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Abstract. The structural distortions, lattice dynamics, and 
equations of state of the high-pressure perovskite phases 
of MgSiO3 and CaSiO3 are examined with a parameter-free 
theoretical model. A theoretical ionic description of the 
crystal charge density is constructed from shell-stabilized 
ions, whose wavefunctions are calculated from Hartree- 
Fock theory. The short-range forces are then calculated in 
the pairwise-additive approximation from modified electron 
gas theory. The resulting many-body-corrected pair poten- 
tials are used to study the lattice dynamics in the quasihar- 
monic approximation. The cubic structure of MgSiO3 per- 
ovskite (Pm3m) is found to be dynamically unstable at all 
pressures, with imaginary quasiharmonic phonons occur- 
ring at the edge of the Brillouin zone. In contrast, the cubic 
phase of CaSiO3 perovskite is found to be stable at low 
pressures but becomes dynamically unstable at ~ 109 GPa 
(1.09 Mbar). Energy minimization of MgSiO3 in an ortho- 
rhombic cell (Pbnm) is performed to obtain a distorted per- 
ovskite structure that is dynamically stable. The calculated 
unit cell parameters at zero pressure and room temperature 
are within 2 percent of those determined by x-ray diffrac- 
tion. The theoretical equation-of-state calculations predict 
a lower compressibility and thermal expansivity for the two 
silicate perovskites than does the available experimental 
data on these compounds. Extensions of the present ionic 
model for more accurate predictions will require the inclu- 
sion of polarization of charge density and vibrational anhar- 
monicity. 

I. Introduction 

The possibility that silicates may adopt the extremely dense 
perovskite structure at very high pressures was originally 
suggested by Ringwood (1962). Silicate perovskite phases 
of various compositions were subsequently synthesized in 
high-pressure laboratory studies (Ringwood and Major 
1967, 1971, Liu 1974, Liu and Ringwood 1975, Ito and 
Matsui 1978, 1979, Yagi et al. 1978, 1982). Densities mea- 
sured for the perovskite-type MgSiO3 and CaSiO3 were 
found to be the largest of any known silicate phases. On 
the basis of these results, it has been widely assumed that 
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the lower mantle may be composed of such compounds 
(see Jeanloz and Thompson 1983). Because these phases 
may dominate the mineralogy of this region of the earth's 
interior, their material properties at high pressures and tem- 
peratures are of considerable geophysical importance. 

Despite the importance of the silicate perovskites for 
earth science, useful experimental data under geophysically 
relevant conditions are generally lacking. Synthesis of crys- 
tals of sufficient quality for the study of material properties 
has proven difficult. The MgSiO3 perovskite has been stud- 
ied, however, by powder x-ray diffraction at 1 bar and to 
pressures of 8.5 GPa (85 kbar), from which unit-cell parame- 
ters and compressibility have been obtained (Yagi et al. 
1982). The results of electron transmission microscopy of 
that sample have been interpreted to indicate a superstruc- 
ture based on the structure indexed for the x-ray refinement 
(Madon et al. 1980). Some information on the phonon prop- 
erties is available from a measurement of the infrared spec- 
trum (Weng et al. 1983), but the observed bands are not 
well resolved and have not been assigned. Recently, the 
thermal expansivity of (Mgo.gFeo.~)SiO3 was measured to 

800 K at 1 bar (Knittle et al. 1986), but there is, as yet, 
no direct information on the variation of thermal expansion 
with pressure. Eyen less is known about the properties of 
perovskite-type CaSiO3. Ringwood and Major (1967, 1971) 
successfully synthesized perovskite forms of CaSiO3 in solid 
solution with CaGeO3. Liu and Ringwood (1975) later syn- 
thesized the end-member phase and obtained an x-ray dif- 
fraction pattern at high pressure (16.0 GPa) that was in- 
dexed as cubic. The phase could not be quenched to 1 bar, 
in contrast to the behavior of MgSiO3-perovskite. 

In addition to their importance to solid-earth geophys- 
ics, the silicate perovskites provide further examples with 
which to examine details of the crystal chemistry of the 
general class of perovskite materials. As discussed by Glazer 
(1972, 1975), a number of distortions from the ideal cubic 
perovskite structure is possible (Fig. 1). This behavior may 
be controlled in part by the relative sizes of the A and 
B cations and X anions in these ABX3 compounds (Yagi 
et al. 1.978). The MgSiO3 perovskite represents one extreme 
in this regard, with the small radius of the A cation (Shan- 
non and Prewitt 1969). In CaSiO3, the radius of the cation 
in the A site is significantly larger. Therefore, on the basis 
of simple radius ratio arguments, one should except larger 
distortion in the magnesium than in the calcium perovskite. 
The extent to which these simple ionic radius ratio argu- 
ments are valid is examined in the present study. 
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Fig. L Ideal cubic and distorted perovskite structures (from Megaw 
1973) 

In order to provide quantitative predictions for the ma- 
terial properties of the silicate perovskites as well as to pro- 
vide a more complete understanding of the observed behav- 
ior at the atomic level, these phases are examined in the 
present paper with a theoretical, parameter-free model 
(Hemley et al. 1985a, b). The model is based on an electron- 
gas treatment of the interatomic interactions (Gordon and 
Kim 1972, Waldman and Gordon 1979). Although the 
pairwise-additive approximation is used in this approach, 
many-body contributions are incorporated in the inter- 
atomic pair potentials in a self-consistent manner (Hemley 
and Gordon 1985). The energy-minimized structures for the 
two perovskites are determined. This procedure is essential 
for a quantitative analysis of these crystals because of the 
possibility of large deviations from the ideal, cubic structure. 
Lattice dynamics calculations are performed with a modi- 
fied rigid-ion, quasiharmonic approximation (Born and 
Huang 1954). The calculations provide further insight into 
the distortion mechanism and provide theoretical estimates 
of the phonon properties, which can be compared with 
available experimental data. From a converged calculation 
of the quasiharmonic phonon frequencies as a function of 
wavevector, the quasiharmonic vibrational free-energy and 
thermal expansivity of the crystals are calculated. 

II. Method 

Static Energy and Structure 

The procedures used for calculating the static and lattice- 
dynamical properties of the crystal are outlined in this sec- 
tion. A more detailed and general description of the method 
for treating the static energy is given by Muhlhausen and 
Gordon (1981a). A perfect crystal is assumed. As described 
previously (Hemley and Gordon 1985), the total charge den- 
sity is written as a superposition of the component ion den- 
sities expressed as 

,OT(X) = E  2 Z i  ( } ( x - - r i l ) - - f l i ( x - - r i l )  (1) 
i l 

where p(x-r~z) is the electron density of an ion centered 
at ru, Z~ is the nuclear charge, and ~ is a delta function. 
The summations include all ions i of the unit cell and lattice 
vectors l. The binding energy of the crystal UB is defined 
as the crystal interaction energy per formula unit relative 
to the fixed charge densities Z~3(x)-p~(x) at infinite separa- 

tion. The energy has contributions from electrostatic, kinet- 
ic, exchange, and correlation terms. The electrostatic inter- 
action energy (per unit cell) is given by 

UE-- 1/2[ dx  ~ [Zi6(x - r i ) - p i ( x - r i )  qSi(x), (2) 
,1  i 

where 

q~i (x) = f  d x' [p r (x') - Z i 3 (x' - riz) + p i(x' - ri l)]/[x' - x]. 

The latter includes a contribution from the long-range Cou- 
lomb interaction that is calculated by the Ewald method 
(Ewald 1921), the exact non-point (or short-range) Coulomb 
interaction, and a term for the self energies of the compo- 
nent ions. The kinetic, exchange, and correlation energies 
are obtained from the energy density functionals of modified 
electron gas theory (MEG) (Gordon and Kim 1972, Wald- 
man and Gordon 1979). For the perfect crystal these are 
obtained by integrating 

U~-=~ dx' ~ [~  ~ p~(x-ru)] - ~  ~ e~ [p~(x~-ru)] (3) 
O i l i 1 

for each density functional e~. In the present calculations, 
a pairwise additive approximation is invoked, and the inte- 
grals are separated into sums of integrals over pairs of ions. 

The charge densities of the ions are obtained by a Wat- 
son sphere-type calculation (Watson 1958, Muhlhausen and 
Gordon 1981a, b, Hemley and Gordon 1985) in which the 
Hartree-Fock self-consistent-field (HF-SCF) method is em- 
ployed. With this technique the charge density of the ion 
in the crystal is simulated by placing the ion in a hollow 
sphere of radius Ro with a charge Q at the surface. The 
charged sphere generates a perturbing potential that is con- 
stant inside the sphere and falls off as 1/r outside. The differ- 
ence between the HF-SCF energy with and without the 
perturbing field gives the ion self-energy U~. A self-con- 
sistency condition is imposed to determine the choice of 
wavefunction for a given configuration of ions: the value 
of Ro is fixed such that the electrostatic potential in the 
sphere matches the total potential at the site of the ion 
in the crystal. Because the site potential is a function of 
the configuration of ions, a series of ion shell-stabilized wave- 
functions with different R0 are required to determine the 
electrostatically self-consistent equation of state of the crys- 
tal. For the cubic structure the procedure of matching the 
site potential is straighforward because all of the ions of 
a given type are equivalent by symmetry; therefore, the site 
potentials for each type of ion are the same. For the dis- 
torted structures, however, the loss in symmetry results in 
a variation in the potential for a given type of ion in different 
sites in the unit cell. In this case the averaged site potential 
is used to match with the shell potential. The calculation 
was considered converged when the average value agreed 
with the shell potential to within 0.1 percent. 

Previous MEG calculations with shell stabilized ion 
charge densities (SSMEG) have been performed to deter- 
mine the zero-pressure properties of a number of oxide and 
halide crystals (Muhlhausen and Gordon 1981a, b). In these 
studies the shell-stabilization of charge density was found 
to represent the most significant many-body contribution 
to the calculated equilibrium properties. This result has 
been confirmed by more recent calculations of ionic crystals 



at high pressure (Hemley and Gordon 1985, Hemley et al. 
1985a, b). In the present study a series of shell-stabilized 
wavefunctions for 0 .2 were used with Ro varied over the 
range 0.963-1.138/~. Because of the small size of Mg +2, 
the change in Ro with volume has a negligible effect on 
the calculated cation charge density; therefore, a single wave- 
function was used. A single wavefunction was also used 
for Ca +z , as the effect of varying the shell radius on the 
equation of state was much less than that resulting from 
the change in radius for the oxygen anions. 

The variation in the shell radius (or potential) produces 
a change in the self energy of the ion with compression. 
The self energy is the positive shift of the ion energy that 
results from the shell-stabilization perturbation. For shell- 
stabilized 0 .2 this term is calculated by the method de- 
scribed by Muhlhausen and Gordon (1981 a). Recent work 
has shown that it is important to include this effect in both 
the calculation of the zero-pressure equilibrium structure 
and the equation of state (Hemley and Gordon 1985, Hem- 
ley et al. 1985b). For the case of cubic crystals studied earlier 
it is sufficient to calculate the lattice (or cohesive) energy 
as a function of the lattice constant. Numerical differentia- 
tion of the lattice energy-volume curve then gives the static 
pressure-volume relation. Alternatively, the calculated 
points can be fitted to an equation of state, such as the 
Eulerian finite-strain equation (Birch 1978). To calculate 
the crystal structure with free internal parameters one must 
minimize the static energy at zero-pressure or the Gibbs 
free energy, G = E + PV, under applied pressure. 

In the present calculations of the distorted perovskite 
phases two procedures were examined. The Gibbs free ener- 
gy (minus the self-energy) was minimized at a fixed pressure 
with a set of pair potentials calculated with a given shell 
radius on the oxygen anions. The pressure was then varied 
to satisfy the site potential matching criterion described 
above. The static energy plus the appropriate self energy 
was then fitted with a fourth-order Eulerian finite-strain 
expansion (Hemley and Gordon 1985). The second proce- 
dure involves constructing from the minimization results 
a single, structure-dependent, pair potential for each interac- 
tion together with a function representing the dependence 
of the self energy on the site potential (Jackson 1986). The 
compiled potential was obtained by determining the nearest 
neighbor M - O ,  S i - O ,  and O -  O distances for each vol- 
ume and concatenating the corresponding points from each 
pair potential. The final set of points then provides a crystal- 
potential (i.e., many-body) corrected, pair potential that is 
valid over the range of compression studied. With a set 
of compiled pair potentials, the zero-pressure unit-cell param- 
eter for cubic MgSiO3 in the static lattice limit was found 
to be within 0.1 percent of that determined by the first 
method. For the lattice-dynamical calculations, however, 
the compiled potentials required considerable smoothing 
or fitting to a prescribed functional form in order to avoid 
spurious oscillations in quasiharmonic frequencies and 
vibrational free energy. Because of this problem, the first 
procedure described above was used in the present study. 

Lattice Dynamics and Equations of State 

The lattice-dynamics calculation was performed in the 
quasiharmonic approximation, according to which the crys- 
tal potential is expanded to second order at a given value 
of the lattice constant (Born and Huang 1954). This approxi- 

mation generates volume-dependent phonon frequencies, 
vi(V). The usual periodic boundary conditions are imposed 
in order to determine the elements of the dynamical matrix 
(Born and Huang 1954). The matrix elements are obtained 
from the first and second derivatives of the Madelung and 
short-range parts of the SSMEG pair potentials. The quasi- 
harmonic phonon frequencies v~(V) are determined by dia- 
gonalization of the dynamical matrix for a given wavevector 
k. In the present treatment, the rigid-ion approximation 
is assumed for each value of the lattice constant, and the 
dynamical contribution from shell stabilization is neglected 
(e.g., Boyer et al. 1985). The derivatives of the pair potentials 
were obtained by cubic spline interpolation of the tabulated 
SSMEG curves. 

In the quasiharmonic approximation, the Helmholz free 
energy of the crystal can be written (Born and Huang 1954) 

F(V, T)= U(V) + 1/2 ~ hv,(V) 
i 

+ kB T Z  In (1 - exp [ - h v~(V)/k, T]). (4) 
i 

where T is the temperature, h is Planck's constant, and kB 
is Boltzmann's constant. The summation formally includes 
all the normal modes in the crystal at a given V. For the 
cubic case, a grid of ,-~ 1,000 points in the Brillouin zone 
was used. For the distorted structures with their larger unit 
cell, ~ 150 wavevectors proved to converge adequately. 

The equation of state is obtained by differentiating 
Eq. (4) with respect to V, i.e., P = - ( ~ F / ~ V ) r .  The result 
can be written formally in the following way, 

P = P~ + Pze + PTH. (5) 
In this expression P is the externally applied pressure; P~ 
(= - d  U~/d V) is the static ground-state electronic pressure 
that includes a term for the self-energy pressure ( -  d Us/d V) 
due to the volume dependence of the ion self energy; Pz ,  
and PTH are the zero-point and thermal vibrational pres- 
sures, respectively, given as 

Pzv = V-1 ~ 7~ hvJ2 (6) 
i 

Pro = V -  1 Z ~ hvJ[exp(hvi/kB T ) -  1], (7) 
i 

where'7~ is the mode-Gruneisen the parameter 

d lnvi 
?i= d lnV" 

The P - V  isotherms [Eq. (5)] were calculated by analytic 
differentiation of the expression for F(V, T). The Gibbs free 
energy as a function of both T and P was obtained from 
G = F + P V. Finally, the thermal Gruneisen parameter ~ and 
the harmonic, high-temperature Debye temperature On 
were calculated from 

d( lno> 
7 = d In V (9) 

and 

0~o~ =27r k <~°a>' (10) 

where (ln¢o> and <co2> are averages over the quasi- 
harmonic frequency spectrum (Wallace 1972). 



T a b l e  1. Bond lengths and dissociation energy of cubic MgSiO3 
and CaSiO3 perovskitea 

MEG b SSMEG c SSMEG a 

MgSiO3 

S i - O  (a/2) 1.88 X 1.742 X 

Mg--O, O--O (]~a/2) 2.66 A - 2.464 ]~ 

De, eV/molecule - - 143.6 

CaSiO3 

S i - O  (a/2) 1.91 ~ 1.790/~ 1.784 ,~ 

C a - O ,  O - O  (1/2a/2) 2.70 a 2.531 a 2.523 X 

D,, eV/molecule - 141.7 141.0 

a Zero-pressure, static-lattice calculation; a is the lattice constant, 
and De is the dissociation energy required to separate the crystal 
into gas-phase ions 

b Wolf and Jeanloz (1985); modified electron gas calculation with 
a Watson sphere model with charge of + 1 for the oxygen anion 
Muhlhausen and Gordon (1981b); many-body overlap" terms 
were evaluated explicitly in this calculation; correction factors 
for 28 electrons as in the present work were used 

a This work 

I I I .  R e s u l t s  

Cubic Perovskites: Static Lattice 

The results of the static-lattice calculation (no thermal con- 
tribution) are considered first. The calculated structures and 
dissociation energies for the cubic perovskite po lymorphs  
of MgSiO3 and CaSiO3 at zero pressure are detailed in 
Table 1. These coordinates  correspond to the min imum of 
the lattice energy-volume curves for the cubic structures, 
as shown in Figures 2 and 3. F o r  the cubic crystal, all bond  
lengths are given by one parameter  each (e.g., lattice pa ram-  
eter a). The results of a M E G  calculation performed concur- 
rently by Wolf  and Jeanloz (1985) are also listed. In their 
calculation the oxygen charge density was determined from 
a Watson  sphere model  with a charge of + 1 and a fixed 
radius of Ro = 1.408 ~ (Watson 1958, Cohen and Gordon  
1976), whereas in the present calculation a charge of + 2  
was used and the shell radius was varied to mainta in  elec- 
t rostat ic  self-consistency. It is apparent  from the results 
listed for the two calculations that  the form of the shell 
potent ial  used for the calculation of the oxygen charge den- 
sity by a Watson  sphere-type model  has a pronounced effect 
on the calculated structure. This result has been demon- 
strated previously for numerous other oxide crystals (Muhl- 
hausen and Gordon  1981a, b, Hemley et al. 1985b). 

F o r  CaSiO3 the results of a full many-body  calculation 
carried out by Muhlhausen and G o r d o n  (1981b) are also 
compared  in Table 1. The method employed by Muhlhau-  
sen and G o r d o n  (1981b) is similar to that  employed here 
in that  self-consistent, shell-stabilized ions were used. In 
the previous calculation, however, the many-body  contr ibu-  
t ion arising from the overlap of charge density from three 
or more ions was included (al though the effect of volume 
dependence of the ion self energy was not  included in deter- 
mining the minimum energy structure). The results of the 
two calculations are similar. The agreement suggests that  
the pairwise calculation with the effective many-body  cor- 
rected pair  potentials  provides a useful approximat ion  for 
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further calculations, including those required for lattice dy- 
namics and equations of state (Hemley and Gordon  1985). 

Lattice Dynamics of Cubic Perovskites 

Although the min imum energy configuration of the ions 
can be easily determined (especially for a cubic crystal), one 
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must evaluate the second derivatives of the crystal potential 
with respect to displacements of the component ions in 
order to determine whether the calculated minimum energy 
structure is in fact dynamically stable. A dynamical instabil- 
ity will obtain if the configuration of ions exists on a saddle 
point of the crystal potential. Dynamical instabilities are 
evident as imaginary frequencies in the quasiharmonic 
mode spectrum. The magnitude of the imaginary compo- 
nent indicates the degree of negative curvature of the poten- 
tial along that coordinate in the crystal (i.e., the degree of 
instability). 

The first Brillouin zone for a simple cubic crystal is 
shown in Figure 4. The labelling of the points follows the 
convention of Bouckaert et al. (1936). In Figure 5 the calcu- 
lated dispersion of the quasiharmonic frequencies in the 
Brillouin zone for cubic MgSiO# at the static-lattice energy 
minimum is shown (a=3.485 A). The symmetry designa- 
tions 0f the various branches were made by comparing the 
calculated eigenvectors with those published by Cowley 
(1964) (see also Boyer and Hardy 1981). Instabilities are 
calculated to occur along Z, A, S, and T. The unstable modes 
have a maximum imaginary frequency at the R- and M- 
points at the edge of the Brillouin zone, and are designated 
R25 and M2, respectively. It is noted that the entire branch 
along T(from R25 to M2, designated T2) is imaginary. 

The unstable modes have eigenvectors that involve m o -  
tion of the oxygen ions and may be viewed as coupled libra- 
tional modes of the SiO6 octahedra. The R25 mode involves 
alternating in-phase and out-of-phase rotation of adjacent 
(corner-sharing) octahedra in successive planes in the crys- 
tal. The M2 mode corresponds to in-phase rotation of SiO6 
groups along one axis and out-of-phase motion of polyhe- 
dra along the other two orthogonal axes. That these modes 
are unstable in the cubic structure means that a lower ener- 
gy minimum exists at some point along one of these coordi- 
nates - that is, in a distorted perovskite structure. Signifi- 
cantly, this distortion is found to occur for all values of 
unit-cell constant, as discussed below. 



T a b l e  2, Equilibrium structure of CaSiO3 perovskite: cubic, Pm3m 
(Z = 1) 

SSMEG" Exp. b 

V(unit cell) 45.81 ~3 _ 
(43.95 ~3) (42.36 ~3) 

S i - O  (a/Z) 1.789 A, - 
(1.765 A) (1.743 A) 

Ca -O ,  O - O  q/2a/23 2.530 A. - 
(2.495 ~) (2.465 A.) 

a The top line gives the calculated result for P=0,  T-298 K. For 
comparison with the experimental result, the theoretical predic- 
tion for 16.0 GPa and T-298 K is given in parentheses 

b Liu and Ringwood (1975); P =  16.0 GPa and room temperature 

Further insight into this behavior in MgSiO3 is gained 
by comparing the results for CaSiOa, also in the cubic struc- 
ture. The dispersion relations for CaSiO3 at the equilibrium 
static-lattice configuration (a = 3.568 ~)  are shown in Fig- 
ure 6. In this case, the quasiharmonic mode spectrum has 
no imaginary components, and in particular, the T2 branch 
is now found to be stable. On the other hand, the branches 
that were found to be unstable in cubic MgSiO3 soften 
on compression of the structure. At a = 3.342 A, the instabil- 
ity in the R2s mode is reached, as shown in Figure 7. The 
M2 mode is still stable at this value of the unit cell constant 
but becomes unstable on further compression. The pressure 
at which the dynamical instability occurs is 109 GPa 
(298 K). 

According to the present calculation, therefore, the cubic 
form of CaSiO3 perovskite below ~ 100 GPa (1.0 Mbar) is 
stable relative to the lower symmetry distortions described 
above. This result is in agreement with the available experi- 
mental data on CaSiO3 perovskite. The structural parame- 
ters for cubic CaSiO3, including the thermal correction for 
298 K calculated from the lattice dynamics, are listed in 
Table 2. The results for 16.0 GPa  are also listed for compari- 
son with experiment. The calculated bond lengths are close 
to those determined from the in situ x-ray measurement, 
with the theoretical results being 1.3 percent larger. 

Distorted Perovskites 

The fact that dynamical instabilities are found for MgSiO3 
in the cubic perovskite structure implies that the coordi- 
nates must be relaxed in a more extensive energy minimiza- 
tion procedure to obtain the true static-lattice equilibrium 
structure from the model. The minimization was carried 
out for the orthorhombic structure with space group Pbnm, 
also known as the GdFeOa structure (Wyckoff 1964). This 
structure has ten parameters (three lattice and seven internal 
positional parameters). As mentioned above, the calculation 
was performed by minimizing the Gibbs free energy to ob- 
tain a structure in which the average site potential of the 
oxygens ions matched the shell potential used for the origi- 
nal calculation of the pair potentials. The volume depen- 
dence of the static-lattice energy for MgSiO3 in the ortho- 
rhombic modification is compared with the cubic case in 
Figure 2. The orthorhombic structure is found to be more 
stable for a l l  volumes, with 0.483 eV/molecule between min- 
ima. 

7 

T a b l e  3. Zero-pressure equilibrium structure of MgSiO3 perovskite: 
orthorhombic, Pbnm (Z = 4) 

SSMEG a Exp? 

V(unit cell) 166.60 ~3 162.75 ~3 

a 4.849 A 4.780(1) 
b 4.937 A 4.933(1) 
c 6.959 A 6.902(1) ~. 

Mg x 0.995 0.974 (7) 
Mg y 0.020 0.063 (5) 
Mg z 1/4 1/4 

0(1) x 0.080 0.096(10) 
0(1) y 0.480 0.477(11) 
0(1) z 1/4 1/4 

0(2) x 0.711 0.696(7) 
0(2) y 0.288 0.291 (7) 
0(2) z 0.042 0.056(4) 

Si-O(1) 1.784 A 1.79(1) 
S i -  O(2) 1.770 ~ 1.75(3) 
Si-O(2) 1.771 A 1.82(3) 

Mean S i - O  1.775 A 1.79~ 

Mg-O(1) 2.073 X 2.10(6) ,~ 
Mg-O(1) 2.309 A 2.12(5) 
Mg-O(2) 2x 2.118 A 2.06(5) 
Mg-O(2) 2x 2.388/~ 2.20(4) A 
Mg-O(2) 2x 2.476 A 2.47(4) A 
Mg-O(1) 2.697 A 2.75(6) 
Mg-O(1) 2.792 A 2.95(5) A 
Mg-O(2) 2x 2.893/~ 3.16(4)/~ 

Average of 6 2.232 A 2.12 
Average of 8 2.293 ~ 2.21/~ 
Average of 12 2.468/~ 2.48 ~, 

P=0, T-298 K 
b Yagi et al. (1978); P=0,  T=295 K 
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Fig. 8a-e. Volume and pressure dependence of the structure of the 
orthorhombic MgSiO3 perovskite. (a) Unit-cell parameters. (b) In- 
ternal parameters. (c) Bond lengths 
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Extensive searching at low pressure for a stable distorted 
perovskite structure for CaSiO3 failed to find one that is 
preferred over cubic. Interestingly, numerous local minima 
were found because of the small energy difference between 
the ideal cubic structure with no rotated octahedra and 
distorted forms with coupled, octahedral rotations. In each 
case, the ideal structure proved to be the most stable at 
low pressure. On compression, however, the dynamical in- 
stability occurs, as discussed above. At this point a distorted 
structure is favored, as shown in the splitting of the curves 
in the E -  Vplot in Figure 3. 

As a check on the dynamical stability of these structures, 
the quasiharmonic frequency spectrum for each of these 
structures was determined. It was found that each of these 
structures was indeed dynamically stable at the minimum, 
with real quasiharmonic frequencies. This calculation 

proved to be a sensitive test of the minimization near the 
compressional instability in CaSiO3. Because of the flatness 
of the crystal potential with respect to octahedral rotation 
in this region, the energy minimization was sometimes in- 
complete. Incomplete minimization in turn produced weak- 
ly imaginary quasiharmonic mode frequencies in the lattice- 
dynamics calculation. These unstable vibrations correlate 
with the R25 modes of the cubic phases; that is, they occur 
at the zone boundary. In the orthorhombic cell, with its 
quadrupled cell volume, these modes appear at zone center 
because of the folding in of the Brillouin zone. With the 
stable frequency spectrum, the thermal and zero-point con- 
tributions to the equation of state are easily determined 
within the quasiharmonic approximation. 

The coordinates of the orthorhombic structure obtained 
from the minimization, including both the zero-point and 



Table 4. Summary of equation of state parameters calculated for 
MgSiO3 and CaSiO3 perovskites a 

MgSiO3 CaSiO3 

Ko (298 K), GPa 335 (260_ 20) b 347 = 
K~ (298 K) 0.2 5.3 ~' 
Pze, o, GPa 2.77 2.40 
Prn o (298 K), GPa 0.59 0.45 

, o , ~  
0 ~ ,  K 1,340 1,305 ,; 
7 1.44 1.25 _E 

"6 > 
a Ko and K~ are the zero-pressure bulk modulus and its pressure 

derivative; PzP, o and PTm o are the zero-point and thermal pres- 
sures at zero pressure; On oo is the harmonic Debye temperature; 

is the Gruneisen parameter 
b Experimental results in parenthesis; Yagi et al. (1982) 

thermal pressure shift for 298 K, are compared with the 
results of the x-ray refinement of Yagi et al. (1978) in Ta- 
ble 3. There is agreement between theory and experiment; 
in particular, the calculation reproduces the distortion in 
the SiO, and MgO1/ polyhedra. Although the distortions 
determined in the experimental structure refinement may 
be larger than those calculated from the model, in many 
cases the theoretical results are within the stated errors of 
the refinement. It is important to note that this refinement 
was based on powder-diffraction data, and is, therefore, sub- 
ject to larger uncertainties than would be the case for a 
single-crystal study. 

The question of whether the distortion in the MgSiO3 
perovskite will increase or decrease at pressures and temper- 
atures characteristic of the deep mantle has been the subject 
of some interest in recent literature (e.g., Yagi et al. 1978, 
1982). The problem has not been resolved because structural 
studies at high pressure have not been performed above 
8.5 GPa and temperatures other than ambient. Structural 
studies as a function of temperature at ambient pressure 
(0.1 MPa) indicate no measurable changes in the distortion 
(Knittle et al. 1986). The volume dependence of the parame- 
ters that describe the structure are shown in Figures 8 a--c. 
Also shown is the corresponding pressure scale for the 
298 K isotherm determined from the equation of state (see 
below). In agreement with experiment, the ratios of the unit- 
cell parameters are found to be only weakly pressure depen- 
dent. The internal positional parameters (Fig. 8 b), however, 
do reveal an increase in the distortion from the ideal struc- 
ture on compression. For example, the calculated 0(2) x, 
y, z parameters change from 0.711, 0.288, 0.042 at zero pres- 
sure to 0.696, 0.300, and 0.049 at 2 Mbar; the corresponding 
values for the cubic structure are 0.750, 0.250, and 0.0. A 
noticeable pressure dependence of the distortion in the SiO4 
and MgO12 polyhedra is calculated, particularly for the lat- 
ter (Fig. 8c). Most of the M g - O  bonds are calculated to 
be significantly more compressible than the S i - O  bonds. 

Equations of  State 

The calculated compression isotherms for the perovskites, 
including the effects of the distortion, are shown Figures 8 
and 9 for MgSiO3 and CaSiO3, respectively. The equation 
of state parameters are summarized in Table 4. In Figure 
9(a) the volume per unit cell for MgSiOa is plotted along 
with the experimental room-temperature data of Yagi et al. 
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Fig. 9a, b. Isothermal compression of MgSiO3 perovskite 

(1982) to 8 GPa. An overestimation of the calculated volume 
(or underestimation of the pressure) relative to the experi- 
mental result is evident. The extrapolated Birch-Murnaghan 
equation of state determined from the experimental data 
is compared with the theoretical result in Figure 9(b), where 
the relative volume is plotted versus pressure. The envelope 
corresponds to the bounds on K'0 that were assumed in 
the analysis of the data; i.e., K '0=3  and 5 gave best fit 
values for Ko of 262 and 255 GPa, respectively. The sum 
of the estimated error in the experimental bulk modulus 
determination (+_20 GPa) is not included in the plot (see 
Yagi et al. 1982). 

The range of Ko and K~ that was used by Yagi et al. 
(1982) to fit the measured points gives a more compressible 
crystal to megabar pressures (~  100 GPa) than the theoreti- 
cal curve. At high pressure, however, the theoretical room- 
temperature isotherm tends to approach the upper bound 
obtained from the experimental analysis (Ko=262 GPa, 
K;--3) .  In fact, according to the calculation the pressure 
dependence of the bulk modulus is very weak at low pres- 
sure. This result, surprising because K;  ~ 4  for many ionic 
materials, is evident in the energy-volume curve in Figure 2. 
The volume dependence of the static energy for the distorted 
structure is much more symmetric about the minimum than 
are the curves for the cubic structures. This prediction must 
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Fig. 10. Isothermal compression of CaSiO3 perovskite. The dashed 
line shows the critical volume at which the cubic structure becomes 
unstable with respect to the R25 phonon displacements 

be tested experimentally by accurate measurements at high 
pressure. 

For CaSiO3 only one experimental point is available. 
This value was obtained by Liu and Ringwood (1975) using 
in situ x-ray diffraction in a diamond-anvil cell. As in the 
case of MgSiO3, the calcium perovskite was synthesized 
by laser heating at high pressure, but in contrast to the 
former, the phase was found to be non-quenchable. The 
point shown in Figure 10 corresponds to 16.0 GPa. As men- 
tioned above, the cubic phase is predicted to be stable rela- 
tive to distorted tetragonal and orthorhombic phases at 
low pressure. The onset of the calculated distortion occurs 
at a volume of 37.23 ~3 (109 GPa on the 298 K isotherm). 

The three isotherms shown in Figures 9 and 10 illustrate 
the calculated pressure dependence of the thermal expan- 
sion for these two compounds. For example, for MgSiO3 
A V/V (298 K) is calculated to be 1.30 percent at 1,000 K 
and P = 0. The calculated volume coefficient of thermal ex- 
pansion ~v is 1.3 x 10 .5 K -1 at 298 K, increasing to 
2.1 x 10-5 K-1  at 1,000 K. The calculated thermal expansi- 
vity appears to be lower than the experimental determina- 
tion to ~ 800 K by Knittle et al. (1986) who report an aver- 
age value of 4 x 10-5 K-1 at high temperature. The calcu- 
lated volume change, however, is well within the error bars 
of the experimental study (see Knittle et al. 1986). The ther- 
mal expansivity is calculated to decrease with compression. 
At 1,000 K and P = 100 GPa, A V/V(298 K) drops by a fac- 
tor of ~ 3 to 0.45 percent. Along the 1,000 K isotherm the 
total vibrational pressure (Pze+Prrt) changes little, drop- 
ping from 7.70 to 7.59 GPa. The corresponding results for 
CaSiO3 at 1,000 K are A V/V(298 K) = 1.05 percent at P = 0, 
and 0.43% at P = 100 GPa. 

IV. Discussion 

The difference in the structures obtained for the two silicate 
perovskites studied here can be easily explained in terms 
of radius ratio arguments. The cations in the A site in the 
perovskite structure have 12-fold coordination in the ideal 

cubic structure. It is seen that the larger size of the Ca + z 
ion will tend to stabilize the higher symmetry structure rela- 
tive to the case of the smaller Mg ÷ 2 ion. This conclusion 
is identical to that of the lattice-dynamical study of Wolf 
and Jeanloz (1985), who employed a different set of pair 
potentials in their calculations. Correlations between the 
degree of distortion from cubic to orthorhombic and the 
size of the A cation relative to B and O ions in perovskites 
have been studied empirically by Yagi et al. (1978). Their 
results are in qualitative agreement with the present non- 
empirical calculations. 

The cubic phase of MgSiO3 is dynamically unstable at 
all volumes (corresponding to a =  3.45-4.00 A). The triply 
degenerate R-point mode is found to be unstable, with an 
imaginary frequency that decreases with dilatation of the 
crystal. This behavior indicates that the curvature at the 
top of the double well corresponding to the librational coor- 
dinate drops with expansion. In the E -  Vcurve in Figure 2, 
one can see that energy of the orthorhombic structure does 
begin to approach that of cubic with increasing volume. 
An instability, however, in an acoustic mode (elastic insta- 
bility) is reached before the curves meet. Although these 
results indicate that the cubic phase is not stable in terms 
of a quasiharmonic treatment of the phonon spectrum, it 
is important to realize that anharmonicities may tend to 
stabilize the higher symmetry structures at high temperature 
(i.e., first tetragonal then cubic). 

It is useful to compare the results obtained for the mag- 
nesium and calcium silicate crystals studied here with calcu- 
lations on halide-based perovskites by the use of similar 
methods. Indeed, such halide (i.e., fluoride) compounds are 
often used as analogues for predicting the properties of the 
corresponding oxides (e.g., O'Keeffe et al. 1979, O'Keeffe 
and Bovin 1979). Boyer and Hardy (1981) carried out a 
study of the zero-pressure properties of RbCaF3 with a 
quasiharmonic lattice-dynamical model that employed (un- 
scaled) electron-gas pair potentials. They showed that the 
phase transition sequence from the distorted to cubic struc- 
ture can be described in terms of the loss of the double-well 
potential along the octahedral rotational (librational) coor- 
dinate at a critical volume that is reached on thermal expan- 
sion of the crystal. In their model for RbCaF3 they found 
that over a temperature range of ~ 1,000 K the thermodyn- 
amically stable state is one in which there is large amplitude 
motion along the librational coordinate. At a temperature 
of 1,200 K the double well disappears, just before the crystal 
develops an elastic instability that may be viewed as asso- 
ciated with melting. In CsCaF3, on the other hand, the 
cubic structure was found to remain stable at all tempera- 
tures to melting (Boyer 1984, see also Flocken et al. 1985). 
Their result is identical to the trend observed in the present 
calculation for CaSiO3 as a function of decreasing applied 
pressure. In MgSiO3, however, the acoustic mode instability 
is reached before the librational double well is lost. 

In the present calculations on the silicate perovskites, 
a large range of volumes was explored because of the inter- 
est in high-pressure properties of these crystals. There is 
a general increase in the degree of distortion for the perovs- 
kites with compression. For MgSiO3 this change is perhaps 
most obvious in the volume dependence of the internal posi- 
tional parameters (Fig. 8b). It is also apparent that the 
spread in bond lengths associated with the MgO12 dodeca- 
hedron increases on compression (Fig. 8c). In contrast to 
these results, Yagi et al. (1978) have suggested that MgSiO3 



11 

should tend toward cubic with increasing pressure. They 
argue that the ratio of effective ionic radii RA/(RB + Ro) will 
increase because the oxygen anion is more compressible 
than the cations and that this will favor the cubic form 
at high pressure. This conclusion has been criticized by 
O'Keeffe et al. (1979) who propose that the pressure depen- 
dence of (RA + Ro)/(R~ + Ro), i.e., the relative bond compres- 
sibilities, controls the degree of distortion. The latter ratio 
decreases with compression, thus giving rise to larger tilting 
of SiO6 octahedra and an increase in the distortion at pres- 
sure. This simple analysis is in agreement with the present 
theoretical result. 

The calculated zero-pressure bulk modulus of MgSiOa 
is larger than that determined in the hydrostatic compres- 
sion study of Yagi et al. (1978). The latter is close to esti- 
mates based on systematics from other perovskite-type com- 
pounds (Liebermann et al. 1977, Bass 1984). The discrepan- 
cy between these results and that of the present calculation 
may be indicative of the need for an improved description 
of the forces by the model, as discussed below. It should 
be pointed out, however, that values for Ko and K~ are 
often poorly constrained by fitting compression data alone 
to obtain experimental equations of state. As mentioned 
above, the theoretical compression curve approaches the 
experimental equation of state at high pressure if a small 
value of K~ is assumed (i.e., ~ 3). Values for K ;  of 3-6 
are commonly found for ionic crystals, and such values are 
often assumed in fitting compression data (see Yagi et al. 
1982). The present calculations suggest, on the other hand, 
that in highly distorted structures such as the orthorhombic 
perovskites, in which the internal coordinates may adjust 
in response to applied stresses, such systematics may break 
down. In this regard, there is experimental evidence that 
K~ for stishovite, also with 6-coordinated silicon, may be 
quite low (Sato 1976, see also Weidner et al. 1982). It should 
also be pointed out that the experimental and theoretical 
compression curves tend to diverge above 100 GPa. At 
these pressures, higher order pressure derivatives (K~) may 
be important in representing the experimental equation of 
state. 

Several recent studies have addressed the question of 
Debye temperature O of MgSiO3 perovskite. On the basis 
of empirical systematics, Watanabe (1982) estimated the 
thermal Debye temperature to be 1,204_+ 98 K. This result 
is somewhat lower than the value determined in the present 
study (1,340 K), which is the harmonic, high-temperature 
estimate O~ 0o. The MEG result for O~ ~ for the cubic phase 
is lower (1,107 K), in part as a result of the fact that the 
quasiharmonic phonon spectrum has imaginary frequencies 
(Wolf and Jeanloz 1985). On the other hand, Knittle et al. 
(1986) obtained a much lower value of 525 K from a fit 
to the thermal expansion data (825 K for high temperature 
fit). Because the Debye temperature is only a crude approxi- 
mation for solids with a complex distribution of lattice 
modes, one should expect different methods in general to 
give different results. Nevertheless, it is likely that the pres- 
ent calculations overestimate O because of the use of rigid- 
ion pair potentials (at a given volume) to calculate the lattice 
dynamics and the use of the quasiharmonic approximation 
which neglects explicit anharmonic effects. It is well known 
that rigid-ion models overestimate the longitudinal optic 
mode frequencies in ionic crystals (see Boyer et al. 1985, 
Hemley and Gordon 1985). Comparison with the spectrum 
of MgSiOa reported by Weng et al. (1983) suggests that 

the measured frequencies of the infrared-active modes may 
in fact be lower, although the spectrum is not well-resolved. 
The large difference between the present calculation of the 
Debye temperature and the value obtained from the thermal 
expansion measurements suggests that other factors may 
contribute as well; clearly, more work should be done to 
resolve this discrepancy. It should be pointed out that an 
anharmonic calculation would also be useful to test recent 
conjectures of fast-ion conduction (sub-lattice melting) in 
MgSiO3 at high pressures and temperatures (O'Keeffe and 
Bovin 1979, Poirier et al. 1983). 

Finally, extensions of the present model for the crystal 
potential are discussed. A significant improvement in the 
theory was obtained by the requirement that the shell po- 
tential used in the ion wavefunction calculation match the 
site potential in the crystal. The principle effect of this elec- 
trostatic self-consistency criterion in oxide crystals is the 
contraction of the oxygen ion wavefunction, which in turn 
lowers the repulsive energy of the pair potential and general- 
ly contracts the lattice. The unit-cell volumes, however, are 
still somewhat large, and the bulk moduli appear to be 
overestimated. These results are independent of the way 
in which the energy minimization was carried out. As dis- 
cussed in Section II, an alternative procedure involving the 
use of pair potentials compiled from the individual poten- 
tials calculated from a fixed set of charge densities gave 
results that were similar to those shown here. In this study 
the requirement that the average site potential match the 
shell potential of the anions was used. An alternative formu- 
lation would be to use different charge densities, and there- 
fore employ different sets of pair potentials, for anions in 
different sites. Such calculations at zero pressure, however, 
showed similar results to the use of single wavefunctions. 
Another extension would be to include the internal strain 
dependence of the charge densities and self energies in the 
energy minimization. 

Perhaps the most significant discrepancies between 
theory and experiment are the result of the constraint that 
the charge densities of the ions be spherically symmetric. 
This notion is supported by the results obtained on SiO2 
polymorphs such as quartz, crystals in which an ionic model 
such as that used here is clearly inadequate (Jackson et al. 
1985, Jackson 1986). In these crystals, the inclusion of a 
small degree of polarization has an important effect on the 
calculated unit-cell volume. The most significant effects are 
on the S i - O - S i  bending coordinate. As the stiffness of 
this bending coordinate determines the magnitude of the 
bulk modulus, this improvement in turn produces a more 
accurate compression curve for quartz. A similarly stiff 
S i - O - S i  bending potential in the distorted MgSiOa pe- 
rovskite may therefore contribute to the underestimation 
of the degree of distortion, as well as to the overestimation 
of the volume and bulk modulus. In CaSiO3 the inclusion 
of polarization would likewise lower the pressure at which 
the distorted structure becomes stabilized relative to the 
cubic aristotype. Polarization of charge density may also 
provide a mechanism for the stabilization of superstructures 
based on the GdFeOa-type structure (Madon et al. 1980) 
and of possible ferroelectric phases of the silicate perov- 
skites. 
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