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Abstract. Mixed finite-element methods for computation of viscoelastic flows governed by differen- 
tial constitutive equations vary by the polynomial approximations used for the velocity, pressure, 
and stress fields, and by the weighted residual methods used to discretize the momentum, 
continuity, and constitutive equations. This paper focuses on computation of the linear stability of 
the planar Couette flow as a test of the numerical stability for solution of the upper-convected 
Maxwell model. Previous theoretical results prove this inertialess flow to be always stable, but 
that accurate calculation is difficult at high De because eigenvalues with fine spatial structure 
and high temporal frequency approach neutral stability. Computations with the much used 
biquadratic finite-element approximations for velocity and deviatoric stress and bilinear inter- 
polation for pressure demonstrate numerical instability beyond a critical value of De for either the 
explicitly elliptic momentum equation (EEME) or elastic-viscous split-stress (EVSS) formulations, 
applying Galerkin's method for solution of the momentum and continuity equations, and using 
streamline upwind PetrovLGalerkin (SUPG) method for solution of the hyperbolic constitutive 
equation. The disturbance that causes the instability is concentrated near the stationary streamline 
of the base flow. The removal of this instability in a slightly modified form of the EEME 
formulation suggests that the instability results from coupling the approximations to the variables. 
A new mixed finite-element method, EVSS-G, is presented that includes smooth interpolation of 
the velocity gradients in the constitutive equation that is compatible with bilinear interpolation of 
the stress field. This formulation is tested with SUPG, streamline upwinding (SU), and Galerkin 
least squares (GLS) discretization of the constitutive equation. The EVSS-G/SUPG and EVSS- 
G/SU do not have the numerical instability described above; linear stability calculations for 
planar Couette flow are stable to values of De in excess of 50 and converge with mesh and time 
step. Calculations for the steady-state flow and its linear stability for a sphere falling in a 
tube demonstrate the appearance of linear instability to a time-periodic instability simultaneously 
with the apparent loss of existence of the steady-state solution. The instability appears as finely 
structured secondary cells that move from the front to the back of the sphere. 

1. Introduction 

Numerical  simulation of the steady-state and transient flows of viscoelastic polymer  melts and 
solutions has much potential  application in the design, optimization, and control  of processing 
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equipment for a variety of manufacturing and materials processing industries. In the simplest for- 
mulations, modeling of these flows requires the solution of the equations of mass and momentum 
conservation for an incompressible liquid simultaneously with a hyperbolic set of quasilinear differen- 
tial equations for the extra component of the deviatoric stress tensor due to the viscoelastic behavior 
of the fluid. Finite-element methods have been developed for the solution of this equation set for all 
the reasons that make these methods popular for the analysis of Newtonian flows; complex geometries 
are easily incorporated, nonuniform meshes can be employed to distribute the computational power 
to regions of the domain where the solution changes rapidly, and the boundary conditions for free- 
surface flows can be systematically incorporated into the numerical approximation. Even with the 
large knowledge base built upon Newtonian flow problems, the numerical analysis of viscoelastic flow 
problems governed by differential constitutive equations have emerged as distinctly difficult problems 
(Brown et  al., 1986). Accordingly, families of new mixed finite-element methods have been developed 
for calculation of the velocity, pressure, and deviatoric stress fields in viscoelastic flows. Presently, 
several such methods have been shown to give numerically stable and convergent solutions to steady- 
state viscoelastic flows, as has been demonstrated for a number of test problems with smooth solutions. 

The mixed boundary-value problem governing the two-dimensional transient flow of a viscoelastic 
liquid described by the prototypical differential constitutive model is written here in terms of the 
dimensionless velocity (v(x)), pressure (p(x)), and deviatoric stress (x(x)) fields as 

Re ~ + v .  Vv = V . ~ + V p + g ( x ) ,  (1) 

V .v = 0, (2) 

~/ , 

where the subscript ~(1) defines the upper convected derivative of the tensor ~ as 

D~ 
(x)~l) -= ~ - ((Vv)'" ~ + x' (Vv)), (4) 

~/-  (Vv)t + (Vv) is the rate-of-strain tensor, and g(x) is the body force acting on the liquid. The 
Reynolds number Re = V*L*p/~lo and Deborah number De = 2o V*/L* are defined using the velocity 
(V*) and length (L*) scales used to form the dimensionless variables; stresses and pressure have been 
made dimensionless using the scale r/o V*/L*. In these definitions, qo is the zero shear-rate viscosity, 2o 
is the zero shear-rate relaxation time, and p is the density of the fluid. In the formulation of the 
constitutive equation, (3), the parameter fl is equal to the ratio of the viscosity of a Newtonian solvent 
(r/s) to the viscosity of the composite solution (r/o = r/S + qv), where r/p is the viscosity of the polymer; 
the parameter fl plays a pivotal role in the discussion here. 

The functions h(tr ~; De) and f(tr x; De) in (3) are specific for different viscoelastic constitutive 
models. The simplest models are recovered by setting f = 1 and h = De to yield the Oldroyd-B model, 
and, in addition, fl = 0 to give the upper-convected Maxwell (UCM) model. Other models, such as the 
dumbbell model of Chilcott and Rallison (1988), and the modified UCM model of Apelian et al. 
(1988) are recovered by other suitable choices of the functions f(tr ~; De) and h(tr ~; De). 

Mixed finite-element methods for the numerical solution of the momentum, continuity, and consti- 
tutive equations involve approximations for the velocity, pressure, and deviatoric stress fields and 
discretization of these equations by appropriate weighted residual methods. Issues in the development 
of these methods include the relationships between the choice of the weighted residual method for 
each differential equation and the mathematical type of the equations, as well as the connection 
between the weighted residual methods and the choice of polynomial spaces for the finite-element 
approximations. 

Guidance in these choices has come from several directions: the theory of the mathematical type of 
the equation set, (1)-(3) (Rutkevich, 1970, 1972; Joseph et al., 1985), the development of mathematical 
proofs for the existence of solutions for small De (Renardy, 1985), and the development of rigorous 
convergence proofs for finite-element approximations in this limit (Baranger and Sandri, 1991a, b) 
These developments are reviewed in Section 2. 
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Based on this information and much numerical experimentation, there has been considerable 
progress in the development of numerically stable and accurate mixed finite elements for viscoelastic 
flows. Numerically stable and convergent calculations of steady-state, two-dimensional flows have 
been demonstrated with several formulations using conventional, low-order, finite-element approx- 
imations (Marchal and Crochet, 1987; King et al., 1988; Rajagopalan et al., 1990b). Two of these 
formulations are discussed in detail here: the explicitly elliptic momentum equation (EEME) de- 
veloped by King et al. (1988) for calculations using the UCM model and the elastic-viscous split stress 
(EVSS) formulation of Rajagopalan et al. (1990b) for models with a solvent viscosity, i.e., ~ ~a 0. The 
EVSS formulation also gives convergent solutions for the UCM model, as demonstrated by Rajago- 
palan et al. (1990b) and pursued further here. 

Calculations for model flows, such as the flow between eccentric rotating cylinders, the flow 
through an undulating tube, and the flow around a sphere in a tube have been demonstrated to be 
convergent with mesh refinement for the simplest viscoelastic constitutive equations, the upper- 
convected Maxwell and Oldroyd-B equations, and for moderate values of the Deborah number. These 
solutions have been compared with calculations using spectral finite-element (Beris et al., 1987) and 
spectral finite-difference methods (Pilitsis and Beris, 1989) to establish the accuracy of the calculations. 
The accuracy of the calculation of any given flow appears to be limited only by the resolution of thin 
boundary and internal layers in stress that develop adjacent to solid boundaries and in strong 
extensional flows. The boundary layers next to solids are particularly important in the discussion here. 
These thin layers result because of the singular nature of the constitutive equations in the limit where 
the velocity field vanishes, as at a stationary, no-slip surface. In this limit, which occurs at no-slip 
surfaces, the constitutive equations reduce from hyperbolic conservation laws to ordinary differential 
equations in time defined at each point along the boundary. This singularity of the hyperbolic 
equations is emphasized in the discussion below. 

Present finite-element methods still seem far from optimal. Solutions for typical flows show that the 
stress field requires far more resolution than velocity; however, the present methods appear to have 
mathematical compatibility constraints that couple the approximations for velocity and stress so as to 
be inefficient for computing very accurate stress fields. As discussed in Section 2, available theory even 
suggests that this goal may be unattainable because of the direct coupling between the accuracy of 
these variables implied by the equation set. Moreover, the temporal accuracy and stability of the 
discrete equations which result from the spatial discretizations are open issues. Although simulation 
methods for time-dependent calculations have been developed based on both the EEME (Northey et 
al., 1990, 1992) and the EVSS formulations (presented here), the utility of these algorithms has been 
limited by convergence problems for flows with high De. 

The purpose of this paper is to review the EEME and EVSS finite-element formulations for the 
solution of steady-state and time-dependent differential viscoelastic models and to demonstrate the 
numerical instabilities inherent in these methods for computing time-dependent flows. Two test 
problems are used in the discussion. The numerical stability to two-dimensional disturbances is tested 
by calculation of the stability of an inertialess, planar Couette flow of a UCM fluid generated by 
parallel moving and stationary solid surfaces. This problem is particularly well suited as a test 
problem for transient calculations because the eigenstructure of the linear-stability problem is known 
in closed form (Gorodstov and Leonov, 1967; Renardy and Renardy, 1986) and because the homoge- 
neous base flow is represented exactly in the finite-element approximations used in the mixed methods 
described here; hence all difficulties with spatial resolution can be attributed to the approximation of 
the linearized disturbances. Moreover, in the absence of inertia this flow is stable for any De, although 
the most dangerous disturbance does approach neutral stability with increasing De. This feature and 
the spatial complexity of the eigenfunctions make this linear stability calculation a difficult test for 
transient simulations. 

Recently, Keiller (1992) has used the same linear-stability problem as a test of numerical stability of 
finite-difference methods for the Oldroyd-B, UCM, and a FENE constitutive equation. He came to 
the conclusion that the critical value of De for the onset of numerical instability for the calculations 
was a function of the product of the spatial discretization in the streamwise and cross-stream 
directions. Keiller also implied that the calculations were stabilized by adding either a Newtonian 
solvent (the Oldroyd-B model) or by adding artificial diffusion to the discretization of the constitutive 
equation. Our calculations using the streamline upwind (SU) method seem to confirm this latter point. 
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We see the mesh dependence described by Keiller for the EVSS method; however, it is not present in 
the EVSS-G formulation described here. 

We demonstrate that both the EEME and EVSS methods fail for high values of De and predict 
fictitious numerical instabilities. The eigenfunctions for the most dangerous disturbances are localized 
near the stationary surface, either a solid surface or at a plane in the flow, depending on the relative 
motion of the two planes. A modification to the EEME method, EEME-P, is introduced that moves 
the numerical instability to higher values of De. The EEME-P method differs from the EEME 
formulation only in an ad hoc change in the treatment of the pressure field in the momentum 
equation. The improved temporal stability of this formulation suggests that the numerical instability 
seen in calculations with the EEME and EVSS methods is a result of incompatibility in the 
finite-element approximations. We argue that the compatibility of the stress and velocity gradient 
approximations is an issue, especially near stationary streamlines, such as exist along nonmoving solid 
boundaries, where the constitutive equation reduces to an algebraic relationship between these two 
variables. 

We describe a new set of mixed finite-element approximations for velocity, velocity gradient, 
deviatoric stress, and pressure which appear to be compatible in this limit; we call the EVSS 
formulation that uses these approximations EVSS-G. This mixed set of finite-element approximations 
is tested with Galerkin's method for the momentum/continuity equation pair and several discretiza- 
tions for the hyperbolic constitutive equation; these are the SU, SUPG, and the Galerkin least squares 
(GLS) techniques. The EVSS-G method with the SUPG and SU discretizations is found to be 
numerically stable for the planar Couette flow up to very high values of De. This is a major result of 
this paper. 

The relevance of the numerical instability to the calculation of complex flows is demonstrated by 
the application of the methods to calculation of the flow of the UCM model for flow around a sphere 
falling in a tube, a standard test problem for viscoelastic flow simulations. Steady-state calculations 
with fixed finite-element meshes cease to converge at a maximum value of De. We test the numerical 
stability of these flows by time-integration of the transient equations linearized about the steady-state 
solution, so that the linear disturbances are represented in the same finite element basis set. Transient 
analysis for random initial disturbances using the EEME-P formulation predicts that the flow 
becomes neutrally stable precisely at the point of loss of convergence. The neutrally stable disturbance 
oscillates in time, suggesting that the discrete evolutionary problem has a time-periodic solution that 
emanates from this value of De. Moreover, the disturbance has fine-scale spatial structure adjacent to 
the sphere, which is stationary in the calculations. The limited experimental evidence of Bisgaard 
(1983) suggests an instability in viscoelastic flow around a sphere with fine structure near it, although 
the loss of existence of the steady-state solution in the calculations makes the conclusions far from 
definitive. 

Several mathematical results for the Oldroyd-B and UCM models relevant to the formulation of 
numerical methods are summarized in Section 2. A framework for mixed finite-element methods for 
viscoelastic flows is presented in Section 3 along with the EEME and EVSS mixed methods developed 
by us and the extension to the EVSS-G mixed methods. Numerical results for the two sample flows 
are discussed in Sections 4 and 5, respectively. 

2. Mathematical Results 

The discussion in the remainder of this paper is confined to the special case of inertialess flow, i.e., 
Re = 0, in the equation for conservation of momentum, (1). Note that in this limit, time dependence 
only enters through the evolutionary term in the constitutive equation. We also confine our calcula- 
tions to the UCM constitutive equation, although discussion of formulations is presented in more 
general terms. Rutkevich (1970, 1972) was the first to study the mathematical type of the equation set 
defining the UCM model. The importance of this analysis and the subsequent study by Joseph et al. 
(1985) lies in the observation that the equation set is of mixed mathematical type. The linearized 
equation set for steady-state, two-dimensional flow is a set of six first-order partial differential 
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equations for the canonical variables formed by the two velocity components, the three deviatoric 
stress components, and the pressure. This equation set has mixed type, i.e., some variables have 
elliptic character and others are hyperbolic. The character of the velocity field is most clear when the 
momentum equation is rewritten by substituting the UCM constitutive equation into (1) for V.~ to 
yield the explicitly elliptic momentum equation or EEME for inertialess flow (Re --- 0), as first derived 
by Renardy (1985): 

V-(z.Vv ) + De(W). (V~) + Vq = 0, (5) 
where Z is the tensor, 

Z = De'c -- 8, (6) 
and q is the modified pressure field, 

q - p + De(~t  + v. Vp).  (7) 

It is straightforward to show that Z is negative definite by using the integral form of the UCM 
constitutive equation (Dupret et al., 1985). Then, if the EEME/continuity equation pair is viewed as 
the set for the velocity and pressure fields, (2) and (5) define an elliptic saddle-point problem for the 
variables q and v. The pressure field p is recovered from this solution by solving (7) as a hyperbolic 
differential equation. Simultaneously, the UCM constitutive equation can be written as 

De ~t + v-W + (~ - De((Vv)t'T + ~.Vv)) = -~/, (8) 

which describes a set of linear hyperbolic equations for the stress tensor, given the velocity as data. 
The singularity of the constitutive equation on curves with v = 0 is evident. It is interesting to note 
that no higher-order derivatives on either ~ or p were introduced into the momentum equation 
through the operation of taking the divergence of the constitutive equation. This results from repeated 
substitution of the momentum equation to eliminate these terms, which are combined into the 
definition of q. In fact, this rearrangement removes the higher-order term V.(vVp) from the momen- 
tum equation and a time-derivative of the pressure; we return to this point in Section 3. 

The equation set (2) and (5)-(8) represent the EEME formulation first employed by King et al., 
(1988) in finite-element analysis of viscoelastic flows. Renardy (1985) used this separation into elliptic 
and hyperbolic parts to bound the differential operators in each part of the problem and to establish 
a fixed-point iteration to prove the existence of solutions to the UCM model for sufficiently small De. 
His proof relies on smoothness of the velocity field up to the second derivative. 

This statement is made more precise by introducing the Sobolev spaces, which are central to the 
mathematical analysis of finite-element methods for elliptic boundary-value problems (Carey and 
Oden, 1986). A function g(x) is defined as being square-integrable, or g(x)~ L2(~), where ~ is the 
domain, if the norm of g(x) satisfies the condition 

llg]t = (g, g)1/2 ~ f g2 dA < oo. (9) 
2 

The Sobolev spaces g(x) ~ Hm(~) are defined for any integer m as 

Hm(~) = {g(x) E L2(~); DSg ~ LZ(~), s = 1 . . . . .  m}, (10) 

where Dr" symbolizes all mth-order partial derivatives of g(x). Equation (10) implies that all mth-order 
derivatives of g(x) are square integrable and leads naturally to the norm for H(@) defined as 

i l g l l 2  _ [" [g2 + iVg[2-] dh < oo (11) 
d 

with analogous definitions of the norms for higher-order Sobolev spaces. In the context of Sobolev 
spaces, Renardy's proof of existence requires that v~ e H2(@), q e Hi(@), and z~)~ HI(~).  It is interest- 
ing that z~j ~ H~(~) implies the same smoothness of the stress field in the streamwise and cross-stream 
directions; this is unnatural for the hyperbolic equations, in which the differential operator only 
smooths the stress in the streamwise or characteristic direction. These remarks are relevant to the 
discussion of the continuity of typical finite-element approximations in Section 3.1. 
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Although the EEME formulation is robust for expressing the ellipticity of the momentum and 
continuity equations for the UCM constitutive model, it is not appropriate for mathematical analysis 
or numerical solution with constitutive models that include a solvent viscosity, i.e., fl # 0. This point 
is most clearly seen from the analysis of the mathematical type of the two-dimensional flow for an 
Oldroyd-B fluid (h = De and f =  1 in (1)). Here the added term flTt~) introduces second-order 
derivatives in velocity into the constitutive equation and forces the canonical variables to be changed 
to include velocity gradients instead of velocity. This difference singularly changes the mathematical 
type of the equation set. The mathematical type is most easily seen by rewriting the equation set in 
terms of the viscous and elastic or polymer (~v) portions of the deviatoric stress tensor defined as 

z = 'r v -- qs~" (12) 

In the variable zv, the equation set becomes 

- 3 V 2 v  + V ' z  v + Vp = O, (13a) 

V'v = 0, (13b) 

xp + De~v~l) + (1 --/~)~' = 0. (13c) 

The momentum/continuity pair, (13a) and (13b), form an elliptic saddle-point problem for the velocity 
and pressure fields, if the elastic stress tensor is viewed as data for the equation set. The ellipticity of 
(13a) is guaranteed by the appearance of the solvent viscosity multiplying the Laplacian operator; 
accordingly, we refer to the formulation as the viscous form (Rajagopalan et al., 1990). The constitu- 
tive equation (13c) is hyperbolic for the components of the elastic stress. Renardy et al. (1987) have 
used this formulation as a basis for constructing a proof of the existence of weak solutions for the 
Oldroyd-B model for small De. Again, a fixed-point iteration was established between the elliptic 
saddle-point problem and the solution of the constitutive equation. For smooth solutions (the same 
conditions discussed above apply), bounds on each operator allowed proof of convergence of the 
fixed-point iteration for sufficiently small De. Baranger and Sandri (1991a, b) have used this same 
approach to prove convergence of finite-element approximations written in the viscous formulation. 

Although formally correct for the Oldroyd-B fluid, the elliptic operator in (13a) will become 
singularly small as the Deborah number is increased and the role of the elastic part of the stress 
increases. In fact, Rajagopalan et al. (1991) have shown that mixed finite-element methods based on 
the formulation, (13), perform poorly as De is increased. This observation motivated these investiga- 
tors to use a slightly different splitting of the stress tensor which removes 3 from the momentum 
equation. This new form is the elastic-viscous split-stress or EVSS and is defined by the elastic stress 
tensor ~2 as 

- zv + (1 - fl)~/, (14) 

which when introduced into the momentum and constitutive equations yields 

-V2v + V .~  + Vp = 0, (15a) 

V.v = 0, (15b) 

+ De~,~l ) -- De(1 - fl)~/(l) = 0. (15c) 

Mendelson et al. (1982) first used this formulation for finite-element calculations with a second-order 
fluid, which is an algebraic stress model; Crochet et al. (1984) generalized the algorithm to the 
solution of differential viscoelastic models. Again, the momentum/continuity equation set form an 
elliptic saddle-point problem for the velocity and pressure and the constitutive equation is hyperbolic 
in Z. The dependence on fl has been removed from (14a), with the only additional complication being 
the appearance of the term ~/(~) in the constitutive equation. Because this term involves second-order 
derivatives of velocity it requires special attention in the numerical formulation. To date, there has 
been no use of this formulation of the equation set in analysis, although it has the advantage of 
retaining the elliptic saddle-point problem, (15a) and (15b), for all values of fl, including the UCM 
limit of fl = 0. 
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Table 1. Summary of three formulations of the visco- 
elastic flow problem written as (16). 

Formulat ion Viscous EEME EVSS 

D q~I Z I 
N(Vv, o) 0 (Vv) • (V • (r) 0 

q P q P 

3. Mixed Finite-Element Methods 

We describe mixed finite-element methods in a general context which allows incorporation of the 
EEME, EVSS, and several new formulations. We consider the general time-dependent statement for 
two-dimensional, inertialess flow problems posed in the following form: 

V" (D. Vv) + DeJV(Vv, 6) + Vq = 0, (16a) 

V.v = O, (16b) 

where v is the velocity field, q is a generalized pressure, and 6 is tensorial stress defined by a 
constitutive equation of the form 

De & + v. V6 + (6 - Ded(Vv, 6)) = - (1  - 6)? - (1 - fl)6De~l(1), (16c) 

where 6 is a constant that is either zero or one and other variables have the definitions given before. 
The operator Jtr(Vv, o) in (16a) represents the bilinear form that appears in the EEME formulation 
and the term ~¢(Vv, a) is the bilinear product of velocity gradients and stress introduced through the 
upper-convected derivative, as expressed in (4). The tensorial viscosity D is equal to g for the EEME 
formulation or to the identity tensor otherwise. The viscous, EEME and EVSS forms are recovered 
from (16) by the substitutions listed in Table 1. 

3.1. Finite-Element Approximation Spaces 

Mixed finite-element methods are constructed by approximating the variables (v, Vv, 6, q) throughout 
the computational domain D by expansions of low-order Lagrangian finite-element bases defined on 
quadrilateral elements denoted as {Di}. The finite-element approximations for each variable, expressed 
as (v h, (Vv) h, o h, qh) are constructed from the approximation spaces (V h, G h, Z h, Qh), respectively, where 
each space is defined by the order of the polynomial and the degree of continuity of the approxima- 
tion between elements. It is important to note that all three formulations collapse in the limit De = 0 
to the Stokes problem and that the constitutive equation, (16c), decouples from the other equations. 
For the viscous and EVSS formulations the constitutive equation gives the trivial result for De = O. 

The well-known compatibility or LBB constraints that must be satisfied by the finite-element approxi- 
mations for velocity and pressure in the Newtonian limit restrict the choice of approximations for the 
viscoelastic problem; see Carey and Oden (1986) and Brezzi and Fortin (1991). The work of Baranger 
and Sandri (1991a, b) suggests that the LBB constraint must be satisfied for the viscous formulation 
for viscoelastic flows for De > 0 as well. 

A. Veloci ty  and Pressure.  The elliptic saddle-point problem defined by (16) is solved by Galerkin's 
method using combinations of basis sets for (v h, qh) which are known to be compatible for Stokes flow 
(Carey and Oden, 1986). The weak solution of such a saddle-point problem gives velocity fields in 
HI(~)  and pressure fields in L2(~). In all the calculations described here we use biquadratic 
Lagrangian polynomials for velocity (Q2(~)) and continuous bilinear Lagrangian polynomials for 
pressure (QI(~)); discontinuous pressure approximations have also been used by King et al. (1988) for 
the EEME formulation. 
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B. Deviatoric Stress. The issue of compatibility arises again with the selection of approximating 
spaces for stress (Z h) and velocity gradients (Gh). The coupling of these approximations is most 
apparent in the Newtonian limit, where the spaces should be equivalent; however, this limit does not 
directly affect viscoelastic flow simulations with the three formulations presented here because of the 
decoupling of the constitutive equation from the Stokes problem in the limit De = 0. However, a 
similar situation arises with De > 0 on any curve with v = 0, as is seen from the form of the 
constitutive equation (16c), 

0o 
Oe~[ + (o -- Ded(Vv, o)) = - (1  - 6)~, - (1 - fl)6De¢l(1), (17) 

in this limit. The smoothing effect of the differential operator (v. Vtr) has been removed and so the 
stress tensor is forced to be proportional to ~(~), which contains second derivatives of the velocity 
field. In the viscous and EEME formulations, 6 = 0, and this proportionality reduces to ~. 

For the viscous and EEME formulations, velocity gradients are approximated by formally evaluat- 
ing the gradients of the finite-element approximations to the velocity field; we label this approxima- 
tion as Gh(@) --- Dvh(~). Both bilinear and biquadratic Lagrangian approximations to the stress field 
have been tested, i.e., y h(~) = Q I ( ~  ) and y h(~) = Q2(~.@). The viscous formulation with ]~h(~) = QI(~) 
corresponds to the finite-element method analyzed by Baranger and Sandri (1991b), which has been 
proved convergent. Interestingly, their analysis gives convergence of the algorithm in a norm contain- 
ing the errors in the approximations to all the variables (v h, o h, qh). This estimate would imply that 
there is no advantage to using higher-order approximations to the stress field. However, this theoreti- 
cal result is counter to computational experiments for all three formulations, which show that the 
accuracy of the stress field is much more demanding than the velocity field for even moderate De. 

The appearance of the second-order velocity dei'ivatives in the EVSS formulation requires approxi- 
mation of the components of (Vv) h = G h c Gh(D) to evaluate the term ~(1); bilinear approximations are 
used for G h, i.e., G h= Qt. We augment the discrete equations described in Section 3.2 with the 
least-squares approximation 

(Vv h --  G h, (I)~) = 0 (18) 

which interpolates the discontinuous velocity gradients produced by differentiation of the velocity field 
onto continuous functions. In the original EVSS method of Rajagopalan et al. (1990), these approxi- 
mations to the velocity gradient were used only in the term ~(1). We have tested a modified EVSS 
method in which this continuous approximation is used in the bilinear term ~¢(Vv, o) as well, i.e., 
~¢(Vv, 6 ) =  ~¢(G h, oh). Moreover, the deviatoric stress variable ~ is interpolated with continuous 
bilinear approximations so that interpolation of the stress and velocity gradient are algebraicly 
equivalent. Accordingly, the finite-element approximations inherent in the constitutive equation are 
expected to be compatible in the limit v = 0, although no formal proof exists. We refer to this set of 
finite-element approximations as EVSS-G and discuss predictions of this method in Section 4. 

3.2. W e i g h t e d  Res idual  M e t h o d s  

A. Momentum-Continuity Equations. The Galerkin weighted residual equations for the elliptic 
saddle-point problem, (16a) and (16b), is formed in the usual way to give the equations 

f~= n'(D'(Vvh))'6kdS-- f VdpV'(D'(Vvh))'6k dA 

- f ~V'(D'(Vvh)r:V6k)dA + f ~bV'(DeN(Vvh, (19) 

f ,I)y.(V.v h) =o, (20) dA 

where the finite-element approximations (v h, (Vv) h, o h, qh) are in the spaces (V h, G h, E h, Qn) and the test 
functions satisfy (~b v, @q)~ (V h, Qh). Equations (19) and (20) are written in general for expressions in 
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curvilinear coordinates, where 6k is the unit vector in the kth coordinate direction, which may be a 
function of position. The line integral in (19) only appears along outflow portions of the domain, and 
the velocity is assumed to be specified on all solid surfaces and along the inflow boundary. 

The EEME-P method was introduced to help alleviate the numerical instability described in 
Section 4. This formulation differs from the EEME method only in the handling of the modified 
pressure field, q(x), defined by (7). In the EEME-P formulation the modified pressure is removed, i.e., 
q = p which reintroduces the terms V.(vVp) and ~p/& into the momentum equation. The term 
V-(vVp) is integrated-by-parts in the weak form, analogous to (19), and the resulting line integral 
vanishes on all boundaries with either specified velocity or periodicity. This is the only difference 
between the EEME and EEME-P formulations. 

The viscous formulation is not pursued in the calculations in Sections 4 and 5, because results by 
Rajagopalan et al. (1990) for steady-state flow between eccentric rotating cylinders established that the 
domain of convergence in De was much smaller for the viscous formulation than for the EVSS 
formulation with reasonable meshes. Mesh-sized wiggles appeared in the results with the viscous 
formulation for increasing De and are an indication that the elliptic stabilization supplied by the 
operator flVZv is insufficient at even moderate values of De and fixed mesh. This empirical result 
demonstrates the lack of robustness of the analysis of Baranger and Sandri (1991b), in the sense that 
their proof is valid in the limits h ~ 0 and De << 1 and the numerical calculations evaluate the 
usefulness of the method outside this limit. 

B. Constitutive Equations. Several weighted residual methods are tested for the solution of the 
quasilinear hyperbolic constitutive equations (16c). These include the Galerkin (GAL), the streamline 
upwind Petrov Galerkin (SUPG), the streamline upwind (SU), and Galerkin least-squares (GLS) 
formulations. 

Streamline Upwind Petrov Galerkin (SUPG) Method. The SUPG method was originally developed by 
Brooks and Hughes (1982) and was proved convergent for linear hyperbolic equations by Johnson et 
al. (1984). Here the weighted residual equations are 

(~U, Y~ + De(v. VY~ + G T" E + Z. G) - (1 - fl)De(v. VG - G T" G T - 2G T" G - G. G)) = 0, (21a) 

where the weighting function u?~ is formed from the finite-element basis for stress components ~ ~ E h 
as 

hv h 
~ = ~ + ~..h~" VOw, (21b) 

Hv bl 

where h is a characteristic element size. Normalization of the velocity field is introduced to guarantee 
that the gradient contribution to the weighting function remains (9(1), regardless of the magnitude of 
the velocity. 

The continuity restrictions necessary for convergence of the SUPG method are not as severe as 
required by Renardy's existence proof. Johnson et al. (1984) showed that SUPG converges for linear 
first-order hyperbolic equations as long as the dependent variable, {o-~j}, is in the space of functions 
with square integrable streamwise derivatives, ¢ij eH~(N), defined analogously to HI(~),  so that 
v . V % s L 2 ( ~ ) .  There is no guarantee of continuity of the cross-stream derivative of vii. It is 
interesting that the SU method does guarantee smoothness of the derivatives of the stress in all 
directions, i.e., agj e HI(~), by introducing a second-order operator in the constitutive equation and 
cross-stream diffusion. 

Galerkin (GAL) Method. Galerkin's method applied to the hyperbolic constitutive equation is re- 
covered by setting h = 0 in (20). Although Galerkin's method does converge in the L2-norm to the 
solution of a linear hyperbolic equation, it gives poor numerical results because no bounds exist on 
the derivatives of the variable, hence, wiggles in the solution are expected, especially if these are 
induced by a discontinuity in the data (Johnson et al., 1984). Galerkin's method is applied in Section 4 
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to the linear stability problem for the plane Couette flow where it performs reasonably well because of 
the smoothness of the solution. We do not recommend its application in nonlinear flow problems. 

Streamline Upwinding (SU) Method. The SU or artificial diffusion method developed by Hughes and 
Brooks (1982) was used to discretize the constitutive equation using the EVSS-G formulation of the 
equation set and finite-element approximations. The SU method is expressed in the notation of King 
et  al. (1988) by adding the second-order term to the constitutive equation 

V'(p" V~ph), (22a) 

where [i is the artificial diffusivity tensor, which is defined as 

D e  vv 
[I _= 2 [v~vv[ [(l)xhx)2 + (/)Yhy)2]I/2" (22b) 

In this expression (vx, vy) are the components of the velocity at the center of a quadrilateral element 
and (hx, hy) are the sizes of the element in the x- and y-directions. Because this method gives only 
O(h)  accuracy in the Lz-norm, the use of higher-order polynomials for approximating stress is not 
justified; hence, we use bilinear approximations for stress and the velocity gradient in the EVSS-G 
formulation. Marchal and Crochet (1987) used the SU method in their successful mixed formulation 
for viscoelastic flows. 

Galerkin Least-Squares (GLS) Method. Recently, GLS methods have received attention for solving 
convection-dominated transport problems (Hughes et  al., 1989; Franca et  al., 1992) and for calculation 
of viscoelastic flows (Baaijens, 1992; Leborgne, 1992). This method has been proved convergent for 
linear hyperbolic equations (Leborgne, 1992). In these weighted residual methods, the weak form 
generated by Galerkin's method is augmented by the term generated by a least-squares approxima- 
tion, weighted by a factor that depends on the mesh. The purpose of the added component of the 
residual equation is to give numerical stability to the otherwise unstable Galerkin formulation, while 
not destroying the consistency of the discretization. We apply the GLS formulation developed by 
Leborgne (1992) for linear hyperbolic equations to the solution of the constitutive equations. A 
steady-state hyperbolic operator acting on the stress tensor a can be defined from (16c) as 

5f( ty)  - ~ + D e ( v .  Vt~ - A(Vv h, if)). (23) 

The weighting function V* is formed by adding the basis function to the least-squares residual for the 
operator in (23) as 

• ~ - ~ + 3(¢b ~ + D e ( v .  V* * - A ( V v  h, (I)*))), (24a) 

where the scalar 6 is defined as 

:-- [(1)xhx)2 -}- (t:yhY)Z]a/2 (24b) 
211vii 

and the components of the velocity and the element size are defined as in (22b). The GLS method has 
been implemented with the restriction that 6 < 1/24, as argued by Franca et  al. (1992). 

3.3. Solution of Steady-State and Time-Dependent Problems 

Discretization of steady-state problems leads to large sets of nonlinear algebraic equations for the 
coefficients in the finite-element approximations (v h, (Vv) h, o h, qh). For each formulation, this set is 
solved by Newton's method in which the elements of the Jacobian matrix are computed by one-sided 
finite-difference approximations, and a frontal implementation of asymmetric LU decomposition is 
used to solve the large set of linear equations that result at each Newton iteration (Burdette et  al., 
1989). 

The discretized equations formed by (19), (20), and the constitutive equation constitute a set of 
differential-algebraic equations for the unknown, time-dependent coefficients in the finite-element 
approximations (v h, (Vv) h, oh, qh). We solve this set by fully implicit time integration, as first introduced 
by Northey et  al. (1990). We use a first-order accurate Adams-Moulton method. 
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4. Stability of the Planar Couette Flow 

The numerical stability characteristics of the finite-element methods described above were tested by 
calculation of the linear stability of the planar Couette flow, as shown in Figure 1. Here the 
steady-state flow is rectilinear with a constant velocity gradient and constant stresses. Using the 
velocity of the solid surface V as the velocity scale and the gap between the planes H as the length 
scale gives the viscometric flow for the UCM model as 

(v x, vy) = (1 - y + co, 0), (zxy, zxx, zyy, p) = (1, -2De ,  0, 0), (25) 

where ~o is a parameter that fixes the velocities of the two solid surfaces; see Figure 1. For co = 0, the 
lower plate is in motion at unit speed and the upper plate is stationary; Keiller's calculations (1992) 
used ~o = - 1/2. 

Linear stability analysis of the inertialess flow was presented by Gorodstov and Leonov (1967), 
who showed the presence of both discrete and continuous contributions to the eigenspectrum. For 
linear disturbances with spatial structure g(y)dik,+~o, they showed that the continuous spectrum is 
composed of eigenvalues (aeont) 

1 
Re(acon , )=- - - -  and [Im(aco,,)l _<k, (26) 

De 

where k is the spatial wave number in the flow direction. In addition, the discrete spectrum has 
eigenvalues that occur in pairs for each wave number k; see Gorodstov and Leonov (1967) for the 
formulas. Most importantly, for De >> 1, the real parts of these eigenvalues (adis¢) approach - 1~2De 
and the imaginary parts approach 0 and k. Thus, as De is increased, members of both the discrete and 
continuous spectrum move closer to neutral stability, i.e., Re(a) approaches zero; hence, calculations 
with high De are expected to be more susceptible to numerical instability if the spatial structure of the 
associated eigenfunctions is not adequately resolved. This difficulty with numerical approximation has 
plagued attempts at a numerical solution to the eigenvalue problem with inertia (Lee and Finlayson, 
1986; Renardy and Renardy, 1986). 

The eigenfunctions corresponding to the discrete spectrum are most dangerous because Re(adisc ) > 
Re(a¢on,). The difficulty with adequate spatial resolution of these functions is most clear from the form 
of the cross-stream component of the velocity (vy) associated with each member of the discrete 
spectrum (Gorodstov and Leonov, 1967): 

vy(x, y, t) = V~(y)aik~-% (27a) 
where 

Vk(y ) = Clk(Y - -  a ) e  ky + Czk(y - -  a ) e  -ky + C3k e-kDey(i-c°) -J- C4k e-kDey(c°+i) ( 27b )  

for c0 = 0, and {c o, %}, i =  1 . . . . .  4, are constants computed from the boundary conditions and 
c o =- J 1  + De -2. For k >> 1 or De >> 1, the disturbance contains roll cells both in the cross-stream and 
the flow directions. Fine scale structure is expected in the velocity field across the gap because of the 
terms proportional to e -ikDey for k >> 1. Moreover, the terms proportional to e -ky and e ky result in 
boundary layers near both the moving (y = 0) and the stationary (y--  1) boundaries for k >> 1. The 
structure of V,(y) is shown as a three-dimensional surface in Figure 2 for De = 1 and t = 0.1. The 
disturbance is concentrated near the stationary boundary and the cellular structure along this 
boundary is obvious. It is interesting that this eigenfunction is trivial to compute only for low values 
of De, because round-off error becomes a factor for increasing values of De and k. 

The form of (27) and the asymptotic behavior of the eigenvalue suggests that numerical approxima- 
tion of the linear dynamics for the UCM flow will be extremely difficult for high De and k. The value 
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Figure 2. Contour plot of the eigenfunction, (27), for k = 4 
and t = 0.! from the result of Gorodstov and Leonov (1967). 

of the wave number inherent to the finite-element analysis of the calculations is set by the number of 
elements used in the streamwise direction; the larger the number of elements in this direction, the 
better the resolution of the spatial structure of the eigenfunction and the more complex the spatial 
structure of the eigenfunction that can be resolved. Moreover, the temporal response also becomes 
more complex, because the frequency of the slowly decaying oscillation approaches k. 

Computations of the linear stability of the planar Couette flow are carried out by solving the 
finite-element equations numerically linearized about the base flow, (25). The disturbances are assumed 
to vanish on the solid surfaces and to be periodic in the streamwise or x-direction; the dimensionless 
streamwise dimension of the computational domain is set to 1, i.e., the same as the gap width, so that 
the smallest value k that appears in the domain is 7r/2. Results are shown both as contours of the 
solution components as a function of time and as the evolution of the magnitude of the solution h(t) 
of the linearized equations, defined as 

Lz(b(t)) - ~/ ,~  [b,(t)] 2, (28) 

where {bi(t)} are the components of the solution vector. Transient simulations are started from 
random initial conditions for the stress and zero initial values for velocity and pressure. The most 
dangerous eigenfunction, i.e., the one with eigenvalue with the largest real part, will dominate the 
numerical solution as the solution evolves in time. The real and imaginary parts of the corresponding 
eigenvalue are estimated from the long time behavior of L2(b(t)); this procedure was used by Northey 
et al. (1991) to compute the onset of oscillatory instability in the Taylor-Couette flow of a UCM 
fluid. 

Calculations are presented in Sections 4.1-4.7 for each of the finite-element mixed methods 
described in Section 3. All of these results were carried out using the fixed time step of At = 0.1 in the 
numerical integration. The numerical stability characteristics of the methods with changing At are 
discussed in Section 4.4. 

4.1. EEME/SUPG and EEME/GAL Methods 

Calculations for the UCM model were carried out using the EEME/SUPG method, as described in 
Section 3 with different finite-element meshes and values of De. Unless stated otherwise, the meshes 
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Figure 3. Transient response computed with the EEME/FEM 
of the amplitude L2(t ) defined by (28) as a function of De for 
the mesh Nel = 14 and At = 0.1. Calculations are for the 
UCM model. 
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were all square with gel X gel elements in each direction. The evolution of the amplitude of the 
disturbance is shown in Figure 3 as a function of the Deborah number for 1 _< De _< 5, N~I = 14, 
e) = 0, and At = 0.1. The results for De = 1 and De = 3 show the exponential decay expected for 
the linear stable flow; moreover, the slopes of the curves agree approximately with the result of 
Gorodstov and Leonov (1967) for the real part of the slowest decaying eigenvalue, -1 /2De.  The 
contours of components of the eigenfunction for vy and zry, corresponding to this mode are shown in 
Figure 4. The "energy" in the disturbance, defined by the L2-norm , (28), is concentrated near the 
stationary boundary and appears to have the longitudinal wave number k = 287z, which is the 
maximum value that can be resolved by the mesh with Ne~ = 14, assuming that two finite elements are 
requiled to approximate one flow cell in the disturbance. Thus, as expected from the analysis of 
Gorodstov and Leonov (1967), the most dangerous disturbance corresponds to the highest wave 
number k. 

At De = 5, the behavior of the linear-stability problem is qualitatively different; a discrete eigen- 
mode becomes temporally unstable, as seen by the exponential growth shown in Figure 3. This mode 
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Figure 4. Contours of u r and ry r at t = 10.0 for De = 1 computed with the EEME/SUPG with Nel = 14 and At = 0.1. This 
eigenfunction is stable in time, as indicated in Figure 3. 
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Figure 5. Transient response computed with the E E M E /  
S U P G  of the amplitude L2(t ) defined by (28) as a mesh size 
for De = 5.0 and  At = 0.1. Calculations are for the meshes 
with Nel equal to (a) 10, (b) 14, and  (c) 28. 

is fictitious, because the continuous problem admits no instability. Increasing the spatial discretization 
did not improve the numerical stability of the linear-stability problem. Indeed, using finer meshes 
produce spurious eigenmodes that grew faster than those for a coarser mesh, as indicated in Figure 5 
by the history of the L2-norm as a function of time for three meshes, At = 0.1 and De = 5. The 
components of the most unstable eigenfunction, as determined for the mesh with N~l = 28, are shown 
in Figure 6; again the disturbance has the form of the highest wave number (56~r) that is resolvable 
by the mesh and has energy concentrated near the stationary surface. Also, the frequency of the 
oscillations in the disturbance, as shown in Figure 5, increases with the mesh refinement; however, the 
frequency is well below the value Im(t&isc) = 561r expected for the most dangerous eigenfunction on 
this mesh. This is not unexpected, because the time step At = 0.1 does not allow resolution of this 
frequency. 

The numerical instability displayed in Figures 3-6  results from the coupling between the constitu- 
tive equation and the elliptic saddle-point problem. This is demonstrated by integrating the linear 
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Figure 6. Components of vy and Try at t = 20.0 for De = 5 computed with the EEME/SUPG with Nel = 28 and  At = 0. i .  This 
eigenfunction is unstable in time, as indicated in Figure 5. 
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Figure 7. Transient response computed with the E E M E /  

S U P G  ( - - - )  a n d  E E M E / G A L  ( ) methods of the ampli- 
tude Lz(t ) defined by (28) for De = 20 .0  and At = 0.1.  Calcula- 
tions are for the UCM model with the kinematics held fixed 
so that only components of the stress tensor evolve in time; 
Nel = 10. 
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UCM constitutive equation for the planar Couette flow with the kinematics fixed as the rectilinear 
base flow. The results for Lz(t ) are shown in Figure 7 for De = 20 computed by integration using both 
the SUPG and Galerkin methods with the mesh Ne, = 10 and At = 0.1. As expected from the form of 
the constitutive equations, the response is a decaying exponential with slope of approximately - l/De. 
Although both methods give very similar values of Re(a), the eigenfunctions are distinctly different 
and are an excellent demonstration of the qualitative differences in the solution of hyperbolic 
equations by the SUPG and Galerkin methods. The component of zxx computed by the two 
techniques at t = 150 is shown in Figure 8. The SUPG method produces a solution that is streamwise 
(x-direction) smooth everywhere except near the stationary boundary, where the velocity vanishes; 
here small oscillations appear along the boundary. The solution computed by Galerkin's method 
(Figure 8(b)) has undulations throughout the solution, a clear indication of the spatial instability that 
is inherent to this method; see Johnson et al. (1984). 

The concentration of the energy of the most dangerous disturbance near the zero streamline in the 
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Figure 8. Components of z ~  at t = 150.0  f o r  De = 2 0  corresponding to the solutions for the calculations with the fixed 
kinematics shown in Figure 6; calculations with the (a) S U P G  a n d  (b) Galerkin methods are shown. Note that the S U P G  

method gives results that are streamwise smooth, whereas the Galerkin method does not. 
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Figure 9. Contours of v:, at t=  10 for De=5  with 
the EEME/SUPG method with At = 0.1 and Ne~ = 14; 
(a) co = 0, (h) co = - 1, and (c) co = - 1/2. 

base flow was emphasized by linear stability calculations with the E E M E / S U P G  method in which the 
stationary surface was varied by changing the parameter co to vary the line of vanishing base velocity 
from the top boundary (to = 0; y - -  1) to the bottom boundary (to = - 1 ;  y = 0) and to the midplane 
(to = - 1 /2 ;  y - -1 /2 ) .  For  De = 5 and Ne~ = 14, the response of Lz(t ) was identical for all three 
calculations; however, the concentration of the energy in the eigenfunction was different. As shown by 
the plots of the contours of v x in Figure 9, the energy was concentrated near the stationary streamline 
in the base flow, whether it corresponded to a solid boundary or to the midplane of the flow. 

Finally, the boundary conditions on the base flow were changed to be 

vx(x, O)- -  2 and vx(x, 1) = l (29) 

to study the linear stability of a flow without a stationary streamline. The response of Lz(t ) is shown 
in Figure 10 for De = 5, Ne. = 14, and At = 0.1. Components of the eigenfunction are shown in Figure 
11 for discretization of the constitutive equation using both the EEME/GAL and E E M E / S U P G  
methods. Both techniques give the correct decaying exponential; however, the most dangerous eigen- 
function for the E E M E / S U P G  method is not concentrated near any boundary and has no streamwise 
structure at all and thus is not characteristic of any of the eigenfunctions described by Gorodstov and 
Leonov (1967). The form of the most dangerous eigenfunction has been changed by making a change 
in the frame of reference of the numerical method. 
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Figure 10. Transient response of the amplitude L2(t ) defined 
by (28) as computed with the E E M E / S U P G  ( - - - )  and the 
EEME/GAL ( ) methods with the boundary condition 
(29); Ne~ = 14, De = 5.0, and At = 0.1. 
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4.2. EVSS]SUPG Method 

The numerical stability of the EVSS/SUPG method was tested using the planar Couette flow of a 
U C M  fluid in a manner  similar to the calculations described above for the E E M E / F E M  method. The 
response of L2(t ) for De = 3 and De = 5 is shown in Figure 12 for ~o = 0, Ne~ = 14, and At = 0.1. Just 
as for the EEME/FEM,  the method is numerically stable for De = 3 and unstable for De = 5. The 
frequency of oscillation and the critical value of De for the instability are approximately the same as 
those predicted by the E E M E / S U P G  method; moreover, the energy of the eigenfunction also is 
concentrated near the stationary boundary (y = 1), as shown in Figure 13. 

4.3. EEME-P/SUPG and EEME-P/GAL Methods 

The E E M E - P / S U P G  and E E M E - P / G A L  methods were tested for computat ion of the stability of the 
planar Couette flow for the U C M  model in an identical way to that described above for the 
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Figure 11. Components  of v r and ryy at t = 20.0 for De = 5 computed with the E E M E / S U P G  method and the boundary 
condition (29); Ne~ = 28 and At = 0.1. This eigenfunction is stable in time, as indicated in Figure 10. 
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o lO 20 30 50 Figure 12. Transient response, computed with the EVSS/ 

SUPG method, of the amplitude L2(t ) defined by (28) as a 
mesh size for De = 3.0 ( - - - )  and De = 5.0 ( ) with At = 
0.1. Calculations are for meshes with N~I equal to 14. 

EEME/SUPG formulation. The plot of L2(t ) for De = 5, 09 = 0, and At = 0.1 is shown in Figure 14 
for meshes with both Ne, values of 14 and 28. The numerical instability seen in the EEME methods 
has been removed and all the calculations appear to decay with a rate very similar to -1/2De. 
Components of the eigenfunction for the calculation with Ne, = 28 and the EEME-P/SUPG method 
are shown in Figure 15 for t = 50. Again the energy in the disturbance is concentrated near the 
stationary boundary (y = 1), although a large-scale structure in the velocity field is discernible. Linear 
stability calculations were stable with the EEME-P method up to De = 10 with the time evolution of 
L2(t) and the eigenfunction behaving similarly to the forms depicted in Figures 14 and 15. 

4.4. EVSS-G/SUPG Method 

The EVSS-G/SUPG method uses bilinear Lagrangian interpolation for the velocity gradient field in 
all terms in the constitutive equation and bilinear interpolation for the components of the elastic 
stress tensor 1~. The temporal stability of this method was tested by calculation of the linear stability 
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Figure 13. Components  of vy and zry at t = 15.0 for De = 5 computed with the EVSS/SUPG method with Are] = 28 and 
At = 0.1. This eigenfunction is unstable in time, as indicated in Figure 12. 
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P/SUPG method, of the amplitude L2(t) defined by (28) as a 
function of De for meshes with Ne~ = 14 and Nol = 28; At = 
0.1. 
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of the p l ana r  Coue t te  flow, exact ly  as descr ibed above.  The  mos t  significant result  is tha t  the 
E V S S - G / S U P G  m e t h o d  appea r s  to be numer ica l ly  stable to very high values of De for fixed 
f ini te-element discret izat ion.  The  response  of  the energy of the d is turbance ,  L2(t), with t ime is shown 
in F igure  16 for ca lcula t ions  with e) = 0 and  At = 0.1; ca lcula t ions  are shown for (a) De = 10 and  (b) 
De = 50 for bo th  a mesh with 4 elements  in the s t reamwise  and  10 elements  in the cross-s t ream 
direct ions  and  for a mesh with Nel = 10 elements  in bo th  directions.  The calcula t ions  with bo th  
meshes are numer ica l ly  stable; however,  results with the finer mesh give a bet ter  a p p r o x i m a t i o n  to the 
correct  decay  rate  of  - 1/2De. 

The evo lu t ion  of the energy of the d i s tu rbance  for a sequence of ca lcula t ions  with 5 < De < 50 is 
shown in F igure  17 for the 4 x 10 mesh with At = 0.1. The behav io r  reproduces  the analy t ica l  
e igenvalue for long time. A l though  the calcula t ions  were s table and  accura te  for De = 50, they were 
not  con t inued  to higher  values of De because  of the long s imula t ion  t imes associa ted  with the slow 
decay rate  for the d is turbances .  The con tours  of the eigenfunct ion for Vy(x, y, t) at  t = 50 are shown in 

Vy Iyy 
l 0 l,O 

0.5 0 5  

,,, 

0.~ 
O0 O0 

0.0 O0 0.5 1.0 

Figure 15. Components of the disturbance to the velocity and stress field at t = 50.0 for De = 5 computed with the EEME- 
P/SUPG method with N~ = 14 and At = 0.1, This eigenfunction is stable in time, as indicated by Figure 14. 
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Figure 16. Effect of varying resolution of mesh in the x- and y-directions on temporal stability as computed with the 
E V S S - G / S U P G  method• Results are shown for (N~, Ny) = (4, 10) and (10, 10) with At = 0.1; (a) De = 10 and (b) De = 50. 

Figure 18, as computed with Nel  = 10 and De = 10. The structure of the eigenfunction matches what 
is expected from the theory. 

The behavior of the energy of the disturbance with decreasing time steps is shown in Figure 19 and 
clearly demonstrates the temporal stability of the EVSS-G/SUPG method; decreasing At by a factor 
of 200 leads to simulations with almost the identical decay rate for the disturbance. However, the 
oscillation frequency of the disturbance does depend on At. This is not unexpected because this 
temporal frequency approaches k, the streamwise wave number, for large De; k is approximately 8zr 
for the 4 x 10 mesh. The finest two time steps At = 0.05 and At = 0.005 resolve this frequency, but 
the largest time step (At = 0.1) does not. The results for the finest two time steps are very similar. 
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Figure 17. Transient responses, computed with the EVSS- 
G / S U P G  method, of the amplitude L2(t ) defined by (28) are 
shown for (Nx, Ny) = (4, 10) and 5 < De <_ 50, as computed 
with At = 0.1. 
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Figure 18, Components  of the disturbance to the velocity (vr) and stress (Err) field at t = 25.0 for De = 10 computed with the 
EVSS-G/SUPG method with N0~ = 10 and At = 0.1; this calculation is temporally stable. Max imum and min imum values of the 
functions are shown. 

4.5. EVSS-G/SU Method 

Calculations with the EVSS-G/SUPG method clearly demonstrate the improved stability of this 
formulation over the equivalent method, but without the approximation for the velocity gradient. We 
demonstrate that this stability is a characteristic of the finite-element approximations to the variables 
and can be reproduced using any of the methods described in Section 3 for solving the hyperbolic 
constitutive equation. The SU method was used to discretize the constitutive equation with the 
EVSS-G formulation of the equation set. The resulting method, referred to as the EVSS-G/SU 

Figure 19. Effect of time step on the evolution of the energy 
of the disturbance L2(t) for the EVSS-G/SUPG method with 
(Nx, N~,) = (4, 10) and De = 1. Results are shown for 0.005 < 
At <0 .1 .  
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Figure 20. Transient response, computed with the EVSS-G/ 
SU method, of the amplitude L2(t) defined by (28) as a 

function of De for the mesh N~ = 10 and At = 0.1. 

technique, had enhanced linear stability for the planar Couette flow, as demonstrated by the evolution 
of L2(t) in Figure 20 for 09 = 0, N~ = 10, and At = 0.1. The EVSS-G/SU method has similar 
numerical stability characteristics to the EVSS-G/SUPG method; the time-dependent calculations for 
the linear-stability problem reproduce the response expected from the analytical solution up to high 
values of De. The most dangerous disturbance computed for De = 50 and t = 200 is shown in Figure 
21. The concentration of the energy toward the stationary boundary is still apparent; however, the 
energy seems to be spread more uniformly in the cross-stream direction, possibly because of the effect 
of the cross-stream diffusivity in the method. 

© 

Vy ~yy 
Max(s): 0.000028 Max(e): 0.001459 

Min(o): -0 .000029 Min(o): -0.002055 

Figure 21. Components of the disturbance to the velocity (vy) and stress (Eyr) field at t = 25.0 for De = 5 computed with the 
EVSS-G/SU method with No1 = 10 and At = 0.1. This eigenfunction is stable in time, as indicated by Figure 20. Maximum and 
minimum values of the functions are shown. 
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Figure 22. Transient responses, computed with the EVSS- 
G/GLS method, of the amplitude L2(t ) defined b y  (28) as  a 

function of De for the mesh Ne~ = 10 a n d  At = 0.1. 
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4.6. EVSS-G/GLS Method 

Stability calculations for the EVSS-G/GLS method were carried out in a manner like those described 
above. Interestingly, changing from SUPG to GLS methods for solution of the hyperbolic constitutive 
equation led to instabilities, as seen in the EEME and EVSS formulations for De > 10. The evolution 
of the disturbance, L2(t), and the form of the most dangerous eigenfunction are shown in Figures 22 
and 23, respectively. The reason for the loss of stability is not understood, but must be connected to 
the use of the GLS method for discretization of the hyperbolic constitutive equation. 
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Vy Y'rr 
Max(Q): 0 .001675 Max(o) :  0 .178300 

Min(o) :  - 0 .001408 Min(o) :  - 0 .722300 

Figure 23. Components of the disturbance to the velocity (vy) and stress (Zyy) field at t = 25.0 for  De = 15 computed with the 
EVSS-G/GLS method with Ne~ = 10 a n d  At  = 0.1. This eigenfunction is unstable in time, as indicated by Figure 22. M a x i m u m  
and minimum values of the functions are shown. 
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5. Flow Around a Sphere in a Tube 

The utility of the transient analysis of the linear stability of a steady-state flow is demonstrated by 
calculations of flow around a sphere falling in a tube, which has become an accepted test problem for 
the evaluation of numerical methods for viscoelastic flows (Hassager and Bisgaard, 1983; Zheng et al., 
1990; Lunsmann et al., 1993). The difficulty of computation of steady-state flows for the UCM and 
OLDB models is well documented; for both models steady-state calculations seem to be only possible 
up to a maximum value of De, beyond which no solution is computed. The cause for this failure is 
not understood; however, calculations with viscoelastic models that predict finite growth of the 
elongational viscosity and shear thinning normal stresses can be continued to higher values of De 
(Chilcott and Rallison, 1988; Lunsmann et al., 1993). 

In the calculations presented here the EEME-P/SUPG method is used to compute the steady-state 
flows and transient analysis of the linear stability problem formed around these steady-states. The 
flow is assumed to be axisymmetric and is described in a cylindrical coordinate system centered and 
translating with the sphere. In this reference frame the tube wall moves past a stationary sphere with 
velocity v= = -Vs. Dimensionless variables are defined by scaling lengths with the sphere radius R~, 
velocity components with ~, and pressure and stress components with ~/o V~/R~, where ~/o is the zero 
shear-rate viscosity of the fluid. These definitions correspond directly to the problem statement by 
Lunsmann et al. (1993); the geometry for the computational domain is shown in Figure 24. Finite- 
element meshes are constructed according to the procedure outlined by Lunsmann et al. (1993). The 
three meshes used here (M2, M3, M4) have approximately (2 x 104, 3.5 x 104, 5 x 104) degrees-of- 
freedom in each discretization. 

With each mesh, calculations of steady-state flows were not possible for De > 1.6. The velocity 
components (vr, v~) and the shear and normal stress components (zr~, Zzz) are shown in Figure 25 as a 
function of De and computed with mesh M4. The velocity field is almost unaffected by increasing De; 
however, thin boundary layers form in both components of stress adjacent to the sphere. Moreover, a 
wake forms in the axial normal stress z= downstream of the sphere as De is increased, as a result of 
the strongly extensional flow created along the axis emanating from the rear stagnation point. The 

Figure 24. Geometry for a sphere falling along the axis of a vertical circular 
I cylinder, as viewed from the reference frame of the sphere. 
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Figure 25. Sample contours of steady-state stress and velocity fields for a sphere falling along the axis of a circular tube for 
R s p h e r e / R e y l l n e ,  e r = 0.5 and 0.6 ~< D e  _< 1.6. Contours are shown for the components of the radial and axial velocity components 
and the shear r,z and axial normal stress "rz= written in a cylindrical polar coordinate system centered along the axis of the 
sphere. 
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Figure 26. Transient response of the linear stability of the 
steady-state solutions for flow around a sphere computed 
with the EEME-P/SUPG method of the amplitude L2(t ) 
defined by (28) as a function of De, 0.6 _< De <_ 1.6, for the 
mesh M2. 

! M4 

M2 \ "  "~- L 

. . . . . . . .  M 3  "N" t 

0 5 10 

Time 

Figure 27. Transient response of the amplitude L2(t ) for the 
linear stability of the steady-state solutions for flow around a 
sphere computed with the EEME-P/SUPG method as a func- 
tion of the mesh for De = 1.2 and At = 0.04. 

length of the stress wake increases with increasing De. There are no qualitative differences in the 
solution field at De = 1.6, where convergence of the Newton iterations is lost. 

The linear stability of these steady-state solutions to random initial perturbations was tested by 
time integration of the linearized equations written about the steady-state solutions. The evolution of 
the energy in these disturbances with time is shown in Figure 26 as a function of De and computed 
for mesh M2 and At = 0.04. The flow approaches neutral stability as De is increased toward the 
limiting value. Similar results were produced with all three finite-element meshes. The evolution of the 
disturbance for De = 1.2 and At = 0.04 is shown in Figure 27 for all three meshes and differ in detail; 
however, some of this difference is probably attributed to the randomness of the initial condition. The 
decay rates at long time for the two finest meshes (M3, M4) are very similar. 

The evolution of the disturbance to the stream function computed with mesh M2 is shown in 
Figure 28 for De = 1.2. The disturbance is composed of small secondary vortices that form adjacent 
to the sphere and move from the front to the rear. For De < 1.6, the disturbance decays in time, but 
approaches neutral stability as De approaches 1.6. The temporal evolution of the disturbance is shown 
in Figure 29 as measured by the radial velocity at the point (r, z )=  (1.2, 0). The most dangerous 
disturbance appears to remain oscillatory at De = 1.6, where the disturbance is just marginally stable. 
The failure of the steady-state calculations at De = 1.6 implies a limit point in the family of solutions. 
The linear stability calculations imply neutral stability to an oscillatory mode at this point and are not 
consistent with the existence of the limit point unless an oscillatory instability occurs simultaneously 
with the limit point, which would be a very pathological result. 

The qualitative behavior of the neutral stability calculations can be compared with the laser- 
Doppler velocimetry (LDV) measurements of Bisgaard (1983) for the flow around a sphere falling in a 
tube filled with a solution of polyacrylamide and water. Bisgaard fixed the measuring volume for the 
LDV system and dropped the sphere, so that the velocity measurement as a function of time 
corresponded to the velocity at different positions in space around the sphere. Bisgaard observed that, 
above a critical fall velocity, the velocity field adjacent to the sphere was no longer smooth, but had 
undulations that corresponded to irregular variations in the velocity field that are consistent with 
small-scale secondary vortices adjacent to the sphere, as observed in the linear stability calculations 
described above. Because of the experimental method, it is not possible to decide whether the 
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Figure 28. Temporal  response of the stream function for De = 1.2 and At = 0.04 as a function of time, as computed for the 
linear stability of the flow around a sphere with mesh M4 and the EEME-P /SUPG method. 

perturbations observed by Bisgaard are stationary around the sphere or translate, as observed in the 
linear-stability calculations. 

6. Discussion 

Above all, the calculations described here establish the difficulty with the temporal stability of 
finite-element methods for the solution of viscoelastic flows. Numerical calculation of the linear 
stability of the planar Couette flow is an excellent problem for establishing temporal stability because 
the behavior of the most dangerous eigenvalue and the structure of the eigenfunction are known 
analytically from Gorodstov and Leonov (1967). The results demonstrated here show that algorithms 
like the EEME/SUPG and EVSS/SUPG, which give accurate and numerically stable results for 
smooth steady-state flows, are limited by numerical instabilities for time-dependent calculations. The 
instabilities are linked to the very difficult problem associated with accurate calculation of the 
eigenvalue spectrum for simple shear flow. The most dangerous eigenvalue has a real part that 
approaches -1 /2De and an imaginary part that scales as k, where k is the streamwise wave number, 
for De >> 1; moreover, the eigenfunction develops boundary layer structure in the cross-stream direc- 
tion. It is hard to imagine a more difficult problem to resolve. 
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Figure 29. Transient response of the radial velocity at a posi- 
tion next to the equator of the sphere (r, z) = (1.2, 0) for mesh 
M2 and At = 0.04. Results are shown for De of (a) 0.6, (b) 1.2, 
and (c) 1.6. The approach to neutral stability is apparent. 

Because fully implicit integration methods are used for solving the constant coefficient linear 
equation sets that result for the linear-stability formulation, the issue of numerical stability of the time 
integration is directly related to the spatial discretization. The instability seen in the EEME/SUPG 
and EVSS/SUPG methods is related to numerical instabilities that are inherent to these formulations. 
The calculations reported in Section 4.1 show that the energy in the most dangerous disturbance is 
concentrated near a stationary streamline. This fact led us to conclude that the numerical instability 
was related to the compatibility of the finite-element spaces for velocity gradient and stress in the 
limit where the constitutive equation reduces to an algebraic equation between these variables. 

The EVSS-G formulation uses an independent interpolation of the components of the velocity 
gradient tensor constructed so as to give compatible approximations for the velocity gradient and 
deviatoric stress. The three numerical methods constructed with the EVSS-G mixed method, EVSS- 
G/SUPG, EVSS-G/SU, and EVSS-G/GLS, all appear to have much greater numerical stability than 
the orginal mixed finite-element methods. In two cases, EVSS-G/SUPG and EVSS-G/SU, no upper 
bound was found for the loss of stability in the plane Couette flow analysis up to De = 50. Because 
no numerical stability limit was identified with these methods, Keiller's idea (1992) that the onset of 
numerical instability, as seen in his finite-difference discretizations, was connected with poor cross- 
stream resolution relative to the streamwise direction could not be tested in fhe context of our 
calculations with the EVSS-G methods, because no instability could be found. Possibly, the instability 
exists at higher values of De. Alternatively, Keiller's results may also be caused by the application of 
incompatibile finite difference approximations for velocity gradients and stresses and would disappear 
with proper discretization. 

Much is left to be done in order to develop the EVSS-G mixed finite-element methods into a 
robust family of techniques. The computations described here do not address important questions 
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about the applicability of these numerical methods to the solution of flows with singularities, such as 
sharp corners in solid surfaces or static or moving contact lines at the junctions of solid surfaces with 
free surfaces. We believe that these problems require attention to the well-posedness of the boundary- 
value problem formed by the particular constitutive equation, as well as careful design of the 
numerical method. The calculations of Coates et  al. (1992) for constitutive models with Newtonian- 
like behavior near a sharp corner in a solid wall demonstrate this coupling. 

The efficiency of time-dependent computations would be greatly enhanced by replacing the fully 
implicit time-integration methods applied by Northey et  al. (1990) and used here by time-splitting 
methods that solve the discrete form of the constitutive equation and the momentum/continuity pair 
separately, especially if the constitutive equation can be solved by explicit methods. New attempts at 
developing such methods are underway. 

Calculations for the linear stability of the flow around a sphere falling in a tube using the 
EEME-P/SUPG method give the first indication of the presence of complex dynamics that may 
evolve from complex steady-state flows computed with simple differential constitutive models. These 
calculations show that the most dangerous eigenfunction for the UCM model corresponds to a layer 
of axisymmetric vortices that lay in the stress layer adjacent to the sphere and which move from the 
fore to the aft of the sphere with time. Although this result is qualitatively similar to the experimental 
observations of Bisgaard (1983) for instability around a sphere, more experimental and computational 
work needs to be done before a definite connection can be made. 
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