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Abstract. We formulated a numerical model for stable 
isotope interdiffusion which predicts the temperatures 
recorded between two or more minerals, and the intra- 
granular distribution of stable isotopes in each mineral, as 
functions of mineral grain sizes and shapes, diffusivities, 
modes, equilibrium isotopic fractionations, and the 
cooling rate of a rock. One of the principal assumptions of 
the model is that grain boundaries are regions of rapid 
transport of stable isotopes. This Fast Grain Boundary 
(FGB) model describes interdiffusion between any num- 
ber of mineral grains, assuming that local equilibrium and 
mass balance restrictions apply on the grain boundaries 
throughout the volume modeled. The model can be used 
for a rock containing any number of minerals, any number 
of grain sizes of each mineral, several grain shapes, and 
any thermal history or domain size desired. Previous 
models describing stable isotope interdiffusion upon 
cooling have been based on Dodson's equation or an 
equivalent numerical analogue. The closure temperature 
of Dodson is the average, bulk temperature recorded 
between a mineral and an infinite reservoir. By using 
Dodson's equation, these models have treated the closure 
temperature as an innate characteristic of a given mineral, 
independent of the amounts and diffusion rates of other 
minerals. Such models do not accurately describe the mass 
balance of many stable isotope interdiffusion problems. 
Existing models for cation interdiffusion could be applied 
to stable isotopes with some modifications, but only 
describe exchange between two minerals under specific 
conditions. The results of FGB calculations differ con- 
siderably from the predictions of Dodson's equation in 
many rock types of interest. Actual calculations using the 
FGB model indicate that closure temperature and diffu- 
sion profiles are as strongly functions of modal abundance 
and relative differences in diffusion coefficient as they are 
functions of grain size and cooling rate. Closure temper- 
atures recorded between two minerals which exchanged 
stable isotopes by diffusion are a function of modal 
abundance and differences in diffusion coefficient, and 
may differ from that predicted by Dodson's equation by 
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hundreds of degrees C. Either or both of two minerals may 
preserve detectable zonation, which may in some in- 
stances be larger in the faster diffusing mineral. Rocks 
containing three or more minerals can record a large span 
of fractionations resulting from closed system processes 
alone. The results of FGB diffusion modeling indicate that 
the effects of diffusive exchange must be evaluated before 
interpreting mineral fractionations, concordant or dis- 
cordant, recorded within any rock in which diffusion 
could have acted over observable scales. The predictions 
of this model are applicable to thermometry, evaluation of 
open or closed system retrogression, and determination of 
cooling rates or diffusion coefficients. 

Introduction 

One or more of the elements oxygen, carbon, sulfur and 
hydrogen are major constituents of virtually all minerals. 
The stable isotopes of these elements potentially provide a 
large number of geologic thermometers. Fractionations of 
stable isotopes between coexisting minerals are routinely 
determined, strongly temperature dependent, and inde- 
pendent of lithostatic pressure. Some of the most common 
mineral pairs to which stable isotope thermometry can be 
applied have large enough temperature dependence that, 
if analytical errors are the only source of uncertainty, 
precision of a few tens of degrees C or less is possible. In 
addition, because most rocks are composed of silicates, 
carbonates and/or oxides, oxygen isotope fractionations 
between n minerals in any given rock will yield n-I 
independent thermometers, allowing internal tests for 
consistency of the temperature determination. 

One of the most often observed characteristics of 
stable isotope therinometers, however, is their failure to 
record accurately and consistently the peak temperatures 
experienced by slowly cooled igneous and high grade 
metamorphic rocks (Deines 1977; Javoy 1977; Valley 
1986; Cole and Ohmoto 1986). Although stable isotope 
fractionation between some common mineral pairs is too 
insensitive to temperature to yield good temperature es- 
timates (e.g. oxygen isotopes between quartz and feldspar; 
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Chiba et al. 1989), many others have well-calibrated frac- 
tionations that are highly sensitive to temperature (e.g. 
oxygen isotopes in any of the pairs involving quartz, 
feldspar or calcite vs magnetite, rutile, garnet, pyroxene, 
olivine or possibly micas or amphiboles; Bottinga and 
Javoy 1975; Clayton et al. 1989; Chiba et al. 1989). This 
observed failure of such potentially useful thermometers 
has led many petrologists and geochemists to postulate 
that retrogression leads to resetting of isotope fraction- 
ations. Where no evidence for significant retrogressive 
recrystallization is found, interdiffusion between minerals 
on cooling is suggested as the agent of resetting. 

The diffusion of isotopes between coexisting minerals 
during cooling results from the temperature dependence 
of stable isotope fractionations. When the bulk isotopic 
compositions of coexisting minerals are not in equilibrlum 
for a rock's temperature, diffusion will occur. As a rock 
cools from the peak of a thermal event, the equilibrium 
fractionations of stable isotopes between the rock's consti- 
tuent minerals will generally increase. Unless a rock 
undergoes significant recrystallization, the rate at which 
the coexisting minerals can approach the lower temper- 
ature equilibrium is limited by volume diffusion rates 
within the minerals. Rates of stable isotope diffusion in all 
minerals are such that re-equilibration on cooling will be 
only partial, and fractionations representing temperatures 
between the peak and the final temperatures should be 
recorded in the integrated isotopic compositions of the 
minerals obtained by conventional bulk analysis. In addi- 
tion, diffusion limited exchange during cooling will lead to 
isotopic zonation within minerals (e.g. cores may more 
nearly preserve peak temperatures than rims in many 
cooling pairs). Our objectives in constructing the Fast 
Grain Boundary (FGB) model are to describe these pro- 
cesses of exchange and to provide a tool for interpreting 
stable isotope analyses of bulk mineral separates and 
zonation obtainable by the newly emerging micro- 
analytical techniques of stable isotope ratio measure- 
ment (Eldridge et al. 1987; Wada 1988; Sharp 1990; Crowe 
etal. 1990; Valley and Graham 1991). Because stable 
isotope data currently come from both conventional bulk 
analysis and from in-situ micro-analysis, we will consider 
the effects of diffusion on both volume integrated com- 
positions and on profiles. 

Previous attempts to describe quantitatively the effects 
of stable isotope diffusion between coexisting minerals 
have considered retrogressive exchange to be rate limited 
exclusively by the diffusional characteristics of the slower 
diffusing mineral of any given pair (Dodson 1973, 1986; 
Javoy 1977; Giletti 1986). The results of diffusion 
modeling (predicted integrated compositions and profiles) 
are strongly dependent on the variables and assumptions 
one includes in a given model. The FGB model is based on 
the assumption of grain boundary equilibrium between all 
minerals undergoing interdiffusion, and considers the 
characteristics in every different mineral grain in a rock in 
describing the kinetics and mass balance of diffusive 
exchange. Our model, which allows for more complex 
description of the diffusion process, including the size, 
shape, diffusion coefficient and modal abundance of every 
mineral in a rock, makes predictions which are dramat- 
ically different from those of previous models. 

Models for interdiffusion 

Several models for diffusive transport in and among min- 
erals have been proposed: (1) Dodson's analytical equa- 
tion for the closure temperature (Dodson 1973), (2) 
Lasaga's analytical equations for zonation resulting from 
cation interdiffusion (Lasaga et al. 1977), and (3) nu- 
merical solutions for cation interdiffusion (Wilson and 
Smith 1985; Spear 1990). These models have proven to be 
useful tools for interpreting the results of diffusion on 
geochronology and cation thermometry. However, none 
addresses the unique problems of stable isotope inter- 
diffusion in a polygranular rock, a process in which every 
mineral in the rock could play an important role, and 
mass balance may be as important as diffusion coefficients 
and cooling rates in dictating the results of diffusive mass 
transport. 

Model rock 

Consider models for a hornblende granite primarily com- 
posed of quartz, feldspar, and hornblende (Fig. la). 
Grains are anhedral to subhedral in shape, but generally 
equant. A variety of grain sizes occur for each mineral, and 
grain boundaries of every possible type can be found (i.e. 
quartz-feldspar, quartz-hornblende, and feldspar-horn- 
blende, each in all crystallographic orientations). A rigor- 
ous description of interdiffusion between these minerals as 
the rock cooled from high temperature would be highly 
specific to the exact three dimensional geometry, and 
would need to include accurate knowledge of diffusion 
rates within each mineral in all directions, as well as the 
diffusion coefficient and size and shape of each type of 
grain boundary. Such a model would be difficult to con- 
struct, and would be applicable only to one specific rock. 
At present such complexity would not be justified given 
our incomplete knowledge of transport rates on grain 
boundaries, and imprecise determinations of diffusional 
anisotropy in many minerals. Below we review the as- 
sumptions by which existing models have described such 
rocks, as a means of placing the FGB model in the context 
of previous work. 

Diffusional closure and the Do&on equation 

The closure of a mineral with respect to diffusion may be 
generally described as the progressive isolation of that 
mineral from coexisting phases as the diffusion coefficient 
of that mineral decreases with decreasing temperature 
(Armstrong 1966; Dodson 1973, 1979). Estimates (for 
geochronology) and/or interpretations (for geothermo- 
metry) of closure temperatures of minerals have frequently 
been based on Dodson's equation (Dodson 1973): 
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Fig. la e. Schematic illustration of a natural hornblende granite in 
thin section a (after Williams et al. 1954), and that same rock as 
described by the diffusion models of Dodson (1973) b, Lasaga et al. 
(1977) e, Spear (1990) d and the FGB model e. Arrows represent 
fluxes of 180 on cooling, while rectangles represent hornblende, 
stippled circles feldspar and striped rectangles quartz. Stippled re- 
gions in b and d represent both quartz and feldspar at high temper- 
ature. See text for discussion 

where T c is the closure temperature, Q the activation 
energy of diffusion, R the  gas constant, "A" a geometric 
parameter, "a" the diffusion radius or half-thickness, 
~T/~t the cooling rate and D o the diffusional pre-expo- 
nential factor. Dodson's  equation is an analytical solution 
for the closure temperature recorded by the bulk composi- 
tion of a mineral grain that has undergone diffusional 
exchange on cooling (such that 1/T increases linearly with 
time) with an infinite reservoir. The infinite reservoir is a 
source or sink for the element or isotope in question 
whose co'mposition is unaffected by diffusional exchange 
with the mineral. 

In the case of closed system, cation or stable isotope 
exchange mass balance restrictions require that diffu- 
sional gain or loss by one mineral be balanced by a 
compositional change of its coexisting phases. Any phase 
in a rock which can take part  in diffusional exchange must 
be included in the mass balance of the diffusion problem. 
For the case of oxygen isotopes this can be every mineral 
in the rock. 
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The infinite reservoir for mineral-mineral interdiffu- 
sion of stable isotopes in a rock that is a closed system 
(with no advective transport  by fluids) is assumed to be the 
mineral or minerals which have a lower closure temper- 
ature defined by Dodson's  equation (e.g. Dodson 1973; 
Giletti 1986; Sharp 1991). This description of the diffusion 
process for the case of the simplified hornblende granite 
appears in Fig. lb. At any given moment  during the 
cooling history, all minerals which are still "open" to 
diffusion, other than the one with the highest closure 
temperature, are considered to be part  of the infinite re- 
servoir. Fig. lb represents a time early in the rock's 
cooling history when quartz and feldspar are considered 
the infinite reservoir surrounding hornblende. Diffusion 
coefficients for the faster diffusing minerals and the grain 
boundary are quantitatively irrelevant. Application of this 
model was most fully stated by Giletti (1986), who calcu- 
lated the closure temperature of each mineral by Dodson's  
equation (i.e. with respect to an infinite reservoir). The 
values of closure temperature are then used as the temper- 
atures at which each closing mineral is effectively removed 
from a system of otherwise continuously equilibrciting 
minerals. 

The effects of the process are shown in Fig. 2, a 
schematic plot of the volume-integrated isotopic composi- 
tions of quartz, feldspar and hornblende in a rock 
throughout its cooling history. As the rock cools, the 
minerals all freely equilibrate their oxygen isotopic com- 
positions until hornblende closes (Period I). At this point 
hornblende's compositions is fixed for the remainder of 
the cooling history. Isotopic exchange continues in quartz 
and feldspar (Period II) until quartz closes, and all ex- 
change ceases (Period ill). 
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Fig. 2. Schematic illustration of the oxygen isotopic composition of 
quartz, feldspar and hornblende in a rock undergoing diffusive 
exchange while cooling, as described by the model of Giletti (1986). 
Early in the cooling history (period 1) all three minerals freely 
exchange oxygen isotopes, maintaining equilibrium. Later (period 
II) hornblende has "closed" with respect to oxygen diffusion, and 
therefore only quartz and feldspar undergo exchange. Note that in 
period II the feldspar-hornblende fractionation decreases, although 
no feldspar-hornblende exchange takes place. Finally (period lI[), 
after quartz "closes" no further exchange takes place, and the final 
fractionations are preserved 
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The insight this model provides is that measured 
fractionations between mineral pairs need not record the 
closure temperature of that pair. In this model, only the 
fractionation between the last two minerals to close 
should record a true closure temperature. All other min- 
eral pairs will be disturbed from the closure temperature 
of the first mineral of the pair to close; the extent of this 
disturbance will be a function of the modal abundance of 
"open" minerals. 

The simplification made by Giletti (1986) is that mass 
balance is decoupled from diffusion. Dodson's equation is 
only applicable to describing diffusional exchange with a 
reservoir that maintains a fixed concentration of the 
diffusing species throughout the diffusion process. There- 
fore using the Dodson closure temperature as the temper- 
ature at which one fixes integrated compositions of two 
finite mineral populations undergoing exchange is not 
strictly correct. Mass balance requires that no closed 
system stable isotope interdiffusion problem will be rigor- 
ously described by exchange with an infinite reservoir. 
The FGB model considers mass balance among all co- 
existing minerals throughout the diffusion process, there- 
fore coupling mass balance and diffusion. 

Slow grain boundary diffusion model for cations 

Lasaga et al. (1977) proposed an analytical model for 
calculating the cation zonation that should result from 
exchange of iron and magnesium between coexisting sili- 
cates. This model explicitly links the mass balance con- 
straints imposed by closed system exchange of an element 
or elements between two finite reservoirs (coexisting min- 
erals) with the equations describing the diffusional rates of 
that exchange. Diffusion rates within both minerals 
undergoing exchange are included. The most significant 
assumption made in this model is that diffusion along 
grain boundaries is slow enough that no exchange takes 
place between non-touching grains. Although formulated 
for cation exchange, this model can be conceptually ap- 
plied to stable isotope diffusion. (Fig. lc). Diffusional 
exchange takes place on cooling between all touching 
crystal faces, but the effects should be dependent on local 
geometry. Conventional bulk mineral analysis of stable 
isotope ratios in mineral separates would be difficult to 
interpret using such a model. For  the case of oxygen 
isotope exchange in the model hornblende granite each 
face of each grain is undergoing exchange, and the results 
depend largely on the local environment. 

The model of Lasaga et al. (1977) and the FGB model 
are two endmembers in the treatment of grain boundary 
diffusion. Lasaga (1983) provides equations for variables 
which dictate the results of interdiffusion between two 
minerals with no grain boundary diffusion. We have 
reformulated these variables to include the effect of mass 
balance over multiple faces of non-touching grains, com- 
patible with the formalisms describing stable isotope frac- 
tionation (appendix). These reformulated variables can be 
used to determine whether or not the mass balance terms 
used in the FGB model will result in very different profiles 
from the model of Lasaga for a given mineral pair. 

Fast grain boundary model for cations 

Numerical models for Fe-Mg interdiffusion between gar- 
net and olivine or biotite (Wilson and Smith 1985; 
Medaris and Wang 1986; Spear 1990) are also conceptual- 
ly applicable to stable isotopes, but are a special case of 
the FGB stable isotope model. The model of Spear (1990) 
serves as an example of their principal assumptions, al- 
though the various models differ in detail. Diffusion in the 
faster of two minerals is infinitely fast, and the fast mineral 
is modeled as a single large grain. Mass balance is coupled 
with diffusion between two finite reservoirs, one with finite 
diffusion rates and one with infinite diffusion rates 
(Fig. ld). For the specific diffusion problems considered 
by Spear (1990), this is an adequate description due to the 
very slow diffusion rates with garnet. If mineral diffusivi- 
ties are within 3 4 orders of magnitude of each other 
(depending upon their absolute values and relative abun- 
dance), such models will differ significantly from the FGB 
model for even the simple two mineral interdiffusion 
process. 

The FGB model 

Our FGB model differs from the models described above 
in that it considers the characteristics of every grain or 
different set of grains, and links these grains by assuming 
that equilibrium is maintained along grain boundaries 
over the distance and time considered. Mass balance and 
diffusion are fully linked, and include as many unique 
mineral grains as are in the rock (Eiler et al. 1991). 
Figure le schematically illustrates the way in which this 
model describes a rock. Mineral grains have idealized 
shapes, but any number of grains of different size and 
mode can be included, for all the minerals in the rock. We 
will show that the closure temperatures recorded in the 
bulk compositions or in the isotope zonations of coexist- 
ing minerals are as much a function of the environment of 
those minerals as of their cooling history or diffusional 
properties. 

Fast grain boundary interdiffusion 

Model description 

The FGB model describes minerals in a portion of rock (e.g. of hand 
sample or thin section size). Within this domain, grain boundaries 
continuously maintain mutual isotopic equilibrium over the temper- 
ature/time interval described. As temperature changes with time, the 
shift toward equilibrium of the interior of the minerals is described in 
terms of volume diffusion toward or away from equilibrated grain 
boundaries. The equations used to describe diffusion are either that 
for a sphere (for isotropic minerals), 

0t - DI \ x  ~-x + ex 2 / (2) 

where C] is the concentration of species i in phase j, D} is the 
diffusion coefficient of species i in phase j, assumed to be indepen- 
dent of r, t is time, and x is distance; or for a semi-infinite plane (for 
anisotropic minerals) 

~2Ci 0C] i * J (3) 
~t - Dj 0x 2 
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Hereafter, values of 6 for the stable isotope of interest (i.e. 6~sO) are 
treated as concentrations in the diffusion equations within each 
mineral, with elemental concentrations being included in the mass 
balance equation (Eq. 5, below). This substitution does not intro- 
duce a significant error in the diffusion modeling of oxygen or 
carbon isotopes (Craig 1953), but modeling of sulfur isotopes should 
instead use actual isotopic concentrations in FGB model calcu- 
lations. The boundary conditions imposed are: 

(i) Grain boundary isotopic equilibrium 

`sJoundary = `5~)oundary ~- A (4) 

where 6~,o,,d,ry is the composition of a reference mineral at its grain 
boundary, ,5 ~o,,d,ry is the composition of a given mineral j at its grain 
boundary, and A is the temperature dependent fractionation be- 
tween the reference and j. For n minerals, n-1 equations of this form 
are needed. Equation 4 is based on the approximation that A is equal 
to 10001nc~. This will hold for values of A less than approximately 20 
per mil, if either `5~oundary or 6~oundary is near 0 (Friedman and O'Neil 
1977). A rigorous equation relating `5[,ou.a,ry to s̀Jbou,aa~y can be easily 
substituted into the FGB model if needed. 

(ii) Mass balance 

Vj * * 
1 - - 1  Xgj A j * J j  = 0  (5) 

j \ V j /  

where Jj is the isotopic flux per unit area at constant elemental 
concentration, v i is the stoichiometric coefficient of the element 
whose isotopes are diffusing in mineral j, Vj is the molar volume of 
mineral j, Xgi is the fraction of the total number of grains which are 
mineral j, and A i is the surface area through which isotopes diffuse in 
mineral j, summed over all minerals j. Note that when 6 values are 
being treated as concentrations, Jj has units of cm 2 sec ~ 1. 

Diffusion within each mineral is calclulated for by a fully implicit 
finite difference numerical method, based on the Crank-Nicholson 
analogues of the diffusion equations. The tri-diagonal matrix of 
Crank-Nicholson equations is solved independently for each min- 
eral using the Thomas algorithm (e.g. Wang and Anderson 1982). A 
unique solution for polyphase interdiffusion of a temperature/time 
step is found by iterating over values of ~,,,,a,r~ towards a value 
such that Eq. 5 and all equations of form 4 are satisfied. 

The FGB model is more flexible than other models for inter- 
diffusion. A rock composed of any number of minerals, each having 
any set of grain sizes can be considered for any thermal history 
without the compromising assumptions about homogeneity or con- 
stant bulk composition for any of the minerals. 

Assumpt ions  

There are several assumptions which have been made in construct- 
ing this model. The most significant of these concern the process of 
diffusion, the grain geometry and size, and grain boundary mobility. 
(i) Diffusion controlled exchange. Isotopic exchange can result from 
diffusion or recrystallization. Always implicit in any calculation 
using a diffusion model is that diffusion was the dominant process. 
This assumption is not trivial in application. Diffusion must be a 
ubiquitous process in rocks whose minerals are not in equilibrium, 
but this does not guarantee that the effects of diffusion will be 
perceptible. Calculation of the effects of diffusion in a rock's history 
provide us with an endmember case. If processes of recrystallization 
and/or mass transfer reactions were also operative, the effects of 
diffusional exchange may be small in some cases. 
(ii) Grain shape and size. Mineral shapes are approximated by two 
end-member geometries; spheres and semi-infinite sheets. Minerals 
that are isotropic with respect to stable isotope diffusion (e.g. oxygen 
in garnet, magnetite or possibly calcite) are calculated using the 
equation for diffusion in a sphere (Eq. 2). Minerals that are anisotro- 
pic with respect to stable isotope diffusion (e.g. oxygen in quartz, 
diopside or olivine) are described as rectangular tablets, with a 
defined width perpendicular to the fast diffusion direction and a 

defined half-thickness parallel to the fast diffusion direction. Aniso- 
tropic grains are calculated using the one dimensional equation for 
diffusion in a plane (Eq. 3) and integrated in three dimensions for a 
given cross sectional area (width squared), assuming bilateral sym- 
metry of compositions about the half-thickness plane. This treat- 
ment assumes no diffusion along slow diffusion directions. The 
tabular approximation may also be appropriate for some minerals 
which are isotropic with respect to diffusion coefficient, but highly 
anisotropic in shape. 

These approximations are simplified descriptions of highly ir- 
regular grains, or minerals with diffusion coefficients that are neither 
sub-equal in all directions nor highly anisotropic. However, these 
shapes should be good general descriptions for populations of 
equant and tabular minerals in many igneous and metamorphic 
rocks. In any case, diffusion coefficients determined for the slow 
directions in anisotropic minerals are typically poorly constrained 
and/or described simply as several orders of magnitude lower than 
diffusion coefficients in the fast direction (e.g. Farver and Giletti 
1985, 1989; Far~er 1989). Therefore a more sophisticated treatment 
of diffusion in anisotropic minerals (e.g. two or three dimensional 
numerical modeling) does not appear to be warranted at this time. 

In the examples provided in this paper, the diffusion domain, or 
effective grain size, is considered to be equal to the physical grain 
size. This assumption should hold in minerals containing low densit- 
ies of planar structural defects and/or exsolution lamellae. Studies of 
argon, cation and stable isotope diffusion have not given a clear 
indication of the validity of this assumption. Argon loss from 
hornblende and feldspar has generally been found to fit a model of 
diffusional loss from domains smaller than grains (e.g. Harrison 
1981i Baldwin et al. 1990; Lovera et al. 1991), and the diffusion 
coefficient for oxygen isotopes in perthite is found to be several 
orders of magnitude higher along lamellae than in the bulk (Nagy 
and Giletti 1986). However, Giletti (1974) and Foland (1974) found 
that the diffusion domain corresponded to the physical grain size for 
diffusion of argon in phlogopite and alkalis in orthoclase, respect- 
ively. Jenkin and Fallick (1989) found similar results for hydrogen 
diffusion in hornblende up to 5 mm long. In any application of 
diffusion modeling, a careful examination of the sample is necessary 
by optical and/or electron microscopy. The absence of sub-domains 
greatly strengthens this assumption, but care must be taken in 
samples with lamellae, inclusions or unusual numbers of crystal 
defects. 
(iii) Grain boundary mobility. The FGB model assumes that grain 
boundaries of coexisting minerals maintain isotopic equilibrium. 
This assumption is also implicit when applying existing stable 
isotope diffusion models to hand samples (Dodson 1973; Giletti 
1986). The physical requirement which must be met is that the 
transport rate on the grain boundaries is much greater than that 
within the minerals, and large enough in absolute value that trans- 
port over the dimensions of the domain being modeled occurs 
rapidly relative to the time over which the rock cools. 

The length scale over which this assumption will hold will 
depend on the geologic setting of the diffusion problem of interest. 
This distance could be a function of the conditions on the grain 
boundaries (e.g. wet vs dry; strained vs annealed; thick vs thin) 
(Joesten 1991), as well as the mineral pair forming a particular grain 
boundary, grain distributions, the mineral diffusivities, the grain 
boundary diffusivities, and the mineral modes and grain sizes (Brady 
1983; Joesten 1991). A model could be constructed to describe finite 
grain boundary transport by using diffusional penetration calcu- 
lations (Fisher 1951; Joesten 1991) or double porosity models from 
the hydrologic literature (e.g. Wang 1992). However, this 
level of complexity is not currently justified due to the 
lack of experimental data on grain boundary transport mechanisms 
and rates. We are attempting to provide a general model for mineral 
interdiffusion in which grain boundary mobilities fit the end-mem- 
ber case of continuous equilibration for the scale being sampled. We 
therefore recommend careful selection of the scale and geometry of a 
domain being modeled and analyzed. One of the applications of this 
model will be in determining the scales over which its assumptions 
hold in natural rocks, and therefore the scales and settings over 
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which minerals "see" one another in metamorphic and slowly cooled 
plutonic rocks. 

There are several lines of evidence that suggest that the scale over 
which the assumption of grain boundary equilibrium should hold is 
on the order of centimeters (i.e. thin section to hand sample scale) in 
many slowly cooled regional metamorphic rocks. Although cation 
volume diffusion rates are frequently observed to be greater than 
those for stable isotopes within a given mineral, grain boundary 
diffusivities of cations and oxygen are often comparable (Joesten 
1991). Therefore the large number of studies of cation diffusion in 
metamorphic rocks may indicate the behavior of stable isotope 
transport along grain boundaries. Studies of cation exchange ther- 
mometry which have considered the role of diffusional resetting 
report concentric zonation of cations within slow diffusing minerals 
(e.g. garnets) and a uniform concentration in the relatively fast 
diffusing minerals (e.g. biotite or olivine) within and between grains 
(Tracy 1982; Medaris et al. 1990). Both observations suggest that the 
assumption of grain boundary equilibrium on the scale of a thin 
section holds during the retrogression of at least some regional 
metamorphic rocks. Observations of the apparent rates of transport 
of cations on grain boundaries should provide a minimum estimate 
for stable isotopes due to the much greater solubility of the common 
stable isotopes in a C O H fluid relative to cations, coupled with 
the observation that grain boundary diffusivities of stable isotopes 
and cations are approximately equal. 

Cation zonation within garnet on occasion shows only localized 
interdiffusion with touching grains of other minerals (Tracy 1982). If 
similar observations are made for stable isotope diffusion profiles, 
one should use either a modified version of the slow grain boundary 
cation diffusion model of Lasaga et al. (1977), or link the mode, grain 
sizes and relative widths of the minerals undergoing exchange such 
that the FGB model we propose can be used. 

Another estimate of the grain boundary mobility of stable 
isotopes comes from the analysis of the diffusional penetration of a 
chemical or isotopic species into a monomineralic matrix (Fisher 
1951; Joesten 1991). Experimental determinations of w* D Gb (where 
w is the grain boundary width, and D c'h is the diffusion coefficient of 
the species of interest on the grain boundary) show that grain 
boundary diffusivities are generally 4 to 6 orders of magnitude 
greater than volume diffusion coefficients of stable isotopes in 
minerals (Nagy and Giletti 1986; Coghlan 1990; Joesten 1991; 
Farver and Yund 1991). These differences may actually be larger in 
real rocks where grain boundaries are between dissimilar minerals 
and/or contain fluid, as opposed to the dry, monomineralic aggre- 
gates used for many experimental determinations (Joesten 1991). 
Calculations based on the diffusional penetration model indicate 
that oxygen isotope diffusion along grain boundaries is much faster 
than volume diffusion, and that transport distances for time scales 
used in our numerical time steps should be on the order of milli- 
meters to centimeters (Joesten 1991). The observed values of w*D Gh 
therefore appear to be sufficiently large to justify our assumption 
over a centimeter scale for slow cooling. 

Resul t s  

Calcu la t ions  using the F G B  mode l  have shown tha t  both  
the i so tope  zona t ion  and  bulk  f rac t iona t ions  between 
minera ls  are a s t rong funct ion of modes  and  relat ive 
diffusion coefficients (variables no t  considered in 
D o d s o n ' s  equat ion) ,  as well as cool ing  history,  and  the 
magn i tude  of  the diffusion coefficient, gra in  size and  shape 
of any one mineral .  These results  differ cons iderab ly  from 
predic t ions  based  on D o d s o n ' s  equa t ion  in many  rock  
types of  interest .  W e  will first cons ider  these effects in 
terms of  rocks  c o m p o s e d  of  two minerals ,  and  then exam- 
ine rocks  with three or  more  minera ls  a n d / o r  heterogene-  
ous gra in  size d is t r ibut ions .  

Closure temperature in the two mineral system 

The results of interdiffusion are s implest  and  mos t  easily 
unde r s tood  in the case of two minerals  undergo ing  inter-  
diffusion. Wi th  a change in tempera ture ,  i so topic  ex- 
change takes place because there is a t empera tu re  depen-  
dence to the f ract ionat ion.  The end result  of  this exchange,  
as seen in the bu lk  compos i t ions  and  profiles preserved in 
these minerals ,  is a funct ion of  the cool ing rate,  diffusion 
coefficients of the two minerals ,  the gra in  sizes and  shapes 
(e.g. spherical  vs tabular) ,  and  the relative abundances  of 
the minerals .  The effects of the cool ing rate, and  the gra in  
size, shape and  diffusion coefficient of a slower diffuser in 
an infinite reservoir  are a l ready  qual i ta t ively  unde r s tood  
th rough  the analysis  of D o d s o n  (1973). We  therefore focus 
on the effects of  mode  and  relat ive diffusion coefficient 
descr ibed for interdiffusion by the F G B  model.  

F igure  3 is a plot  of the difference between the D o d s o n  
closure  t empera tu re  for the minera l  with the lower diffu- 
sion coefficient and  the t empera tu re  tha t  the F G B  mode l  
predic ts  to be recorded  in the bulk f rac t ionat ions  between 
the two minerals ,  as a funct ion of the relat ive volume 
fract ion of the fast and  slow diffusers. These sample  
calcula t ions  are for rocks composed  exclusively of  quar tz  
and  feldspar,  quar tz  and  hornblende ,  or  fe ldspar  and  
hornblende .  By varying the m o d a l  abundance  of the two 
minera ls  in each of these three mode l  rocks,  the effects of 
mode  and  of the difference in diffusion coefficient are 
shown. In these ca lcula t ions  cool ing rate  was app rox im-  
ately 10 ~ per  mi l l ion years  at  the D o d s o n  closure tem- 
pera tures  of  quar tz  and  ho rnb lende  (cooling from 750 ~ 
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Fig. 3. Plot of the difference between the closure temperature predic- 
ted by the FGB model and the Dodson closure temperature of the 
slower diffuser of a given mineral pair, as a function of modal 
abundance. When the faster diffuser is modally dominant, the 
closure temperature approaches that calculated by Dodson's equa- 
tion because the fast diffuser is behaving approximately as an infinite 
reservoir. As the modal abundance of the fast diffuser decreases, the 
temperature recorded between the pair decreases, to a minimmn 
which approaches the Dodson closure temperature of the fast 
diffuser. The difference between Qtz-Fsp and Hb-Fsp curves illustr- 
ate the influence of relative diffusion coefficients. When the minerals 
have nearly equal diffusion coefficients and size, the "mode effect" is 
smaller at sub-equal modal abundances than pairs which have 
widely differing diffusion coefficients 
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Fig. 4. Arrhenius plot showing diffusion coefficient data for minerals 
used in this paper (bold lines), as well as representative data for 
several other minerals of interest. References: albite and anorthite, 
Giletti et al. (1978); quartz, Giletti and Yund (1984); calcite (hydro- 
thermal), Farver (1990); calcite (low PH20), Kronenberg et al. (1984); 
magnetite, Giletti and Hess (1988); hornblende, Farver and Giletti 
(1985); diopside, Farver (1989); forsterite, Hallwig et al. (1982) 

to 25~ in 181 nay with 1/T in degrees K increasing 
linearly with time). Feldspar was treated as spheres with a 
1 mm radius; quartz and hornblende as prisms 1 mm wide 
with a 1 mm half-thickness. The diffusion coefficients used 
are those in Fig. 4, which also represents oxygen diffusion 
in some other common minerals. Diffusion coefficients 
used for quartz, feldspar and hornblende are the same as 
those used by Giletti (1986). They were chosen in order to 
simplify comparison of the two models in the calculations 
for rocks composed of three minerals described below. 
The largest difference in diffusion coefficient (for the high 
temperatures at which most diffusional exchange on 
cooling takes place) for the three minerals calculated is 
between hornblende and feldspar, the smallest difference is 
between quartz and feldspar. 

The closure temperature which should be recorded 
between two minerals, as predicted by the FGB model, 
diverges dramatically from the Dodson closure temper- 
ature as the modal abundance of the fast diffusing mineral 
decreases (i.e. as the system diverges from the infinite 
reservoir approximation). We have termed this the "mode 
effect". Previous workers who have made use of the 
Dodson equation or a numerical analogue have recog- 
nized that the infinite reservoir approximation should 
hold when significant quantities of the fast diffusing min- 
eral are present (Javoy 1977; Giletti 1986). However, no 
limits are specified for application. The FGB model indi- 
cates that even a rock which has a modal majority of the 
fast diffusing mineral could record a temperature which 
deviates from the Dodson closure temperature by 50 ~ or 
more. As the modal abundance of the fast diffusing min- 
eral decreases this difference rapidly increases, reaching a 
maximum equal to the difference between the Dodson 
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closure temperatures of the two minerals (most clearly 
seen in Fig. 3 for the quartz-hornblende curve). 

The magnitude of the mode effect on closure temper- 
ature is a function of the difference in diffusion coefficients 
of the two minerals undergoing interdiffusion. This is also 
seen in Fig. 3 by comparison of the curves for the three 
mineral pairs. If rates of stable isotope diffusion in the two 
minerals are identical at all temperatures, then for miner- 
als of the same size and shape, the blocking temperatures 
of the two minerals are the same as the Dodson closure 
temperature of either of the two minerals (not shown). As 
the diffusion coefficients diverge, the closure temperature 
of the pair calculated by the FGB model decreases below 
the Dodson closure temperature of the slow diffusing 
mineral. The mode effect is sensitive enough to differences 
in diffusion coefficient between minerals that it will be 
important with any two minerals of the same size whose 
diffusion coefficients are different by more than an order 
of magnitude. When differences in diffusion coefficient are 
large and a slow diffusing mineral is modally dominant, 
systematic errors of hundreds of degrees could be engen- 
dered by using a method that does not consider mass 
balance. 

Profiles in the two mineral system 

Modal abundance and relative diffusion coefficient have 
also strong effects on the compositional profiles preserved 
in minerals undergoing interdiffusion. The use of 
Dodson's equation is based on the assumption that little if 
any compositional profile should be preserved within the 
more rapidly diffusing of two minerals. This assumption 
seems reasonable if one considers the equation relating 
flux to instantaneous compositional gradient. If mass 
balance is controlled only by diffusion across a plane 
between two minerals, and the concentration of oxygen is 
equal in them, then the instantaneous gradients at the 
grain boundary can be described by the steady state 
approximation: 

,06, ,06b 
- O .  = D b (6) 

Ox ~x 

where ~6j/~X is the isotopic gradient in mineral j, evalu- 
ated at the boundary of the mineral, and Dj is the diffusion 
coefficient in mineral j. If D b is orders of magnitude 
greater than D,, it is clear by inspection of Eq. 6 that no 
gradient should be found within mineral b (O6b/~X =~ 0). 
However, if mass balance is applied over parts or all of the 
surfaces of multiple grains, and/or  if concentrations of 
oxygen are not equal in the two minerals, several other 
terms must be included: 

~a (u ~,Xgb,Ab,O b ~_x (7) - ~ *Xg"*A"*D"*~-x = \ V u j  

where Xgj is the fraction of total number of grains which 
are mineral j, Aj is the surface area across which species i 
may diffuse in mineral j, v~ is the stoichiometric coefficient 
of the element whose isotopes are diffusing in mineral j, 
and Vj is the molar volume of mineral j. This leads to the 
breakdown of the validity of the assumption that no 
gradient will be found in the fast diffusing mineral. In 
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considering these additional terms it is clear that unless 
the diffusion coefficients of the two minerals are many 
orders of magnitude apart, there will be cases of relative 
size, mode and elemental concentration that lead to ap- 
preciable profiles in the fast diffuser. It is, in fact, possible 
that the fast diffusing mineral could preserve a greater 
profile than that of the slow diffusing mineral. The results 
of calculations using the FGB model demonstrate this 
possibility. Figures 5a -c  illustrates the effect of mode 
alone (for equal grain sizes and shapes, using diffusion 
coefficients shown in Fig. 4) on profiles which should be 
preserved within quartz (fast) and hornblende (slow) on 
cooling along the same T-t path described above. When 
the fast diffusing mineral is modally dominant (Fig. 5a), 
the assumption based on Eq. 6 holds; the slow mineral 
preserves a steep and deeply penetrating profile, while the 
fast mineral is homogeneous over the scale of ram). With 
equal amounts of fast and slow diffuser (Fig. 5b) the 
profile in the slow diffuser is smaller, and a profile has 
been developed in the rim of quartz. Finally, for the case of 
a modally dominant slow dfffuser (Fig. 5c), there develops 
a complete reversal of the behavior predicted from Eq. 6. 
Quartz has developed a steep and deeply penetrating 

diffusion profile, and the profile within hornblende, the 
slower diffusing mineral, has become relatively insigni- 
ficant. 

The relation between relative diffusion coefficient and 
mode is reversed as it applies to compositional profiles; 
greater differences in diffusion coefficient lead to progres- 
sively shallower profiles within the fast diffuser. The pro- 
files shown in Fig. 5 are less extreme than those calculated 
for other mineral pairs of geologic interest for which 
diffusion coefficients are closer together and fraction- 
ations are larger (e.g. magnetite with quartz or calcite). 

Interdiffusion among three minerals 

Interdiffusion involving three or more minerals is not 
explicitly described by any of the commonly used models. 
Given the method of calculation used in the FGB model, 
interdiffusion problems involving more than two phases 
are similar to the two mineral case; mass balance and 
equilibrium constraints are simply imposed over the 
boundaries of more than two minerals within the domain 
being modeled. In order to understand the results of 
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interdiffusion in rocks with three or more minerals we 
need to consider the effects of competition between min- 
eral pairs on all the final fractionations recorded in a rock. 

In the model of Giletti (1986), the final fractionations 
between coexisting minerals are calculated based on the 
closure temperature of each mineral and mass balance at 
the closure temperatures of minerals as the system cools. 
The model of Giletti does not, however, consider that the 
closure temperatures should be a function of the relative 
abundances and diffusivities of the coexisting minerals. 
The mode effect described by our model will occur simul- 
taneously with the mass balance effect described by Giletti 
(see Fig. 2), and will dramatically change the predicted 
results from those found with the Giletti model. We have 
illustrated the combined results of these two effects by 
comparing the predictions of Giletti's model with those of 
our model for the temperatures recorded between pairs in 
a three-mineral rock (potassium feldspar, quartz and 
hornblende) as a function of mode. 

The results are illustrative rather than general, how- 
ever, and each system of minerals requires its own set of 
calculations. In our calculations we have used the same 
grain sizes, shapes, diffusion coefficients and fractionation 
factors used in the calculations of Giletti (1986, p. 227). 
The cooling history used for our calculations was one in 
which 1/T (K) increased linearly with time, and the 
cooling rate was 10~ the cooling rate used by 
Giletti, at the Dodson closure temperature of quartz 
(513 ~'C). The cooling history we used should approach the 
path needed for the application of Dodson's equation as 
closely as possible, therefore maximizing the similarity to 
Giletti's calculations. The values used for these variables 
result in a Dodson closure temperature of 624~ for 
hornblende, 513~ for quartz, and 274~ for feldspar. 
The Dodson equation describes hornblende as "closing" 
first, allowing quartz and feldspar to exchange down to 
the closure temperature of quartz. Below this temperature 
(513 ~ no further isotopic modifications should occur. 
The predicted results of this process are quartz-feldspar 
tempereatures of 513~ independent of modes, and 
quartz-hornblende and feldspar-hornblende temperatures 
which have been reset to higher and lower temperatures 
respectively as a function of the relative modes of quartz 
and feldspar only (Figs. 6a c). 

In the FGB model, the mode effect imposes a modal 
dependence of the closure temperatures of the mineral 
pairs themselves, which, when combined with the mass 
balance effects for three mineral systems (Fig. 2) leads to 
predicted temperatures which can be dramatically differ- 
ent from the predictions of Giletti. The range of possible 
temperatures recorded by quartz-hornblende (Fig. 7a) 
and feldspar-hornblende (Fig. 7b) pairs is a factor of five 
and two greater, respectively, than seen in the Giletti 
model (Figs. 6a, 6b). In extreme cases the recorded bulk 
mineral temperatures can be hundreds of degrees above 
the highest Dodson closure temperature, or over a hund- 
red degrees below the Dodson closure temperature of 
either quartz or hornblende. The quartz-feldspar temper- 
atures (Fig. 7c), rather than being independent of mode, 
show a dramatic range of values (over 1500~ few of 
them near the Dodson closure temperature of quartz. In 
some instances these temperatures are far above those 
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Fig. 6a c. Contour of the temperatures predicted that would be 
recorded by the bulk compositions of quartz and hornblende a, 
feldspar and hornblende b and quartz and feldspar e pairs in Qtz- 
Fsp-Hb rocks, as calculated by the model of Giletti (1986). Adapted 
from Figs. 2 and 3 of Giletti (1986). See text for discussion 

predicted by Giletti (feldspar-hornblende in quartz rich 
rocks; quartz-feldspar in hornblende rich rocks); in other 
cases far below (quartz-feldspar in quartz rich rocks; 
hornblende-feldspar in hornblende rich rocks). In addi- 
tion, the FGB model predicts a dramatically different 
shape to the isotherms of apparent temperatures from that 
of the model of Giletti. Rather than being straight lines 
parallel to constant quartz-feldspar ratios (Figs. 6a, b), the 
FGB model predicts that isotherms will be a complex 
function of the modal abundance of all three minerals 
(Figs. 7a-c). 

If the results of our calculations are interpreted in 
terms of the Giletti model, or any model based on Dodson 
closure temperatures, the rock typically will appear to 
have experienced an open system history. Feldspars will 
appear to have been either enriched or depleted by an 
outside source, depending on whether the rock was horn- 
blende or quartz-rich, respectively. Hornblende-rich rocks 
will also have quartz 51SO values that are too high to be 
consistent with the Dodson closure temperature of quartz. 

The greatest differences between Figs. 6 and 7 are due 
to the mode effect causing the isotopic composition of 
feldspar to shift by exchange with either hornblende or 
quartz below the Dodson closure temperature of either or 
both mineral. In rocks rich in hornblende and poor in 
both quartz and feldspar, quartz may also have its isoto- 
pic composition shifted by exchange with hornblende 
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Fig. 7a-c. Contour of the temperatures that would be recorded by 
the bulk compositions of quartz and hornblende a, feldspar and 
hornblende b and quartz and feldspar e pairs in Qtz-Fsp-Hb rocks, 
as calculated by the FGB model. See text for discussion 

below the Dodson closure temperature of hornblende. 
Results would be different in rocks containing minerals 
with different relative fractionations and diffusion coeffic- 
ients, but additional calculations with a variety of miner- 
als have shown that the results shown here are represent- 
ative. Because of the large number of possible permut- 
ations of fractionation factors, diffusion coefficients and 
modal abundances, rocks containing three or more miner- 
als can conceivably record a large span of fractionations 
by closed system processes alone. Additional calculations 
have shown that among the possibilities is a near concor- 
dance of mineral thermometers, none of which record the 
Dodson closure temperature of one of the refractory 
minerals in a rock. These results indicate that the effects of 
diffusive exchange must be evaluated before interpreting 
the mineral fractionations, concordant or discordant, re- 
corded within any rock in which diffusion could have 
acted over observable scales. 

Variable grain size 

An additional result of mineral interdiffusion is the poten- 
tial for isotopic fractionation between different grain sizes 
of the same mineral in a rock. This effect could be 
approximated for the mineral with the higher Dodson 
closure temperature by using Dodson's equation. The 
analysis predicts that larger grains will record higher 
temperature fractionations with the "reservoir" than will 
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Fig. 8. Plot of the temperatures recorded between fine quartz 
(0.1 mm half-thickness) and coarse quartz (1.0 mm half-thickness), 
and coarse hornblende (1.0 mm half-thickness), in a rock composed 
of 90% hornblende, 9% coarse quartz and 1% fine quartz (by mode), 
as a function of time as the rock cools. A curve showing the actual 
temperature as a function of time is shown for comparison 
(T model). Note that two grain size fractions of the faster diffusing 
mineral (Qtz) take on different isotopic compositions by diffusional 
exchange with a slower diffusing mineral (Hb). This is contrary to 
the predictions one would make based on the application of 
Dodson's equation to stable isotope interdiffusion 

smaller grains. This effect provides a potentially useful 
tool for estimating the value of diffusion coefficients of 
natural minerals within rocks (e.g. Sharp 1991). 

If modal abundances are such that the FGB model 
predicts a significant "mode effect", differences in grain 
size may also lead to differences in composition for the fast 
diffusing mineral as well, even when the Dodson closure 
temperature of all such grain size populations are below 
the Dodson closure temperature of a coexisting, slow 
diffusing mineral. This effect is illustrated by calculations 
made for a rock which is modally dominated by a single 
grain size of a mineral with a low diffusion coefficient 
(90% hornblende with a 1 mm half-thickness), with the 
remainder being composed of two size fractions of a faster 
diffusing mineral (9% of 1 mm quartz, and 1% of 0.1 mm 
quartz). The results are shown in Fig. 8 as a plot of 
apparent temperature of each size fraction of quartz re- 
corded by its fractionation with hornblende, throughout 
the cooling history. At high temperature the two grain 
sizes of the fast diffusing mineral have the same isotopic 
composition, as would be predicted by an analysis based 
on Dodson's equation. However, as this rock continues to 
cool the grain size fractions diverge in isotopic composi- 
tion as they "close" with respect to the matrix of the slow 
diffusing mineral at a temperature dependent on their 
grain sizes. 

As was seen in the calculation of isotopic profiles 
preserved within minerals, the mode effect can lead to a 
fast diffusing mineral taking on the characteristics nor- 
mally expected of a slow diffusing mineral (diverging grain 
size populations). If interpreted in terms of Dodson's 
equation, the results of these calculations could in fact be 
used to derive an apparent (and incorrect) set of values for 
Do and Q for the apparently "slow" diffusing mineral, 
quartz. 
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Applications 

The preceding examples describe calculations that predict 
a dramatic range of stable isotope profiles and integrated 
mineral fractionations that will be preserved in rocks. The 
corollary of these predictions is that the results of inter- 
diffusion can preserve clear records of the geologic history 
(temperature; open vs closed system behavior, cooling 
rate) and kinetic characteristics (Do; Q; diffusion domains) 
of natural minerals. The usefulness of the FGB model in 
applications to study these records can be described in 
terms of several broad categories. 

Thermometry 

This model provides a means to evaluate the significance 
of the temperatures recorded by stable isotope thermo- 
meters in terms of the geologic history, diffusional charac- 
teristics, grain sizes, and modes of minerals in a rock. It 
can also predict the rock types in which meaningful peak 
temperatures will be most likely to be recorded. In addi- 
tion, one can now make specific predictions o f  which 
minerals within a given rock should be zoned, and which 
should most nearly preserve peak temperature composi- 
tions within their cores. This information could be used 
to guide thermometry based on new microanalytical 
sampling techniques, as well as with conventional bulk 
analysis. Application of FGB modeling to many major 
rock types is treated in detail in Eiler et al. 1993. 

Evaluation of open vs closed system behavior 

The predictions of the FGB model include a large spec- 
trum of concordant and discordant fractionations in 
rocks, produced by closed system processes alone. One 
potential use for this model is to evaluate whether the 
fractionations seen among minerals in a given rock are 
consistent with a closed system behavior, or require ex- 
change with an external reservoir (i.e. infiltrating fluids). 
The results of such modeling could potentially be counter- 
intuitive. Highly discordant thermometers may fit a model 
of closed system cooling, a n d  conversely, concordant 
thermometers could indicate open system alteration (e.g. 
concordant temperatures in a quartz-rich rock from 
Fig. 7a c would indicate elevation in feldspar ~ 18 0 from 
an external source). These are several characteristics of 
stable isotope systematics which can be taken as a strong 
indicators of diffusional exchange. Consistent, interpret- 
able dependence of composition on grain size is a charac- 
teristic suggested by earlier descriptions of stable isotope 
diffusion. The FGB model adds the dependence of closure 
temperature on mode as an indicator of closed system 
diffusional exchange. 

Determination of cooling rate 

If a rock has only experienced closed system interdiffu- 
sion, the observed mineral compositions or profiles are a 
function of cooling rate. Use of the FGB model yields 
more accurate cooling rates for rocks which do not con- 

tain the large amounts of a fast diffusing mineral required 
by other models (e.g. Dodson 1973, 1986; Javoy 1977; 
Giletti 1986). 

All estimates of cooling rate are subject to con- 
siderable imprecision. Closure temperatures (both by 
Dodson's equation and the FGB model) are relatively 
insensitive to cooling rate, leading to uncertainties in 
OT/~t of from a factor of two to ten, based simply on 
analytical uncertainties in stable isotope ratio mea- 
surement (Giletti 1986; Jenkin et al. 1990). However, the 
data required to make such order-of-magnitude estimates 
from stable isotope data are relatively easy to obtain from 
most rocks. Therefore this method could be useful for 
cooling rate determinations in rocks for which geo- 
chronology is impractical. 

Not only are cooling rates determined from oxygen 
isotope fractionations relatively imprecise, but models 
based on Dodson's equation will contain large systematic 
errors in many rock types. This is illustrated in a plot of 
the cooling rate inferred from Dodson's equation as a 
function of mode in a rock composed of hornblende and 
feldspar, whose fractionations were calculated using the 
FGB model (Fig. 9). The actual cooling rate at the 
Dodson closure temperature of hornblende was 10 ~ 
In a rock composed of two minerals, dominated by a 
mineral with a high Dodson closure temperature (i.e. large 
diameter or slow diffusion coefficient), cooling rates will 
be inferred to be orders of magnitude slower than they 
actually were. Application of cooling rate estimates for 
three mineral systems based on Dodson's equation were 
evaluated using our FGB results (Figs. 7a-c) as input for 
MacCool, a computer program (Jenkin et al. 1990) which 
fits cooling rate using the model of Giletti. This model 
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Fig. 9. Dodson's equation can be used to calculate inferred cooling 
rates recorded in the closure temperature between two minerals, as 
calculated with the FGB model. The results of such calculations for 
model rocks containing only feldspar and hornblende are shown. 
The left hand vertical scale is the cooling rate inferred from Dodson's 
equation and the right hand vertical scale is the ratio of the inferred 
cooling rate to the model cooling rate at the Dodson closure 
temperature of hornblende (10 ~ for this example). Systematic 
errors of up to 4 orders of magnitude difference are made for extreme 
cases of modal abundance. Note that the cooling rate inferred from 
Dodson's equation is always lower than the model cooling rate for 
rocks containing two minerals, but can be greater or less than the 
model cooling rate for rocks with three or more minerals 
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erroneously indicated that most rocks experienced open 
system exchange, and calculated cooling rates that were 
either too high or too low for all rocks containing a modal 
minority of feldspar. 

Determination of  diffi4sion coefficient 

Recent experimental studies have demonstrated that the 
volume diffusion coefficient in minerals is a function of the 
composition of coexisting fluid (water fugacity, H 2 fuga- 
city, proton activity) (Yund and Anderson 1978; Giletti 
and Yund 1984; Elphick et al. 1986; Elphick and Graham 
1988; Farver and Yund 1990). Estimation of the diffusion 
coefficient in a given mineral could therefore serve as a 
powerful tool for understanding the effects of fluid histo- 
ries on diffusivity, or interpreting fluid history based on 
experimentally determined fluid effects. The FGB model 
could be used to estimate diffusion coefficients of minerals 
within rocks which have known cooling rates, and are 
independently known to have undergone closed system 
retrogression. In such a case, calculation of observed 
profiles and/or  integrated fractionations could be made 
for a variety of values of D o and Q for the mineral of 
interest. These calculations could provide estimates of 
mineral diffusivities in the geologic conditions they experi- 
enced, or estimates of diffusivity for minerals for which no 
experimental determinations have been made. 

Tests of the FGB model and grain boundary mobility 

The applicability of the FGB model to a given size domain 
in a rock could be tested by conventional stable isotope 
thermometry of cogenetic suites having large variations in 
mode, and by in situ microanalysis of isotope zonation of 
minerals in a variety of textural surroundings from the 
same rock. Tests of the scales at which the FGB model 
succeeds and fails will also allow study of the extent of 
grain boundary  mobility during a rock's retrograde his- 
tory. Determination of which style of grain boundary 
mobility (extensive over thin section size domain, only 
between touching grains, or an intermediate case) best 
describes the fractionations and profiles observed in a 
rock could be used as evidence for the nature of the grain 
boundary environment in the setting experienced by that 
rock. Future modeling to accompany such studies should 
include an integration of diffusional penetration or double 
diffusive models with the FGB model. 

S u m m a r y  

The FGB model provides a framework in which the 
results of stable isotope interdiffusion can be interpreted. 
The inherent assumptions of this model, most importantly 
the description of grain boundaries as regions of relatively 
rapid diffusion, require careful consideration of the system 
the user describes and models. This model can be used to 
describe cases of grain boundary mobility ranging from 
one dimensional exchange between touching grains to 
three dimensional grain boundary equilibration over any 

scale. The primary contribution of this model, however, is 
that it allows one, for the first time, to consider the effects 
of diffusion between non-touching grains, without needing 
to make assumptions about  the diffusivity, profiles or 
isotopic change of any of the minerals involved. 

When mass balance terms are included in a descrip- 
tion of stable isotope diffusion, closure temperatures be- 
come a strong function of modal abundance and the 
differences in diffusion coefficients between all coexisting 
minerals. These factors can be as significant as the thermal 
history and the grain size, shape and diffusion coefficient 
of a slow diffusing mineral. The FGB model is a flexible 
method for incorporating all of these variables in solving a 
stable isotope diffusion problem. 

A p p e n d i x  

Scaling.factors for two mineral interd(ffusion 

Lasaga (1983) derived two scaling factors, [3/7 and Y', which uniquely 
describe the profiles produced in the diffusion couple between 
touching grains. Lasaga (1983) provides examples of tile expected 
cation zonation within a very slow diffusing mineral (garnet) under- 
going exchange with a relatively fast diffusing mineral (cordierite) for 
various values of these scaling factors. The additional mass balance 
terms used in our model to describe diffusional exchange between 
the surfaces of non-touching grains can be inserted into Lasaga's 
formulation for 13, both allowing the conceptual comparison of the 
two models and providing a means of estimating the results of 
interdiffusion as described by our model before undertaking the 
detailed numerical calculations. The scaling factors calculated using 
the modified equations below cannot be directly compared to those 
of Lasaga because of changes made to conform with conventions 
used to describe stable isotope ratios and fractionations. The modi- 
fied equations can, however, be used to calculate the approximate 
difference in the preservation of profiles between the physical condi- 
tions described by the model of Lasaga (diffusion between touching 
surfaces) and those described by the FGB model (diffusion between 
non-touching grains). 

The model of Lasaga is formulated for cation diffusion between 
two semi-infinite sheets at their points of contact only, and will 
provide only approximations for the calculations involving three or 
more minerals. We recommend that any final calculations involving 
rocks in which non-touching grains may have undergone stable 
isotope exchange be made with the FGB model. References below to 
equations from Lasaga et al. (1977) are discriminated by an asterisk. 

The additional terms considered in the FGB model must be 
included in the flux balance equation (Eq. 38*). Equation 34* states: 

c~C~ /D! *t 
Dj(t)* ~x ~ 2*~j *X/ -~ 

(evaluated at x = 0) 

If concentrations are approximated with 8 values, and the concen- 
tration of the element whose isotopes are being considered is 
allowed to vary from mineral to mineral, the substitution can be 
made: 

8 i = 5j* vj (A1) 
V 

where vj is the stoichiometric coefficient of the element of interest in 
phase j, and Vj is the molar volume of phase j. If we assume 
e(vjVi)/~X = 0, then Eq. (34*) simplifies to: 

*VJ * x / D ~ t  
Dj(t)*~ 5-j - 2" ~j - -  

Ox vj 



The left hand side is equal to the flux per unit area of species i 
through the surface of phase j. The surface integration, and imposi- 
tion of flux balance may now be included to arrive at the mass 
balance equation analogous to Eq. (38*): 

*x/D lr~ *t * /D2*t, (A2) 

where 

X g 2 * W 2 * V 2  * v  1 
4,= 

Xgl *W~*Vl *v2 

and where eq, ~2 are the uj values for minerals 1 and 2 of a two 
mineral interdiffusion problem, Xgi is the fraction of the total 
number of grains which are mineral i, and Wj is the width of the 
(square) face of mineral i through which diffusion occurs, d? is the 
term which contains the mass balance effects of exchange between 
non-touching grains. Xgj can be easily related to the modal abund- 
ance, given Wj and grain thicknesses. ~ is equal to 1 for diffusion 
between faces of touching grains with equal oxygen concentrations. 

The equations relating equilibrium constant to initial and cur- 
rent concentrations (Eqs. 10", 35* and 37*) have been modified to 
conform to conventional stable isotope notation. In order to retain 
the convenient A(i-j) notation, and to allow A to be linearized with 
time (required for Eq. 35*), we have assumed a cooling rate such 
that 1/T (degrees K) increases linearly with time, in which case A(t) 
can be well approximated as: 

A(t) = A ~ *(1 - B ' t )  (13) 

where t is in millions of years from the start of cooling, A ~ is the 
isotopic fl'actionation at the start of cooling; and B is: 

B =  - - 2 * f * s * x / f  (A4) 

where f is the constant describing the temperature dependence of A, 
and s is a constant describing the cooling path: 

1 "1 
T T ~ 

s (A5) 
t 

where T ~ is the temperature (degrees K) at the start of cooling. 
The lineralization of 6~ with time is described by the equivalent of 

Eq. 36*: 

62 = 6~ + a*t (A6) 

If these are substituted into the equation describing the equilibrium 
fractionation: 

6~ - ~ = A(t) = A ~ - B ' t )  (A7) 

We may combine the resulting equation with Eq. A2 and solve for 
~1 and ~2:  

d?* 2 , ( _  AO,B)  

(X 1 - -  (A8-1) 

1 + ~*/Dx/~ - 

_ A O * B  
~2 - (A8-2) 

l + d ? *  /D~  
D~ 

The equation for ~l is the equivalent to Eq. 31 from Lasaga (1983) 
defining ~. For constant fi' and y, the curves of Lasaga (1983) show 
that changes in 13 of approximately a factor of 10 dramatically 
changes the diffusion profiles preserved within minerals. In Fig. A1 
we have plotted ~ and ~2 as a function of Log(d~). When ~ is equal 
to 1 the model of Lasaga applies, while the FGB model applies for 
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Fig. A1. Plot of ~ values for minerals 1 (hornblende) and 2 (feldspar) 
as a function of cb (see text for discussion). ~ equal to 1 corresponds 
to diffusion only between touching faces of feldspar and hornblende. 
Values not equal to 1 correspond to a fast grain boundary model for 
diffusion between unequal modes. Increasing values of ct correspond 
to steeper profiles. As the modal abundance of hornblende increases, 
its diffilsion profile becomes more shallow and a diffusion profile 
develops in feldspar. Exact curves and their crossover points will 
differ for different mineral pairs 

any value of qb. The diffusion coefficients for this example are those of 
hornblende (mineral 1) and feldspar (mineral 2), and s is a value 
corresponding to a cooling rate of approximately 10 ~ at high 
temperature. If grain sizes and oxygen concentrations are approxim- 
ately equal, then high d~ values correspond to modal dominance of 
feldspar, and low 6 values correspond to modal dominance of 
hornblende. Similar plots for minerals with other diffusion coeffi- 
cient ratios could be made using (Eqs. 18-1, 8-2) as a preliminary 
test of the influence of the mode effect on diffusion profiles. 

Appendix 

Table of variables 

T 
T ~ 
Tc 
t 
X 
Q 
R 
A 
Aj 
Wj 
Xgj 
Vj 
Vj 

Do 
DI 

Dj 

a 

~oundary 

~ o ~  

6~ 

temperature 
temperature at the start of cooling 
closure temperature 
time 
distance 
diffusional activation energy 
gas constant 
diffusional geometric parameter 
surface area of mineral grain j 
width of mineral grain j 
fraction of total grains being mineral j 
molar volume of mineral j 
stoichiometric coefficient of element of interest 

in mineral j 
diffusional pre-exponential factor 
chemical diffusion coefficient of species 

i in phase j 
tracer diffusion coefficient of isotope of interest 

in phase j 
grain size 
concentration of species i in phase j 
isotopic composition of reference mineral 

on the grain boundary 
isotopic composition of mineral j 

on the grain boundary 
isotopic composition of mineral j 

at the start of cooling 
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8j 
Jj 

B 

f 

S 

~j 

A 
A o 

isotopic composition of mineral j 
flux per unit area of isotope of interest from mineral j, 

at constant elemental concentration 
linearization constant for change in isotopic 

fractionation with time 
constant for temperature dependence 

of the fractionation between two minerals 
constant describing cooling curve 
mass balance term for diffusional exchange 

between non-touching grains 
linearization constant for change in isotopic composi- 

tion of mineral j, on its grain boundary with time 
fractionation of 6i values between two minerals 
A value at the start of cooling 
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