed flow. This technique has proven extremely valuable and accurate in 
similar studies of boundary-layer flows, see, for example, Carpenter and Gajjar (1990). In this paper we 
concentrate on upper-branch stability properties since these can then be used to predict the relevant scales 
for the travelling-wave flutter modes, see also Carpenter and Gajjar (1990). It is also possible to deduce the 
high frequency limit of the lower-branch modes using upper-branch scalings as in Wu et al. (1996). We 
derive simple formulae for the wave number and wave speed in both linear and nonlinear theories and 
compare these with similar expressions for the rigid-wall model. These expressions give a better insight into 
the quantitative and qualitative influence of the lower compliant surface on the hydrodynamic stability of 
the channel flow. The paper is organized as follows. Section 2 contains a linear analysis of the flow in the 
lower half of the channel. It consists of three subsections; in Section 2.1 the basic theory is given and an 
asymptotic analysis developed for the lower flow regions. The compliant-wall model considered in the 
paper is given in Section 2.2, while Section 2.3 gives an analysis of the Stokes wall layer. In Section 3 we 
consider the upper half of the channel and match the solutions across the whole channel. Section 4 contains 
a nonlinear analysis of the critical layer. Some implications of the theory and the results are discussed in 
Section 5 and we finally give a summary of our findings in Section 6. 

1.1 Problem Formulation 

The fundamental problem considered here is the theoretical model of an incompressible fluid flowing in 
a channel with a lower compliant boundary. We consider long waves and assume that the Reynolds number 
is large. The governing nondimensional unsteady Navier-Stokes equations for an incompressible fluid in 
two dimensions are as follows: 

c~u ~v 
0-; + = 0, 

0x \ 0 x :  + G - / )  ' (1.1) 

Ov ~?v ~v_ @ _ . - -  - - ~ 1 [ ~ ? 2 v  ¢92v\ N+uG+  

Equations (1.1) have been nondimensionalized such that the space coordinates are given by (x', y') = L(x, y), 
the velocity components by (u', v') = U(u, v), the pressure by p' = p,U2p, the density by p' = p,p, and the 
time by f = (L/U)t. We take Lto be the undisturbed channel width, U to be the centreline speed, and define 
a channel-flow Reynolds number based on L by R = UL/v,, where v, is the coefficient of kinematic viscosity 
of the fluid. 

In nondimensional terms the upper channel wall is located at y = 1, while the compliant wall is located at 
y = t/(x, t). The undisturbed flow is given by the velocity (U~, 0) where UB(y ) = y(1 - y). In the analysis below 
however we work with a more general profile UB(y) with the properties 

U B ~ 21y + 22y 2 + ... as y ~ 0. 

The coefficients 21 =dUJdy(O)>O and 22 =d2U~/dy2(O)<O are respectively the skin friction and 
the curvature of the basic flow profile. For the lower wall we assume a simple plate membrane model 
so that the change in the mechanical fluid pressure Ap due to the displacement of the lower surface, ~/, is 
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related to the flow quantities through the relation (Carpenter and Garrad, 1985; Rotenberry, 1992) 

T 02r/ ~32t/ d 3t/ B 04t/ ~ct/ 
A p = R 2  c~x2 M &:  R O t  Re Ox 4 R2.  (1.2) 

Here the quantities M, d, B, T, and K are respectively the mass density per unit length, the damping, the 
flexural rigidity of the plate, the tension, and the spring stiffness. Equation (1.2) has been nondimen- 
sionalized using the fluid density p, the channel width L, the centreline velocity U, and the viscosity # where 
tl = O/L, Ap = A!3/pU 2, T = TpL/# 2, ~ = t~L3p/# 2, M = pBf)/pL, d = dL/#, and B = Bp#ZL. We have imposed 
the constant pressure gradient condition and chosen U = L2p/8# to be the characteristic velocity of the 
parabolic velocity profile with p the mean pressure gradient. 

The boundary condition on the velocity is 

u = 0, v = & when y = ~/(x, t). (1.3) 

At the upper rigid channel wall, the no-slip condition holds so that 

u = v = 0  at y = + l .  

The compliant-wall equation (1.2) gives the condition for the dynamic pressure at the flexible surface. 
The compliancy of the lower channel wall removes any imposition of symmetry on the solution of the 
problem. 

The asymptotic structure for the upper-branch stability of channel flows is now well known and is given, 
for example, in Smith (1979). The neutral wave number and phase speed are of 0(5), and 0(52), respectively, 
where 5 = R -1/11 (<< 1). We thus set c~ = ~o  and c = 52Co, respectively, where ~o, Co are the scaled real 
wave number and real phase speed, respectively, of the travelling-wave disturbance. The disturbances are 
taken to be in the form of a modulated wavetrain, periodic in X and dependent on additional slow scale X1, 
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Figure 1. A schematic representation of the disturbance structure for channel flow. 
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T 1 so that 

0 ~ 0 
~ = eCeo ~ + e3 _ _  (1.4) 

OXI' 

3 3 8 5 8 
O t -  e CoC % ~ + e  ~?T1. (1.5) 

A further discussion of the scalings used here may be found in Gajjar and Smith (1985). We introduce 
small disturbances to the basic channel flow of size 3 << 1. We also assume in each region, a solution 
in the form of an asymptotic series expansion in terms of the scale factor e for the disturbance velocity 
and pressure quantities. The disturbance structure consists of several zones, I-VII, governing the 
development of the flow. A schematic diagram of the flow structure is shown in Figure 1. The central 
region I is a passive shear layer where y = 0(1). Regions II and V contain the two critical layers, 
regions III and VI respectively, and are both 0(/~ 2) while regions III and VI are of 0(e10/3). The flow 
regions IV and VII are the viscous wall layers at the flexible surface and the rigid wall, respectively, 
and are of O(e4). Additional diffusion layers embedded in regions II and V, astride the critical 
layer, which are necessary because of the properties of the unsteady critical layer, will be introduced in 
Section 4. 

2. Disturbance Expansions 

2.1. Outer Flow Region 

Following Gajjar and Smith (1985) the first significant departure from linear theory occurs when 
the disturbance size 6 is of 0(R-14/33) .  Below we work with a disturbance size 6 which is taken to 
be of O ( R -  14/33). We chose to work with the expansions in terms of ~ and e as this facilitates a direct 
comparison with linear theory. Linear theory may then be recovered by taking 6 to be infinitesimally 
small. Below we consider each of the regions in turn and write down appropriate expansions of 
the disturbance quantities. Since the analysis is similar to that for the rigid-wall case only the details 
necessary to obtain the nonlinear dispersion relations are given. Most of the governing equations of 
the disturbance quantities may be deduced from earlier work such as Smith (1979) and Gajjar and Smith 
(1985). 

In the central region I the flow is given by the expansions 

u = U B + cS~t o + 6e2~1 + ..., (2.1a) 

v = 6e~ o + 3e3~1 + . . . ,  (2.1b) 

P = PB + 6~2i0o + 6~4/~1 + " ' .  (2.1c) 

Substituting (2.1) into the Navier-Stokes equations gives a sequence of equations for the disturbance 
quantities which can be solved to give 

t~ o = A UBr, (2.2a) 

Vo = - ~oAxUB, (2.2b) 

= P o  - ~A f~ V~ dy. (2.2c) /~o 

Here A = A ( X , X  1, T1) and P o ( X , X  1, T 0 are unknown functions representing the disturbance displace- 
ment and pressure amplitude at the lower wall, and we write A = A ( X 1 ,  T1)elX+c.c .  and 
Po = P(X1 ,  T1) eix + c.c. (where c.c. denotes the complex conjugate). 
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At the next order we obtain the solutions 

f l  dy  + ~ocoAx - c % A l x U  8, 
Po_!x 

vl = c%UB U~ (2.3a) 
/2 

fi ' -~B P° A1UBY Ax~UR' fil = -- UBy dy (2.3b) 
/2 UB i°~o iC~o ' 

fo' (fl Po ) 2~gcoA ff UBdy+~gAlxx ff Ugdy+~oAxx, fl U~dy, (2.3c)  I=PI t4  2u dY dy+ 

where the additional displacement A~ and the pressure Pt  are unknown functions of X, X~, T~. The 
integrals in (2.3a,b) have a logarithmic singularity at y = 0 (and also at y = 1) which becomes more apparent 
in the study of region II and the critical layer. In region II containing the critical layer, the appropriate 
scaled transverse coordinate is related to y by y --- e 2 Y with Y ~ O(1). 

Introducing this, along with the preceding results and the solutions in region I, we have the following 
expansions: 

U = ~ I ~ 2 Y - t  - 2~2egr  z -}- - . .  -/- (~(Uo Ac 8201) -t- " " ,  (2.4a) 

v = 8e(e2~5o + e4ffl + ...), (2.4b) 

P = P~ + 6(eZiOo + &/)l + "" "), (2.4c) 

t/ = 6(t/0 "-[- g2t/1 -]'-"" "), (2.4d) 

where 2~ = U~yly=o and 2~ z = U~yyly=o. Thus substituting the above equations into (1.1) we obtain the 
solutions 

Vo = - ao ~ l  x - eoAx(2i ~" - Co), (2.5a) 

~o = 21A, (2.5b) 

Po = P o ( X ,  X i ,  Ti). (2.5c) 

Setting ~'= 0 in (2.5a) and using the boundary condition (1.3) gives 

Po = Po = Co)~l(A + t/o). (2.6) 

At the next order we obtain 

i ( 
vi = -- ~ [c%/~lx + tJox, + 21(AT~ + c o A x ) ]  - ~022Ax ,~2 + 2 ~ ~{ln[~[ + q)+} 2~// 

- 2C~oCo ~ t/ox ¢{ln] ~1 + rp -+} - ~ - .41x~o;h~, (2.7a) 

o1 ,i o 

fii = P i ,  (2.7c) 

where A~ is an unknown function of X, X1, T,, and ~ = (17 - Co/20. These solutions contain terms which are 
irregular when Y= Co/~.~ and a critical layer of thickness O(e ~°/~) has to be introduced to smooth out these 
singularities. The terms (p+ are introduced to connect the solutions either side of the critical layer (the 
+ sign refers to ~ positive and the - sign to ~ negative). In linear theory it is well known that (<o + - q~-) is 
equal to i~. 

Before considering the wall layer it is convenient to return to the motion of the compliant wall. 

2.2. The Compliant-Wall Model 

Equation (1.2) is written as 

Ap = p' = ?Ft/~ -- Ms~-4t/tt -- dgt/t - Bstlxxxx - ~cst/. (2.8) 
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Here'q is the small vertical displacement of the lower surface and the constants T,, Ms, Bs, d, and G are related 
to the original parameters by 

Kg - 2 Bg2  T d e -  1 

tgs - -  R 2 , Bs = R2 ' M ,  = Me*,  T =  ~ ,  d -  R 

This choice of scaling enables the scaled parameters to appear as 0(1) constants in the eigenvalue relation 
and therefore allows a greater range of compliant properties to be studied. By taking appropriate limits the 
structure for other cases can be deduced from the analysis below. The fluctuating pressure at the wall is 
given by p' and by expanding p', t / in the form 

p' : 6(e ~G + ~/1~ + . . .  ), 

we obtain, using (2.8), (2.2c), (2.3c), 

/1o -- Po = Sot/o, 

/~ = ~(t/O "+ e2t/1 -1- "") '  

where s o = - Tc~ 2 + Ms~2c 2 - Bse4o -- G, (2.9) 

where we have taken t/o = 0o(X1, T,)  eix + c.c. At the next order we obtain 

/11 = P1 = 5fth + 2~oTr/oxxl + d-%corlox + 2Msc%Cot/oxrl + 4Bse3ot/oxx,, (2.10) 

where the operator ~ is defined by 

~ t /  O~2~t/XX__ 2 2 4 = Msc~oCot/xx - Bs~ot/xxxx - Gt/. 

2.3. The Stokes Layer 

In the Stokes layer, of O(e4), region IV in Figure 1, the analysis deviates significantly from that given for the 
main channel and the adjoining flow regions. In this region Z is an 0(1) coordinate where 

y = t/(x, t) + e4Z, 

and we introduce the Prandtl transformation so that the expansions then take the form 

u = U B + 6~ o + ..., (2.11a) 

v = t/t(x, t) + &5~ o + .. . ,  (2.1 lb) 

p = p~ + ~e2/10 At- ' " .  (2.1 lc) 

The leading-order equations which govern the Stokes-layer flow are a linear system of partial differential 
equations, 

with boundary conditions 

Oa o &to 
C~o 5-2 + ~ 2  = 0  , 

Ot/o  9/1o 
- oCo \ ax + 

/1o = Sot/o, 

~2 a 

~Z 2 '  

(2.12a) 

(2.12b) 

(2.12c) 

ao ~ 21A as Z--* oe, (2.13a) 
ao = -21t/o at Z = 0 ,  (2.13b) 
g o = 0  at Z = 0 ,  (2.13c) 

to match with the solution in region II and satisfy the conditions at the flexible wall. Solving (2.12) with the 
above boundary conditions gives 

Uo -/30 /1o e-, ,z  _ 21t/, (2.14) 
CO Co 
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where 

Thus using (2.121) we obtain, 
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m = (%Co)1/2e- i(~/4). 

,3 o = -iC~o \~oo{/3° - 21t/) z - i %  mcoP° (e-mZ 1). (2.15) 

Of interest in the derivation of the amplitude equation is the displacement from the wall layer which is given 
by the finite part of ~o, ~0t, say, as Z --+ oo and from (2.15) we see that 

¢, 
• %Po 

/~Of = 1 - - .  
mC o 

2.4. The Upper Regions of the Channel 

Regions V-VII in the upper half of the channel wall are analogous with the corresponding regions II-IV in 
the lower half of the channel, but with the compliant surface replaced by a rigid wall. The important results 
may therefore be deduced from the analysis given in the earlier sections• 

In region V, which contains the upper critical layer, with y = 1 + e 2 Y', the expansions follow from (2.1) and 
the solutions in flow region I in particular: 

u = 21e2Y+ 22~4~ "2 + 6(fi o + eZul + ...), (2.16a) 

V = 6e(e2~o + e4~1 +.. .) ,  (2.16b) 

P : PB "~- 6(e2/~0 -1- e4/~l "~-• • ')• (2.16C) 

The following results are obtained for the leading-order problem: 

u o = 21A, v o = - C~o21AxTF,, and /~o = Co21A, (2.17) 

where the constants 21 and 22 are given by 

21 = URyly= i, 222 = UByyly= a. (2.18) 

The second-order problem is solved to obtain 

v l = - ~ - f O : o ~ l x + P o x ~  + 21(Ar, + c o A x , ) ] - % 2 2 A  x ~2+2 ~'rlnl~'l+~-+]- -AlxO:o21~, 

(2.19a) 

/~1 =/~1( X, X1, Tt), (2.19b) 

where ~'= ~ ' - (%/20 and the functions (~+ arise from the continuation across the upper critical layer 
(the + sign refers to ~ positive and the - sign to ~" negative). 

The analysis of the Stokes layer at the upper rigid wall is similar to that near the lower wall, and it is found 
that the displacement condition on gl is given by 

~ 1 ( ~  = 0 )  = - i %P__2. 
Corn 

Before analysing the critical layers and the diffusion layers, it is convenient at this stage to derive the 
amplitude equation for the evolution of the disturbance. This is obtained by matching the various flow 
quantities across the different regions. The role of the critical layers here is relatively passive in the sense that 
the normalized critical-layer equations are of Haberman (1972) type with unsteadiness (in X1, T1) appearing 
in parametric form. This is very different from problems in which the full unsteady nonlinear critical-layer 
equations arise, and where the interaction and coupling with development of the amplitude is much 
stronger. The diffusion layers here exist to smooth out the large mean flow jumps produced by the 
Haberman critical layer. 
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3. Eigenrelat ions  and Der ivat ion  of  the Ampl i tude  Equat ion 

Firstly if we consider regions I and II +, the matching of the normal velocities using (2.2b), (2.3a), (2.5), (2.7a) 
leads to the relation 

2Co~20~o 
DoAx -- ~o21Alx - - -  (Ax + qox)gO + - eo21Alx, (3.1) 

/~1 

where D O (and the other Di's below) are real constants which are given in Appendix A. 
Next matching the normal velocities between regions I I -  and the Stokes layer, region V, shows that 

1 2)~20%C2 (A x + + Co(zoAlx i°~°P° + ~- [~°/)lX +/5°xl + ~I(ATI ÷coAx)]  ÷----~1--1 1~°x)(D- ÷ AxD1 = :7or~--C%Corhx. 
A 1 m c  o 

(3.2) 

Similarly matching the normal velocities in the regions in the upper half of the channel leads to 

^ _ 2£~CoC % _ ^ 
-- ~xo~lAlx - ~  AxO = DzA X -  ~o2~Alx (3.3) 

21 

and 

1 2)~2~°c°2 ( In co Co~oZlx + 

Next matching the pressures between regions I, II, and IV shows that 

/)o = Po = iOo, /~1 = Pi  = Pl' 

The pressures in the lower and upper half of the channel may be matched to give 

P o  = P o  - -  ~2AIo 

and 

where 

,% 
i%Po 
Corn 

ffl = P1 + 2Co~2AI1 + °:oloAxxz + Po°:Zle-cz~AI3 + ~ A l x x l o ,  

(3.4) 

(3.5) 

(3.6) 

(3.7) 

I° = J o  U2 dy, 

and the other integrals in (3.7) are defined in Appendix A. 
The relations (2.6), (2.9), (2.17), (3.5), and (3.6) may be combined to yield 

c2 2,21 - -  C o S o ( . ~ l  - 21) = c ~ I o ( s  o - -  Co2 0, (3.8) 

which is the dispersion relation fixing the wave number to the phase speed. 
Relations (3.1)-(3.8) above may be used to eliminate P1, A1, th, A1,/~o, and/~1 to obtain an expression 

which determines the higher-harmonic components of A1 (and therefore some of the other quantities). If we 
restrict attention to the e ix components, then after some algebra (3.1)-(3.8) lead to 

iC~021/} 0 
iAo(coD o - 21D1) - iC%Co2~A11 + - -  ÷ 21t/or1 

mc o 

~0C0/~1 
+ [ -  2go'Ft]oxi -- dc%cotlo -- 2MsC%Co~lorl -- 4Bs~:~tloxl ] 

So 

_ 2C2~2go/21 (A + q° ) (~°+- -go - ) -Pox l -2 l (AT1-} -coAxl ) - - (1  -c°)~1 ) S o  

[-2i'~2 2 , ,  ~ + ^ ~ 
x I ~  ~oCoJitcp --~o-)+c~Ax,Io+i~o(Ioc~Z+fhco)Alx --(~oxl + 21(AT1 + c o a x ) ) -  iD3A +iu°)wltJ°l ,  

L 21 mCo J 
(3.9) 
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where A 11 is the e ix component of A 1. Note that the coefficient of A 11 in (3.9) is 

--/c%c02 ~ + (1-c°21~ic%(Iocd + / 

which is zero because of the dispersion relation (3.8). The e ix coefficients of the remaining terms give the 
amplitude equation which may then be expressed as 

Off c~  l fF  2 3 2 - -  0¢oCo21d ~ZoSo 22 
OT1 bc° c3X1-Ds iLiD4 +so(So--21Co) ira(So--Co21) 

- 2c2°~oiA [ 21(s2o Z~S%co21) (~P + - q ~-) 

Sore .J 

+ ( S o  - _ + 
s ~  (¢ - q S - ) l  }, (3.10) 

where c o = ~(C%Co)/& % is the group velocity of the wave and D4, D 5 are given in the appendix. 
Equation (3.10) is the key result of this paper and some of the properties of this equation are studied in 
a later section. As can be seen from (3.10) the nonlinear evolution of the amplitude is strongly dependent on 
the jumps (q) + - (p-) and (q5 ÷ - ~3-) across the lower and upper critical layers. We consider next therefore 
the details of the critical layer. 

4. The Nonlinear Critical Layer 

For the critical-layer and diffusion-layer analysis it is necessary to restore the dependence of 6 on e and we 
set 6 = e 14/3.  In the lower critical layer y = ~2C0/21 q- e10/337 and the critical-layer solutions expand as 

22 ~ el6/3 2Co22 ~ u=eZco+el°/32137+e4cZ-~+e14/3Uo+ 21 y + e z ° / 3 U l +  ..., (4.1a) 

V : g23/3 V_ 1 q-/327/3V 0 -~-/329/3 ~" 1 q-~33/3V 2 -}- . . . ,  (4 .1b)  

P =PR + e2°/3ffo ~- ~26/3pl  -~ e28/3P2 -~ " " .  (4.1c) 

The main differences here and in earlier studies are in the expansions for the mean flow terms in (4. la). For 
a steady nonlinear critical layer a mean flow term of order O(e a 6/3) is present in (4. la) as well as outside the 
critical layer in (2.1) to enable a match with the mean vorticity jump produced by the critical layer. Here 
because of unsteady effects such terms are not necessary. The diffusion layer serves to restore the mean 
vorticity jump produced by the critical layer back to zero outside the critical layer. 

After substitution into the Navier-Stokes equations the leading-order quantities are found to have 
simple solutions. At higher order it is found that the solution for U1 with ffl = ~-~ly is governed by 

21 , (4.2) 

with boundary conditions 

2 2z /-~1,,~22372+ Po~(ln[37]+(p+-)+O+-(X, XI, TO+_H+(X1, T~)y+ ... as 37--*_+oo. (4.3) 

Here U -+ contains the higher harmonics in e ix, with the fundamental being absorbed by the q~+ terms, and 
the/1+ terms are necessary because of the properties of the critical layer. 

Since X 1, T 1 appear only parameterically in (4.2), (4.3) it is convenient to reduce the equations to a more 
standard form. If we set Po = { lifo(X1, T1)I ei(°(x"r~)+x) + c.c.} (where 0 is real) and 

with 

~1 = 222d1~*, 37 = da Y*, 

dx - V/-21P° 1~/2121 ' O + S = S * ,  Tc=23/2[Po13/2OCo2x , 
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then (4.2), (4.3) reduce to 

with 

Y (x* + sin X ( y ,  - -  ~)c~Y*Y* = O, 

cos X* 
( * ~ H  + + Y * + -  as Y * ~ - t - o %  y* 

( 4 . 4 a )  

(4.4b) 

1 ~*e -~x* dX* d Y *  = 47c(H + -- H- ) ,  (4.4c) ¢P(7c) = rP + - (0- rc 

.~+- = 2 2 z d l H  +-. 

A similar analysis of the upper critical layer shows that the same problem as (4.4a,b) is obtained but with 
7 replaced by ~=, where 

I~1 
^ = (4.5) 
7= 2 3 / 2 1 / ~ o 1 3 / 2 % £  1 • 

This implies tha t  the ~ + - 0 -  across the upper critical layer is given by 

(o = (o + - ~o- = q)(~=) = cp(aTc), (4.6a) 

where 

_~1S O 3/2 21 (4.6b) 
= £1(So- Co,h) ,~" 

For  fixed X1, T1 and hence I/5o1, the problem (4.4) needs to be solved numerically to determine q)+ as 
functions of 7c. The solution of this problem is now established (see Haberman,  1972; Smith and Bodonyi, 
1982), and it has the property that Real(i~o)~ - ~ as 7=-~ ~ and Real(icp)~ -7c  C m  as L ~ 0, where C (1) is 
a constant (C (~) = 5.516). Note  that the jump across the upper critical layer is not the same as that across the 
lower critical layer. The numerical solution of(4.4) shows that q)(Tc) is an odd function of 7~ and hence, for the 
case 7-1 = - 21 studied below, 0(7~) = - ~0(lalT~). 

We consider next the diffusion layers with y = e2(co/20 + e3Z either side of the lower critical layer. As has 
already been mentioned the role of the diffusion layers is to reduce the mean vorticity jump (the (H ÷ - H - )  
term) to zero outside the critical layer. The scalings used below may be derived as in Gajjar (1996). We have 
the expansions for the velocities and pressures in the form 

2:c 2 2%222 
U = 82C 0 ~- S3~IZ -]- 84 2 ~  -'}-/314/3fi° + ~5 /~-------~ ~-/3622 22  it- s19/3/~ 1 -t- ~320/3/A 2 -}- 87/~3 -J--/322/3/A 4 ~- . . . ,  

v = es(et4/3O_ ~ + g17/3171 + g2°/3/72 + ~23/3v 3 + e24/3v 4 + g25/3/75 + .. .),  (4.7) 

p = e2°/3/50 + g26/3/51 + e28/3/5 2 + g29/3/5 3 + . . . .  

The solutions for the leading-order terms are trivial and are readily deduced by expanding the outer 
solution in region I I  in terms of 2. It is found that ~i~x = 0,/5o = Po, and 

- _ _  22____L 
~-2 = Uzz - %)2 2/50 + ~-2M(Xt, 7'1, Z). 

At the next order the equation for zi 4 shows that 

Ul r 1 -~- C01AIX, --  UlZZ = - -  ( ~ -  1~2  ) '  ~ -  1 - -  
2 ,  

%Pox (4.8) 

after averaging in X over one period and the notation ( . )  denotes the average of the quantity inside the 
brackets. Hence ~'1 = ~1~ satisfies the equation 

-(it,  + Co(lx~ + Co'ix,  - ~-lze = 0, (4.%) 
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with the conditions 

~-1 =/~-+(X1, T0 at 2 = _ 0. (4.9b) 

This equation and the boundary conditions are the same as those obtained by Brown et al. (1993). The 
equation may be solved using Fourier transforms to obtain 

1 /*X1 IN[ (q,Z 1 -Co ) < = q ~  do. ~t(Z, Xt, TO=~oJ_o~2x~I~l ± (X l -q )  exp(-Z2/4(X~-q)) 

The _+ sign refers to the diffusion layer above and below the critical layer, respectively. It can be seen that 
the mean vorticity diffuses to zero away from the critical layer for large [Z I. 

5. Results and Discussion 

5.1. Linear NeutralResults 

The results for linear theory may be deduced from (3.10) by taking the jump ~o equal to #c and using (4.6a). If 
we restrict attention to the neutral case, then the real part of (3.10) together with (3.8), determine the linear 
neutral eigenrelations as 

0" 021280 O Off'2 ( SO  C021'  O 2cg' ldlr - 2c~22%s°~ (s°-c°21)222c%c~ (5.1a) 

,o /  o( o-co2,) 2 , ( s o - c o 2 , )  ' 

Co~,h,~l - Co~o(2~ - 21) = ~ I o ( ~ o  - Co20,  (5.1b) 

and where 

So=-Te~+Mse~Cg-Bse~-K ~. (5.1c) 

In the above we have set  dlr to be the real part o f d  1. For  a given set of wall parameters T,, Ms, Bs, ~:s, d-lr, 
(5.1a-c) can be solved numerically to obtain the neutral wave numbers % and wave speed c o. In the 
numerical results described in this paper we used the basic profile given by UB = y ( 1 - y )  giving 
21 = - 21 = - 1 and 22 = 22 = - 1. With this basic profile (5.1a) reduces to 

~o2~ 2 3 2 2c~22~eo eoCo21dl~ _ 

, f-2r~ (st  + (So - c0202)  21 
(5.1d) 

A complete parametric study involving the variation of all the parameters T,, Ms, Bs, ~:s, dlr, in addition to 
the amplitude A, is beyond the scope of this paper. The results presented in Figures 2-10 are for a selected 
set of parameters, and the general trends shown in these figures for various limiting cases are confirmed by 
further analysis below. 

In Figure 2(a)-(d) we show the variation of the neutral wave number %, and neutral phase speed c o for 
different values of damping, against ~c s with Ms, B s, "F set to zero. The most pronounced deviation from the 
rigid-wall results occurs for small values of tq and for large values of damping. For  a fixed value of damping, 
as ~q increases the rigid-wall results are recovered. For  certain values of damping there are three roots of the 
dispersion curves, although these are connected, see, for example, Figures 2(b), (d) and 3(a), (b). In Figure 3 
we show the variation of % and c o against dlr for ~s = 5 with Ms, Bs, T set equal to zero. It is seen that as 
damping increases the rigid-wall solution disappears and is replaced by one with much larger wave 
numbers and enhanced wave speeds. 

In Figure 4(a)-(d) we show some results for Co, Co against the scaled tension parameter T,, for different 
values of damping. For  fixed ~cs and d lr the smaller values of tension produce significantly much larger wave 
numbers and wave speeds than the rigid-wall case. For  large T the rigid-wall values are again recovered. In 
Figure 5(a), (b) we show the variation of c%, c o against dlr for fixed values of lq and T. This again shows that 
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as damping  increases, beyond  a critical value of damping,  three distinct roots  of the dispersion relations 
exists. Fo r  larger damping  the rigid-wall solution is again replaced by one with larger wave numbers  and 
phase speeds. 

In Figure 6(a)-(c) we show c~ 0 and Co against M s for fixed values of the other  parameters  and zero 
damping.  There are now four distinct roots  and three join cont inuously  to merge with the rigid-wall 
solution. The fourth root  appears to be disjoint, and this suggests that  for M s nonzero  there are two distinct 
modes. Fo r  large values of Ms one of the modes represents a fast travelling wave with small wave numbers,  
and the other  mode  is a much  shorter  slowly travelling wave. 

In Figure 7(a)-(e) we show the variat ion of eo and c o against damping  for nonzero  values of the other  
parameters.  Again for certain values of damping  there are four roots  to the dispersion relations. As damping  
increases two of  the roots  join cont inuously  together and merge with the rigid-wall root. For  very large 
damping  there are only two roots  and these represent two distinct modes. This is shown clearly in 
Figure 7(e) where we plot  % against c o with damping  varying. 
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5.2. Analysis of Limiting Case for Linear Theory 

The limiting cases, where some of  the wall parameters  become large, are of some interest and examined 
below. The following results are readily deduced from the relations (5.1a-d). 

(i) ~ ¢ 0 and dlr finite with one or  more  of  T,,B~ becoming large. 

Here the only behaviour  consistent with the eigenrelations is that  s o --> + ~ and c~ o and c o approaching  
the rigid-wall values C~o~, Co~ given by 

~__ ~2r I 5~Or (5.2) 
Co~ 221 *o, = 21\2n2~22165j • 

(ii) T =  M~ = B s = 0, dlr finite, x~ ~ Go. 

If  x~ ~ + ~ ,  then So = - tq ~ - ~ and (5.1b-d) show that  both  c o, ~o remain 0(1) and approach  their 
rigid-wall values. 

If  x, ~ - ~ ,  then in addit ion to "o, Co approaching  the rigid-wall values, there is another  possibility 
given by 

Co -2 tCs+° (1 ) ,  ~o 2-3¢o5(-T12~)  - 2 -  - ~ . (5.3) 

However,  even though  the limit tq ~ - ~ is mathematical ly  interesting it is not  possible on physical 
grounds  and therefore we do not  consider it further. 

(iii) dl~ ~ + ~ .  

F r o m  (5.1) we find that  both  ~o, Co become large with 

"2I°  (5.4) 
c o ~ 221 

The precise limiting form depends on the value of  T, M~, and B~. Fo r  instance, if 7"# 0 and M~ = B~ = 0, then 

I o d l r  
~o "~ 8~27~,~2 . 

If  T ¢  0, M s  ~ O, and B~ ~ 0, then 

If T =  M~ = B s = 0 and ~:~ # 0, then 

If M~ = 0 and B~ ~ 0, then 

/ 2dlr).~'~ 1/9 
~o ~ / \ 

d l r  
~o ~ ~2~i ° - 

- I o d l r ~  1/5 

(iv) Ms nonzero.  

This case is treated separately because of an addit ional mode  which appears. First if dlr = 0 and M s 
becomes large, then, in addit ion to (5.2), there is another  solution given by 

__ 2)~227t2 ~1/9 M - 5 / 9  )°1 
~ o ~  ~ j s , Co 2M,~2 • 

Next  for M,  nonzero  and dlr ~ Go, one possibility is as given in (iii) above and (5.4). Another  solution is 

,.~ _ _  , C 0 ,'~ \2M dl ; 
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5.3. Nonlinear Neutral Results 

In this section we examine the nonlinear equilibrium solutions of (3.10). The amplitude equation (3.10) 
may be written as 

0(1412) ~(IAI z) 2(So 2 +(s  o - % 2 0 2 )  
0 ~  + co O X ~  - Dsso(S o Co21) 1~712 

[- 0~0~'2 ~2oc3odlr~2 2c~C~o22 2 G 
- - 4  J × 4 + (so - + ( , o -  (, . ,)  
i 

where ~o I = Real(i40) and 7<, a are as given in (4.4)-(4.6). 
The nonlinear equilibrium solutions of (5.5) are obtained by setting the right-hand side of(5.5) to zero and 

solving this in conjunction with (5.1b, c). This gives. 

~OdC 2 o;2c3dlrdC 2 2cg~022 
+ (So Co~ l)2 (pl( l r; i Tc) ). (5.6) 

,/5----~m 4 + (So - Co,h) 2 , h ( 4  + (So - CoXl) ~) 

For  the velocity jump across the critical layer we took the model 

7c~C (a) 
~p~(Tc) - 7~C(a) + ~'  

which agrees well with the numerically calculated values for 7c small or large, see also Gajjar and Smith 
(1985). 

Some sample nonlinear results are shown in Figures 8 and 9 for different values of the compliant-wall 
parameters. A simple interpretation of these results is that the curves in Figure 8(a), (c) for example, 
represent a cut at a fixed large Reynolds number through the neutral surface in the wave number or phase 
speed, energy and Reynolds number space. (In place of energy we have used a scaled magnitude of the 
disturbance amplitude.) For  a channel with rigid walls such surfaces have been computed numerically at 
finite Reynolds numbers by Orszag and Patera (1983) and Herbert (1977). Similar computations for 
a channel with compliant boundaries are presented in Rotenberry (1992) and Ehrenstein and Rossi (1993), 
but using a very much simplified model for the motion of the wall. 

In Figure 8(a)-(f) we show the variation of the neutral wave number with neutral amplitude for the case of 
the simplified model in which all the wall parameters except the spring stiffness G and damping d~ are zero. 
With zero damping the results are similar to those for the rigid-wall case, Figure 8(a), (b). With nonzero 
values of damping, and large G, the curves increase up to a peak amplitude and then terminate at a slightly 
lower finite amplitude, Figure 8(a), (c). With a nonzero value of damping and small G there are multiple 
roots even for the linear case. Two of the roots connect together as the nonlinear amplitude increases, see 
Figure 8(c), (d). The third root also terminates at some finite amplitude, Figure (8d). 

With the scaled tension T nonzero, the nonlinear results differ considerably from the rigid-wall case when 
the damping is nonzero. There are again multiple roots to the dispersion curves with d~r ~ 0. In Figure 9 it is 
seen that two of the roots connect together nonlinearly. The third root has the wave number increasing, but 
with the amplitude decreasing, as problem (4.4) becomes strongly nonlinear. 

The behaviour of the neutral surfaces when some of the other parameters are varied is much more 
complicated, and further results are not presented here. Some of properties of these solutions may be 
deduced from the analysis of the limiting cases below. 

The properties of the nonlinear neutral results in the limit as 7~ tends to zero is examined next. The results 
given below can be obtained as in Smith and Bodonyi (1982). We consider the various possibilities in turn. 

(v) T =  M s = Bs = 0 and ~s # 0. 

First if d l r  = 0, then the dispersion relations show that 

0~ 0 ~ ~01]?c "-2/5, 2~ ~ aol]:c -z /5 ,  

where 

:%1 = 2-  3/5( __ J~2C(1) io) -  2/51K s l- 3152715 ' 

e o ~ g2Io2 a, (5.7) 

( ,~ '~/~ 1 (5.8) a°l- = \23/2~o~,] I~c~l' 
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Figure 9. (a) Nonl inear  neutral  ampli tude A against wave speed ao, with tq = 1, T = 0.005,M~ = Bs = 0 ,anddxr  = 0. (b) Same as (a)but  
with dl~ = 5. (c) Same as (b) bu t  showing the third root. (d) Same as (a) bu t  for phase speed c o. (e) and (f) Same as (b) and (c) but  for phase 
speed c o . 
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If  dl ,  # 0 there are no consistent  balances with any of the terms in the dispersion relat ions and this 
suggests tha t  the solutions mus t  te rminate  at some finite values of  7~ as indicated by  the numerical  solutions. 

(vi) T ¢  0 and M s = B s = 0. 

With  dl~ = 0 it is found that  

with 

and where 

~'~0~ ~1-2/11 A ~ a  7 -2/la, %zI° 0 02{c ' 02 ~ C " ~ - -  (5.9) 
221 ' 

0~02 = ~Or C(1)2(d d2o)2 , 

,~2 

dlo - ,F2 _]_ ( 'F _]_ lo/2)2 '  

24]3 ~ 3 /2  

ao2 = 2c%8--~23 

I ~ 13/2 
d2o = (1 - dlo ) ~ . 

1+1o/Z 

With damping  present  (dl r  -7 6 0) the limiting behaviour  is very different and we find tha t  

~ - 1  ~ 2 
~0 03~)c , '~ ao37c  , 

and 

~03 = 
d 1 ~ 2 ~ I o  

(~'2 _[_ ( '~ _~_ io/2)2)4)c2C(1)(dlo + d2o)' 

(5.10) 

0~0 ~' ~04/c~ - 2/11 , .~ ,,~ ao4y ~ 2/11 

and 

and 

With  damp ing  present  the cor responding  behaviour  is 

% ~ %5~[  1/5 ~ ~ aos7 ~- 2/15 

where 

_ 8 , ~ 2 C . ~ B ~ ) -  1/5 
%5--  j , 

with %5 of the same form as %4 but  with %4 replaced by %5 

(viii) M s ¢ 0. 

Here  there are two modes  with one m o d e  behaving exactly as in the rigid case given by (5.11). The  other  
m o d e  has a different behav iour  depending on whether  dlr is zero or not. If  the damp ing  is zero, then 

N ~2/9 -- 10/27 ~1 
% ~ ~OSrc , A ~ a o 5 ~ c  , c o 2MsC~2 , 

/ 2 6 2 1 M 5  ",,- 1/9 

~o5 = ~ 22C(1)~ ) , 
_ 53 ~//" rv4/3 

%~1o 
c ~ 221 (5.11) 

7l;2 ~1/11 
~. 7 / 3 t v - 4 / 3  [ -  1~-  2/11 

% 4 = ' ~ 1  ~04 "0 Zc " 

(5.12) 

The  cons tan t  %3 is of  the same form as a02 with ~02 replaced by %3. 
Whereas  wi thout  damp ing  the ampl i tude  increases indefinitely, with damping  the ampl i tude  goes to zero 

as 7c goes to zero. 

(vii) M s = 0 and B s ~ 0. 

With  dlr = 0 this is the same as the rigid case given by 
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I fd lr  ~ 0, then 

and 

N ~,113 ~ ,  ~3A/f ,v4/3~_9/2  22~ 
c o - Ms e S O  " ~  ~ ' 0 6 / c  ~ " ~ l ~ ' * s ~ 0 6  I c  ~ 2 

__  , ~ 2 C ( 1 )  ~ 1 / 3  

%6 = t ,  2 ~ , , ]  • 

The numerical  results s h o w n  in Figures 8 and 9 are in g o o d  agreement  with the predict ions above.  

5.4. Further Properties of  the Amplitude Equation 

Introducing  the variable T = T 1 - %Xi ,  (3.10) m a y  be expressed as 

dial2 [ k2 1 
dT  - k°kl  1 - ~  (diql(7c) + d2ql(Icrl?c)) IZI 2, 

where  the constants  k o, k 1, k2,  do, and dl are given by 

2(So 2 + (So -- Co21) 2) 
ko 2 2 3  2 ' { - 2M~2iaoC o + (So - Co2i)(2Co21,~ 1 - So(,~ 1 - 2 0 + ~o lo2 i ) }  

~0,~12 O~02c03dlr ~2 

k i - v/r~n5 + s 2 + (So - Co2i) 2'  

2C02~022 
k 2  - - - -  , 

and 

(5.13) 

(5.14a) 

(5.14b) 

(5.14c) 

So 
d i = s2 + (s o _ c0£1)2, d 2 = 1 - d 1. 

N o t e  that kl ,  dl,  and d 2 are posit ive whilst  k 2 and qh are negative.  The nonl inear  term thus exerts 
a stabi l iz ing/destabi l iz ing influence depending  on  whether  k 0 is posit ive or negative.  The  linear growth  rate 
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Figure 10. (a) Phase diagram of (5.13) with x , =  1, d l r = 0 ,  Bs=0 .0001 ,  T =  1, M s =  117.83, % = 4 . 0 3 1 ,  and Co=0.3316 giving 
k o = - 0.3147, ki  = 2.4655, k 2 = - 0.8864, and d i = 0.6679. (b) Numerical solution of (5.13) with parameters as in (a). 
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is ko(k 1 + k2rc). The right-hand side of (5.13) may be expressed as 

ko[kl + k2~] IAI 2 - kok2[7c + dl(Pl(Tc) + d2~0t(l~l~c)] IAI 2. 

For an unstable wave the first bracketed term is positive and the second bracketed term is zero. As the 
amplitude increases, if k o is negative, then the second term causes a reduction in the growth rate which 
eventually crosses zero, see Figure 10(a). This suggests that solutions of (5.13) starting from a lineary 
unstable state, with k o negative, must reach a finite amplitude at large times T. 

We consider next the stability of the equilibrium solutions of (5.13). Let I A I 2 = I Ae 1 2 "31- j~ where/3 << 1 and 
the suffix e denotes an equilibrium value. Then substituting into (5.13) and linearizing gives 

d T -  k°kN(da~Pi(Tce) + d21al':P'l(lal7c~))lAel2 dTc ~ (5.15) 

Thus if k o is positive the equilibrium amplitudes are unstable whereas if k o is negative the equilibrium 
amplitudes are stable. For  the rigid-wall case (and the accelerating boundary layer) described in Gajjar and 
Smith (1985), k o is positive confirming the tentative suggestions of Gajjar and Smith (1985) that the 
equilibrium amplitude solutions in these flows are unstable. For  the compliant-wall case there are several 
parameter regimes where k o can take both signs. An an example in Figure 10(b) we show the numerical 
solution to (5.13) for an unstable wave, with the wall parameters such that k o is negative, which attains 
a stable finite equilibrium amplitude as predicted above. 

6. Summary 

In this paper we have developed a self-consistent theory to study the effect of compliance on the 
hydrodynamic stability of flow in a channel. We have established an analytic procedure for the analysis of 
channel flow with compliant boundaries which is a counterpart to the well-known theory for channel flows 
with rigid boundaries. 

An amplitude equation governing the nonlinear evolution of disturbances to the basic flow has been 
derived and solutions obtained for both the linear and nonlinear theories. 

A few important conclusions which may be drawn from the present work are as follows. Firstly our 
results show that the use of Hooke's Law alone (with T, Ms, Bs, and damping all set to zero) gives results 
which are markedly different from the ones in which some of these parameter values are not zero. This 
suggests that the use of Hooke's Law alone can lead to misleading results for a real compliant surface. The 
computations of Rotenberry (1992) and Ehrenstein and Rossi (1993) are based on such a simplified model of 
the motion of the wall. The most pronounced deviations from the rigid-wall results arise with nonzero 
values of the mass stiffness parameter Ms, viscoelastic wall damping parameter if, and small values of 
tension. The effect of increased wall damping is destablizing on TSI in agreement with similar observations 
in the boundary-layer flow over compliant surfaces, see Carpenter (1990). 

Many of the limiting cases analysed in Section 5 point to the importance of a new Rayleigh structure for 
the flow with enhanced phase speeds and shorter waves. For  example from (5.11) it is seen that as e0 formally 
increases to O(e- 1) the unscaled wave number ~ and phase speed c both become O(1). This and other new 
structures predicted in Section 5 are currently being investigated. One important result which may be 
deduced is that the basic plane Poiseuille flow with a compliant surface will be linearly unstable to Rayleigh 
waves. Similar conclusions may also be drawn for the case of a circular pipe with a flexible wall in which the 
basic state is taken to be the Hagen-Poiseuille flow and where the motion of the boundary is governed by 
a similar model to the one used here. This short wavelength inviscid instability is related to the 
travelling-wave flutter instability which has been observed in some medical experiments. Some aspects of 
this have already been investigated in the context of some physiological phenomena, as mentioned in the 
Introduction, see Grotberg (1994). However, the importance of this instability suggests that a more 
systematic and rational investigation is clearly desirable and this is also being considered. 

Finally, one other important finding is that for the flow studied here a range of parameter values exists 
for which the nonlinear equilibrium amplitudes emanating from the Haberman viscous critical layer are 
stable. This is in sharp contrast to that for the rigid-wall case and for many other related boundary-layer 
flows. 



128 

Acknowledgement 

The referees are thanked for their comments. 

J.S.B. Gajjar and P. Sibanda 

Appendix A 

The constants Do-D 5 and the integrals appearing in the text are defined as follows: 

Io = f~ u~ dy, 

11 = f~  UBdy' 

fJ 2 ('y~ 1 12 UB 31/2 -~BB dyx dy, 

2 Y 1 yi 

1 
14 = "1- dy, /2 U2 22Y 2 2alY) 

fO 1 fY e 2 d y  1 dy, 
z'=j,e v.~jo 

fll ( 1  1 22: ) 16 = f dy, /2 f2 ~(y_l)2 ~ - 1 )  

I1 1 f~ 17 = - -  U 2 dy 1 dy, 
/2 U2 
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