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Abstract. The resonance bond number n, as defined in this 
paper, is designed to describe the strength of an XO bond 
as a function of the kinds of atoms present and which atoms 
are bonded. The calculation of n is made on a fragment 
extracted from the crystal encompassing the XO bond. If 
this fragment consists of only the X atom and its coordinat- 
ing O atoms, then n is numerically equal to the Pauling 
bond strength, s. In this study a graph-theoretic algorithm 
is developed permitting the calculation of n using fragments 
including up to 50 atoms. This algorithm was used to calcu- 
late n for all of the bonds in ten silicate crystals. Since 
bond strength is be inversely related to bond length, we 
examined the relationship between these two variables and 
found that n can be used to explain over 70percent of the 
variation of XO bond lengths from their average values 
in the crystals. 

A fit of the parameter n/r, where r is the row number 
in the periodic table of the metal atom X, to the observed 
bond lengths in these crystals yielded the equation 
R(XO)= 1.39(n/r) - °22  which explains over 95.5percent of 
the variation of bond lengths in the crystals. The fact that 
the same formula with s replacing n was found in an earlier 
study to be a good estimator of average bond lengths in 
crystals shows that n relates to individual variations in bond 
lengths in crystals in the same way that s relates to average 
bond lengths in crystals. 

Using minimum energy SiO, A10 and MgO bond 
lengths and harmonic force constant data calculated for 
these bonds in hydroxyacid molecules, theoretical equations 
similar to those used by Pauling to explain bond length 
variations in hydrocarbons are derived. Bond lengths calcu- 
lated with these equations for the 10 crystals shows that 
95percent of the variation of the observed bond lengths 
in these crystals can be explained in terms of n by this 
purely theoretical model. 

Introduction 

The extent to which the stereochemistry of a crystal can 
be recovered from a knowledge of the connectivity and the 
number of valence electrons on each of its constituent atoms 
has been studied by numerous researchers. In a study of 
the principles governing the structures of complex ionic 
crystals, Pauling (1929) defined the electrostatic strength, 
s, of a bond in such crystals to be z/v where z is the ionic 
valence of the cation and v is the coordination number 

of the cation. With this definition, he was able to explain 
the connectivity of such crystals by observing that the sum 
of the bond strengths reaching each anion in the structure 
equaled the ionic valence of the anion with the sign changed. 
In a study of bond length variations in oxides, Baur (1970) 
has since found that the sum of the bond strengths, denoted 
Po, received by the oxide ion can deviate up to about 40per- 
cent from a value of 2.0. He also found that the individual 
XO bond lengths are linearly correlated with shorter bonds 
involving smaller po-values. Using the slopes of the regres- 
sion lines fit to the observed data, he was able to modify 
average observed XO bond lengths to reproduce XO bond 
length variations in crystals to within about 0.01 ~. This 
approach has the drawback of being dependent on empirical 
information. However, Gibbs et al. (1981) and Geisinger 
et al. (1985) have completed non-enpirical MO calculations 
on hydroxyacid silicate and aluminosilicate molecules and 
have reproduced the observed XO bond length, X = Si, A1, 
versus Po curves found for silicate and aluminosilicate crys- 
tals. 

For aromatic hydrocarbons, Pauling and Brockway 
(1937) devised a method of estimating CC bond lengths 
in molecules by mixing the potential energy curves for single 
bonds (with bond number, n=  1) and for double bonds 
(n-~ 2) to obtain a potential energy function for all interme- 
diate values of n (See Footnote 3, Pauling et al. 1935). Bond 
length estimates are then found by taking the derivative 
of this potential energy function with respect to the bond 
length and setting it equal to zero. Estimates obtained in 
this manner, assuming a ratio of single to double bond 
force constants of 1.84 and using bond numbers calculated 
for Kekul~-type resonance structures in which a particular 
bond is double, gave bond lengths that reproduced those 
in several sterically-unhindered molecules to within about 
0.01 * (Cruickshank 1962). In 1952, Pauling extended the 
method to XO4 tetrahedral groups (X=Si,  P, S, C1) by 
assuming that if the electron pairs resonate among allow- 
able positions with the valence (i.e. the number of electrons 
involved in forming bonds) of the metal atoms divided 
equally among these positions, then the valence of the oxy- 
gen atoms would tend to be satisfied (see footnote 64, p. 547; 
Pauling 1960). This sharing of electron pairs to complete 
the stable ten-electron configuration of Ne for the oxygen 
atom in a covalent crystal is equivalent to the rule that 
the sum of the electrostatic bond strengths reaching the 
oxide ion (with the Ne configuration) in an ionic crystal 
is 2.0. By constructing the resonating Lewis structures for 
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the XO4 groups as a function of bond number, he was 
able to estimate mean XO bond lengths in crystals to within 
0.01 A. 

Fundamental to these methods for estimating XO bond 
length variations in crystals is the definition and calculation 
of bond numbers. We will base our definition on resonance 
structures, and so we will refer to them as resonance bond 
numbers and denote them by n. The technique for calculat- 
ing the resonance bond numbers will be discussed in general 
in the next two sections. Because of the computational effort 
involved, the size of such a fragment was limited to include 
no more than 50 atoms. This is the severest limitation in 
the execution of the model The model itself has some theo- 
retical limitations in that the definition of n ignores steric 
hindrances, nonbonded and bonded repulsions and treats 
all bonds as purely covalent. We investigate whether the 
values of n calculated in this manner are reasonable by 
demonstrating the degree to which n describes the variation 
of bond lengths from their mean values in 10 silicate crys- 
tals. We find that n can be used to explain over 70percent 
of the bond length variation in these crystals not explained 
by the average values of each type of XO bond. 

We explore two methods of using n to estimate bond 
lengths in crystals. In the first, we follow the approach given 
by Gibbs et al. (1987b) and fit the parameter n/r to the 
observed bond lengths in the crystals obtaining a bond 
length estimator that is the result of both empirical and 
theoretical data (r is the row number in the periodic table 
of the X cation). We will find that the resulting equation 
explains over 95.5percent of the variation in bond lengths 
in the crystals studied. The second method is entirely theo- 
retical using quadratic force constants and bond lengths 
obtained in ab initio molecular orbital (MO) calculations 
together with specific bond numbers to construct potential 
energy functions in a manner similar to that used by Pauling 
and Brockway (1937). 

Until recently, the second method would not have been 
feasible because of the difficulty in obtaining reliable values 
using ab initio methods. In the last few years, with the devel- 
opment of sophisicated quantum mechanical programs and 
high-speed computers, a large number of calculations have 
been completed on a variety of molecules (Hehre et al. 1986). 
Such calculations on hydroxyacid molecules have, for exam- 
ple, been used to model bond length and angle variations 
in a variety of chemically similar crystals. When sufficiently 
robust basis sets are used, the resulting lengths and angles 
reproduce average values found in crystals fairly well (Gibbs 
et al. 1987b and references therein). Since credible Hartree- 
Fock calculations are more difficult to make for the transi- 
tion metal ions, we only apply the non-empirical method 
to XO bonds where X =  Si, A1 and Mg. While the MO 
calculations account for the local environment of these XO 
bonds, the resonance bond numbers will incorporate infor- 
mation about the global environment of the bond. We will 
see that this method can be used to explain 95percent of 
the bond length variation in the crystals studied. 

Resonance Bond Numbers 
and Bond Length Variations in Crystals 

In this study we consider representative fragments taken 
from the monosilicate andalusite, from several monopolysi- 
licates including diopside, jadeite, acmite, spodumene, 
NaInSi206 and NaCrSi206, from the dipolysilicates fluoro- 

tremolite and sillimanite and from the tektosilicate cordier- 
ire. Each fragment is centered on a given X cation and 
is used to find the resonance bond numbers for the XO 
bonds associated with this central X atom. The chosen frag- 
ment is then modeled by a graph that we will refer to as 
the pattern graph. By a graph, we mean a set of vertices 
and a set of edges such that each edge joins two distinct 
vertices called the endpoints of the edge. An edge is said 
to be incident to each of the two vertices that it joins. The 
edges have no direction defined on them and any two ver- 
tices may be joined by several distinct edges (of. Bondy 
and Murty 1976). The pattern graph is constructed so that 
each vertex represents an atom and each edge represents 
a bond in the fragment. That is, an edge joining two vertices 
exists in the pattern graph if and only if the atoms repre- 
sented by these vertices are bonded in the fragment. When 
constructing this graph, some decisions must be made as 
to how to handle those atoms in the fragment whose coor- 
dination spheres do not lie completely in the fragment. 
These atoms will always be the furthest atoms in the frag- 
ment from the central X cation. A premise suggested by 
recent results in the molecular modeling of crystals, is that 
the further an atom is from the XO bond under study, 
the less it influences the bond. This suggests that one may 
simplify the model of the portion of the fragment involving 
these atoms without seriously affecting the final values of 
the resonance bond numbers. Because of this simplification, 
we were able to include these atoms in the calculation with- 
out incurring excessive computational effort. This method 
is demonstrated in detail in the next section of the paper 
for the case of andalusite. 

After the pattern graph is established, all graphs are 
found that relate to the set of all possible Lewis structures 
for the fragment. Such a graph will be called a Lewis graph. 
The set of vertices for a Lewis graph based on a given 
pattern graph is the same as the set of vertices in the pattern 
graph and these vertices are interpreted in the same manner 
(as representing atoms in the fragment). However, unlike 
in the pattern graph, an edge in a Lewis graph represents 
a pair of shared electrons between the atoms corresponding 
to the vertices. Since such shared electrons are assumed 
to occur only along bonds, an edge can exist in a Lewis 
graph only if the corresponding vertices are joined in the 
pattern graph. In a Lewis structure, the number of pairs 
of shared electrons corresponding to a given atom equals 
the valence of that atom. Consequently, we require that 
the number of edges incident to a given vertex in a Lewis 
graph equals the valence of the atom represented by the 
vertex when the coordination sphere of that atom is com- 
pletely contained in the fragment. When the coordination 
sphere is not contained in the fragment, it could form elec- 
tron pairs with atoms outside the fragment and so we relax 
this condition and insist only that the number of edges 
incident with the corresponding vertex be less than or equal 
to the valence of the atom. The number of edges incident 
with a given vertex is called the degree of the vertex. Hence 
we define a graph G to be a Lewis graph associated with 
a given pattern graph if and only if 

(1) the set of vertices of G is the same as that of the 
pattern graph, 

(2) the only vertices that are joined by edges in G are 
those joined in the pattern graph, and 

(3) the degree of each vertex of G that corresponds to 
an atom whose coordination sphere is completely contained 



in the fragment equals the valence of that atom. The degree 
of each of the remaining vertices must be less than or equal 
to the valence of its corresponding atom. 

The resonance bond number, n, of each XO bond in 
the fragment that involves the central X cation is defined 
to be the average number of edges (electron pairs) that join 
the vertices corresponding to X and O averaged over all 
Lewis graphs associated with the pattern graph used to 
model the fragment. More details of how the resonance 
bond numbers are calculated will be discussed in the next 
section. In this section, we explore how the resonance bond 
numbers may be used to describe bond length variations 
in the crystals from which the fragments have been extract- 
ed. We calculated resonance bond numbers, n, for all of 
the bonds in the ten crystals used in this study including 
those involving such transition metal atoms as Fe, In, Cr, 
Sc and Mn. 

If the resonance bond numbers, n, faithfully reflect the 
underlying theretical principles, then the variation of an 
observed XO bond length from its average value in the 
ten crystals, (Ro(XO)) ,  should be related inversely to the 
variation of the corresponding resonance bond number 
from its average value. To test whether this is the case, 
we found (Ro (XO)), for each of the XO bonds with a given 
coordination number that appears in the crystals (the aver- 
age taken over the different bond lengths that occur in these 
specific crystals). Since the average resonance bond number 
for the XO bonds is ( n ) = Z / v  where Z is the valence of 
the cation and v is the coordination number (note that ( n )  
is numerically equal to the electrostatic strength of a bond), 
we expect an inverse relationship between the ratio 
(Ro(XO))/Ro(XO) and the ratio (n)/n. Since these ratios 
are both one when n and Ro(XO) are at their average values, 
for (n)/n to estimate (Ro(XO))/Ro(XO), the only scaling 
that will be necessary is to find the best values of t such 
that 

(Ro(XO)) 

is as nearly true in the sense of least squares as possible. 
The best values of t were found to be 0.072 when the X 
cation is in the second row of the periodic table and 0.342 
when it is in the third row. Using this relationship to give 
the estimate R(XO) to Ro(XO) defined by 

R(XO) = (Ro(XO))((n)Y (1) 
\ n !  

we found that 98.8percent of the variation in Ro(XO) can 
be explained in terms of a linear dependence on R(XO). 
An analysis of Ro(XO ) vs. (Ro(XO))  shows that 95.5per- 
cent of the variation in Ro (XO) can be explained in terms 
of a linear dependence on (Ro(XO)). Consequently, n pro- 
vides an explanation of over 70percent of the variation of 
Ro (XO) not explained by (Ro (XO)). Given that our theo- 
retical basis for n treats the bonds as if they were entirely 
covalent and ignores any of the ionic aspects of the bonds, 
we are encouraged by this result. 

The analysis leading to equation (1) involved the term 
(n)/n which emphasizes the variation of n from its mean 
value and ignores the degree to which n can be used to 
explain variations in bond lengths from one cation to an- 
other and from one coordination number to another. We 
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Fig. 1. A plot of Ro(XO ) vs. (n/r) where Ro(XO) represents each 
of the XO bond lengths in 10 silicate crystals, n is the resonance 
bond number and r is the number of the row in the periodic table 
of the metal atom X 

will investigate this issue by adapting the approach taken 
in Gibbs et al. (1987b). In an attempt to extend a formula 
relating XO bond lengths to bond strengths for the X ca- 
tions in the first two rows of the periodic table to the main 
group cations in the remaining rows, they used the bond 
strength parameter p = sir where r is the row number and 
s is the Pauling bond strength. A least-squares analysis of 
the functional relationship between the minimum energy 
bond length data for hydroxyacid molecules calculated by 
molecular orbital methods and p yielded the formula 

R(XO) = 1.39p -°'22 (2) 

for XO bonds involving first and second row X cations. 
When this equation was extended to estimate XO bond 
lengths for X main-group cations for all 6 rows of the peri- 
odic table, the resulting estimates served to rank the average 
values, Rs(XO), reported by Shannon (1976) explaining 
more than 97percent of the variation. Following this ap- 
proach we will explore how well n/r serves to rank the 
bond lengths in the ten crystals. A graph of (n/r) vs. R 0 (XO) 
(Fig. 1) shows that the bond lengths tend to fall on a single 
smooth curve similar to the p vs. R~(XO) plot (see Fig. 3, 
Gibbs et al. (1987b)). A statistical analysis of  these data 
shows that the function of the form a(n/r) b that best fits 
the data displayed in Figure 1 is 

R (XO) = 1.39 (n/r)- o.2z (3) 

which, surprisingly, has the same constants as equation (2). 
Equation (3) explains 95.5percent of the bond length varia- 
tions while equation (2) explains 93.4percent of the varia- 
tion when each is applied to the 10 crystals. The slope and 
intercept of the R(XO) vs. Ro(XO ) regression line are stat- 
istically identical to 1 and 0, respectively. 
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Table 1. Bond number, n, and minimum energy bond lengths, R(n), 
and force constants, f(n), for selected hydroxyacid molecules 

Molecule n R(n) A f(n) a.u./A 2 

H8SiO 6 2/3 1.759 1.96 
H4SiO 4 l 1.626 3.07 
HzSiO 3 2 1.479 4.93 

H9A106 1/2 1.889 1.21 
HsA10 4 3/4 1.759 1.71 

HloMgO 6 1/3 2.038 0.68 
H6MgO 4 1/2 1.945 0.86 

The analyses employed thus far utilize empirical infor- 
mation. We now consider a completely non-empirical model 
using bond lengths and force constants obtained from ab 
initio MO calculations. Because it is impractical to carry 
out such calculations for the transition metal ions, we re- 
strict our attention to calculations for molecules containing 
Si, A1, Mg, O and H. To model the relationship between 
resonance bond numbers and bond lengths, we performed 
calculations on a series of specific molecules (Table 1). In 
the cases of H,~SiO4 and H2SiO3, we calculated the reso- 
nance bond numbers by treating the whole molecule in the 
same manner as was done for the fragments of the crystals 
considered above. For the remaining molecules in the table, 
we took the value of the Pauling bond strengthto represent 
the bond number. The SiO bond length (1.626 A) associated 
with a bond number of 1 was obtained by optimizing 
H4SiO 4 using a robust 6-31G** basis (Gibbs et al. 1987a). 
The force constant 3.07 a.u./A 2 of the bond was then found 
by applying the forward finite difference method on the 
analytic gradient. An optimization of the molecule O 
= Si(OH)2 gave a bond length of 1.479 A associated with 
a bond number of 2 and a force constant of 4.93 a.u./,~ 2. 
Since the average bond number of an SiO bond in an octa- 
hedral SiO6 group is 4/6 which is not an intermediate value 
between 1 (for a single bond) and 2 (for a double bond), 
we used the optimized SiO bond length (1.759 A) and a 
force constant 1.96a.u./A 2 calculated for H8SiO 6 (Gibbs 
et al. 1987b) to provide the necessary information for bond 
numbers less than 1. The molecules used to obtain bond 
number information about SiO, A10 and MgO bonds are 
listed in Table 1 along with the corresponding bond lengths 
R(n) and force constants f(n). The geometries of the mole- 
cules containing MgO and A10 bonds were optimized using 
6-31G* bases on A1 and Mg, a 6-31G basis on O and 
an STO-3 G basis on H. Again the force constants of the 
A10 and MgO bonds were determined by a finite difference 
calculation on the gradient. 

Each bond type and bond number given in Table 1 gives 
rise to a quadratic approximation to the potential V(n, R): 

V(n, R) = f (n) (R -- R (n)) 2. 

Since we do not have sufficient knowledge of the functions 
f (n)  and R(n), except at the specific values of n (shown 
in Table 1), we combine the special cases of the function 
V(n, R) to obtain a reasonable functional expression for 
it. In the case of the SiO bond, we obtain three special 
cases of V(n, R) corresponding to the bond numbers 2/3, 
1 and 2 as shown below: 

V(2/3, R)= 1.96 (R-- 1.759) 2 

V(1, R) = 3.07(R-- 1.626) 2 

V(2, R) = 4.93 (R-- 1.479) 2. 

The simplest form for V(n, R) that fits these cases is 

V(n, R)= c(2/3, n) V(2/3, R)+ c(1, n) V(1, R)+ e(2, n) V(2, R) 

where 
( n -  1)(n-2) 

c(2/3, n)= 
(2/3 - 1)(2/3 - 2) 

c(1, n) - ( n - 2 / 3 ) ( n - 2 )  
( 1 - 2 / 3 ) ( 1 - 2 )  

( n - 2 / 3 ) ( n -  1) 
c (2, n) 

(2 - 2 /3) (2-1) '  

By taking the derivative of V(n, R) with respect to R, we 
find that the value of R at the minimum of V(n, R), denoted 
R(SiO, n), occurs at 

R(SiO, n) 

_f(2/3)  c(2/3, n) R (2/3)+f(1) c(1, n) R(1)+f(2)c(2, n) R(2) 
f(2/3) c (2/3, n) +f (1)  c(1, n) +f (2)  c(2, n) 

(4) 

Since R (SiO, n) corresponds to a minimum energy configu- 
ration, we expect that R(SiO) should model the SiO bond 
lengths found in a crystal as a function of bond number 
t / .  

In the case of the A10 bond, the ab initio calculations 
provide information at the two values n=  3/4 and n=  1/2 
(see Table 1). Using the same analysis as discussed above 
(also see Pauling, 1959), we obtain 

R(A10, n)=f(1/2) c(1/2, n) R (1/2)+f(3/4) c(3/4, n) R (3/4) (5) 
f(1/2) c(1/2, n)+f(3/4)  c (3/4, n) 

where 

( n -  3/4) 
c(1/2, n) 

(1/2--3/4) 

, (n-- 1/2) 
c (3/4, n)= ( ~ ) .  

Curves representing the functions given by equations (4) and 
(5) are plotted in Figure 2. We have superimposed on these 
curves the observed bond lengths vs. the resonance bond 
numbers found using the graph-theoretical approach dis- 
cussed above. The fact that the curves pass through the 
observed data as well as they do implies that this approach 
is reasonable. In Figure 3, R(XO, n) is plotted against 
Ro (XO) for each XO bond in the ten crystals where X = Si, 
A1 and Mg. The force constants and bond lengths used 
to formulate R (MgO, n) are given in Table 1. A regression 
analysis of R(XO, n) vs. Ro(XO) for the combined data 
for X = Si, AI and Mg shows that 95 percent of the variation 
in R 0 (XO) can be explained in terms of a linear dependence 
on R (XO, n). 

The Calculation of Resonance Bond Numbers 

We will illustrate the method by constructing a graph of 
a fragment centered on an X =  Si atom in the andalusite 
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Fig. 4. An ORTEP drawing of the crystal structure of andalusite, 
AI2SiO5 showing the fragment centered of Si to be extracted for 
our study. The atoms chosen to be in the fragment and the bonds 
between atoms whose coordination spheres are contained in the 
fragment are darkened 

structure, A12SiO s (Fig. 4). All of the atoms that will be 
included in the fragment are darkened in the figure. Note 
that we have included all atoms that can be reached from 
the Si atom by passing over three or fewer edges. The pat- 
tern graph of this fragment is depicted in Figure 5 where 
an edge is drawn between each pair of vertices that represent 
atoms that are bonded in the structure. Among  the O atoms 
that lie a distance of three from the Si atom (that is, can 
be reached from the Si atom by passing over three bonds 
and no fewer), one is bonded to three of the A1 atoms in 

the fragment. The connectivity of this atom appears in the 
graph. Some of the O atoms that are at a distance of three 
from Si are bonded to two of the A1 atoms in the fragment. 
Because of the computat ional  effort required and the belief 
that this simplification would have little impact on the final 
results, these connectivities were ignored and so each of 
these O atoms are shown twice in the graph, once with 
each A1 atom to which it is bonded. 

Two Lewis graphs derived from the pattern graph 
shown in Figure 5 are shown in Figure 6. Note that each 
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Fig. 5. A graph of a fragment of andalusite centered on an Si atom 
where each vertex is designated by the atomic symbol of the atom 
that it represents. This graph serves as a pattern graph in the pro- 
cess of finding the Lewis graphs for this fragment 

edge in these graphs corresponds to an edge in the pattern 
graph but that there are sometimes two edges between a 
given pair of vertices (representing a double bond), some- 
times one (representing a single bond) and sometimes none 
(representing no bond). There are never more than two 
edges between a pair of vertices since each edge is incident 
with a vertex of degree 2 (representing an O atom). Note 
that the vertices representing Si have degree 4 and those 
representing A1 have degree 3. Therefore, the charges on 
each of these atoms is zero and so the bonding is modeled 
as purely covalent. 

When searching for all of the Lewis graphs derived from 
the pattern graph in Figure 5, some organization must be 
employed because of the large number of combinations that 
occur based on this pattern graph. For  example, since each 
edge in the pattern graph can result in 0, 1 or 2 edges 
in a given member of the family, there are 347 =2.66 x 10 z2 

combinations for the placement of these edges and among 
these there are approximately 83 million Lewis graphs! We 
searched for these graphs by restating the problem as a 
system of linear equations in which each equation corre- 
sponds to an atom and the unknowns correspond to bonds. 
For  example, if the fourth atom is four coordinate with 
a valence of 3 and if the 3 ra, 5 tn, 8 th and 12 th bonds are 
incident with it, then the fourth equation would look like 

x3 + xs + xs + x l z =  3 

and we would then accept, for this particular equation, any 
solution consisting of the integers 0, 1 or 2. For  the vertices 
associated with atoms having coordinating atoms outside 
of the fragment, inequalities were used since we only have 
an upperbound on the degree of the vertex. Any set of in- 
teger values for the variables xi that satisfies all of the equa- 
tions and inequalities simultaneously corresponds to a Lew- 
is graph. The average of the xi values over all of the Lewis 
graphs is the resonance bond number n for the ith bond. 
However, the only values of n that we will use from a given 
fragment are those that are associated with XO bonds that 
are incident with the central X cation. 

To shorten the process for finding all of the integral 
solutions to our system of equations, we placed the coeffi- 
cients of these equations into a matrix. We then made our 
search more efficient by row reducing the matrix taking 
care to keep integer entries. In all cases, we were able to 
eliminate as many variables as there were equations. The 
job of finding the set of all solutions in this reduced matrix 
was made even more efficient by cutting off branches in 
the logical search tree that could not be fruitful as early 
as possible. This was accomplished by a forward checking 
algorithm that detected when an early choice of the value 
for one variable made it impossible to accomodate some 
later variable. 

Discussion 

In this study, we have shown that the bond lengths in ten 
silicates can be ranked fairly well in terms of resonance 
bond numbers calculated for representative fragments of 
each crystal, using a graph-theoretic model. In this model 
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Fig. 6. Two Lewis graphs based on the 
pattern graph shown in Figure 5. Once 
all such graphs are found, the resonance 
bond number is calculated by finding 
the average number of edges for each 
SiO bond 
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it is assumed that  the bonding is purely convalent with 
the sum of electrons in the bonds  associated with each a tom 
conferring a neutral  inert gas electronic configuration on 
that  atom. F r o m  this result one might  conclude that  the 
bonding in these silicates is pr imari ly  covalent, but  this 
would be unjustified just  as it would be unjustified to con- 
clude that  the bonding in a silicate is pr imari ly  ionic as 
argued by Zol ta i  and Stout  (1984) simply because Pauling's 
rules are obeyed. Also, the conclusion by Zol ta i  and Stout  
(1984) that  the SiO bond  behaves as if it is ionic because 
the length of the bond  in a silicate is reproduced by the 
radius sum of the Shannon and Prewitt  (1969) radii  is also 
unjustified in that  the radii  of both  Si ÷4 and 0 .2  were 
determined in such a manner  so as to guarantee that  their 
radius sum equals the average SiO bond  length in a silicate. 

In conclusion, a variety of bonding models  has been 
proposed  that  provide an assor tment  of parameters  such 
as bond  strength, bond  strength sums, ( d - p ) n - b o n d  order, 
fraction of s-character  and Mull iken bond  overlap popula-  
tions that  rank  bond  lengths. But as observed by Lager  
and Gibbs  (1973) caut ion should be exercised in making 
inferences about  the nature of the bonding jus t  because 
one or  more of these parameters  provide a plausible inter- 
pretat ion of bond  length variations.  Similar caveats have 
been made by others including Bent (1968), Gibbs  et al. 
(1972) and Brown and Shannon (1973). 
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